Mixing mixed-integer inequalities

Kumar Abhishek

Lehigh University

C@RAL Seminar Series
April, 2007

References

- O. Günlük and Y. Pochet, Mixing mixed-integer inequalities, Mathematical Programming, 90(2001), 429-458.
- A. J. Miller and L. A. Wolsey, Tight formulations for some simple mixed integer programs and convex objective integer programs, Mathematical Programming, 98(2003), 73-88.
- M. Zhao and I. Farias, The polar of a simple mixed-integer set.

Introduction

Mixed-integer programming problem:

$$
z=\min \{c x: x \in S\}
$$

where

$$
S=\left\{x \in \mathcal{R}^{m_{1}} \times \mathcal{Z}^{m_{2}}: A x \leq b\right\}
$$

How to obtain strong valid inequalities for S ?

- General purpose cutting planes, special purpose cutting planes based on structure, relaxations.
- MIR inequalities...
- Obtain new classes of valid inequalities by using known classes
- lifting, mixing.
- Mixing: generating new valid inequalities by combining known MIR inequalities.

Base inequalities

Given a mixed integer region $S \subseteq \mathcal{R}^{m_{1}} \times \mathcal{Z}^{m_{2}}$ and a collection of $m \geq 2$ valid inequalities for S :

$$
\begin{equation*}
f^{i}(x)+B g^{i}(x) \geq \pi^{i} \quad i \in \mathcal{I}=\{1, \ldots, m\} \tag{1}
\end{equation*}
$$

where

$$
B \in \mathcal{R}_{+}^{1}, \pi \in \mathcal{R}^{1}, f^{i}(x) \geq 0, \text { and } g^{i}(x) \in \mathcal{Z}
$$

- valid inequalities of this form are called base inequalities from now on.

MIR inequality for the base inequality

- For $i \in \mathcal{I}$, let $\tau^{i}=\left\lceil\pi^{i} / B\right\rceil$, and $\gamma^{i}=\pi^{i}-\left(\tau^{i}-1\right) B$.
- $\tau^{i} \in \mathcal{Z}^{1}$ and $B \geq \gamma^{i}>0$.

Theorem

For any $i \in \mathcal{I}$, the so-called simple MIR inequality

$$
\begin{equation*}
f^{i}(x) \geq \gamma^{i}\left(\tau^{i}-g^{i}(x)\right) \tag{2}
\end{equation*}
$$

is valid for S.
Proof:

$$
f^{i}(x) \geq \pi^{i}-B g^{i}(x)=\gamma^{i}+B\left(\tau^{i}-g^{i}(x)-1\right) .
$$

- For $x \in S$, either $g^{i}(x) \geq \tau^{i}$ or $g^{i}(x) \leq \tau^{i}-1 \ldots$

MIR inequality...

- Nemhauser and Wolsey method for generating MIR on the set H :

$$
\begin{aligned}
& H=\left\{(f, g) \in \mathcal{R} \times \mathcal{Z}:-f \leq 0,-\frac{f}{B}-g \leq-\frac{\pi}{B}\right\} \\
& \Rightarrow-g-\frac{f}{\pi-B(\lceil\pi / B\rceil-1)} \leq\lceil\pi / B\rceil \\
& \equiv f \geq(\pi-B(\lceil\pi / B\rceil-1))(\lceil\pi / B\rceil-g)
\end{aligned}
$$

- $\Rightarrow(2)$ is an MIR inequality.
- This inequality suffices to obtain the complete linear description of $\operatorname{conv}(H)$.
- Now try this on mixed-integer sets with more than 1 base inequality.

Mixing procedure

- Let $I=\{1, \ldots, n\} \subseteq \mathcal{I}=\{1, \ldots, m\}$ be a subset of base inequalities.
- wlog, $\gamma^{i} \geq \gamma^{i-1}$ for all $n \geq i \geq 2$.
- given $\bar{f}(x) \in R^{1}: \bar{f}(x) \geq f^{i}(x) \geq 0 \forall x \in S, \forall i \in I$,

Theorem

The following mixed MIR inequalities

$$
\begin{equation*}
\bar{f}(x) \geq \sum_{i=1}^{n}\left(\gamma^{i}-\gamma^{i-1}\right)\left(\tau^{i}-g^{i}(x)\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{f}(x) \geq \sum_{i=1}^{n}\left(\gamma^{i}-\gamma^{i-1}\right)\left(\tau^{i}-g^{i}(x)\right)+\left(B-\gamma^{n}\right)\left(\tau^{1}-g^{1}(x)-1\right) \tag{4}
\end{equation*}
$$

where $\gamma^{0}=0$, are valid for S.

Mixing procedure...

Proof:

- For any fixed $\bar{x} \in S$, define $\beta=\max _{i \in I}\left\{\tau^{i}-g^{i}(\bar{x})\right\}$ and
- $v=\max \left\{i \in I: \beta=\tau^{i}-g^{i}(\bar{x})\right\}$.
- If $\beta \leq 0$, RHS of (3)-(4) is at most 0 .
- Therefore assume that $\beta=\tau^{v}-g^{v}(\bar{x}) \geq 1$.
- Using $\beta \geq \tau^{i}-g^{i}(\bar{x}) \forall i \leq v$ and $\beta \geq \tau^{i}-g^{i}(\bar{x})+1 \forall i>v$, - ...

When $|I|=1$ and $\bar{f}=f^{1}$, then $(3) \Rightarrow(2)$ and $(4) \Rightarrow(1)$.

Example

- Let $S=\left\{(x, y) \in \mathcal{R}_{+}^{1} \times \mathcal{Z}^{2}: x_{1}+10 y_{1} \geq 3, x_{1}+10 y_{2} \geq 5\right\}$
- MIR inequalities associated with the base inequalities:

$$
\begin{aligned}
& x_{1} \geq 3\left(1-y_{1}\right) \\
& x_{1} \geq 5\left(1-y_{2}\right)
\end{aligned}
$$

- Mixed MIR inequalities with $\bar{f}=f^{1}=f^{2}=x_{1}$ and $g^{i}=y_{i}$:

$$
\begin{aligned}
& x_{1} \geq 3\left(1-y_{1}\right)+2\left(1-y_{2}\right) \\
& x_{1} \geq 5\left(1-y_{2}\right)+2\left(1-y_{2}\right)+5\left(-y_{1}\right)
\end{aligned}
$$

- All these inequalities together yield $\operatorname{conv}(S)$.
- Strength of (3)-(4) depends on choice of \bar{f}.
- $\bar{f}(x) \geq f^{*}(x)=\max _{i \in I} f^{i}(x)$
- $f^{*}(x)$ not smooth in general.

Generating base inequalities - example

Fixed charge capacitated network problem.

- Aggregate flow balance constraints over a set of connected nodes...
- $\sum_{j \in N_{1}} x_{j}-\sum_{j \in N_{2}} x_{j}=d$,
- $\Rightarrow \sum_{j \in N_{1}} x_{j} \geq d$
- Partition of $N_{1}=\{F, G\}$, using variable upper bound constraints $x_{j} \leq u_{j} x_{j}$ for $j \in G$ gives
- $\sum_{j \in F} x_{j}+\sum_{j \in G} u_{j} y_{j} \geq d$.
- Similar approach can be followed for other problems.

General purpose mixing from the simplex tableau

Solve the linear programming relaxation and rewrite the problem using the optimal basis:

$$
z=\min \left\{c x: x_{i}+\sum_{j \in N V} \bar{a}_{i j} x_{j}=\bar{b}_{i}, x \geq 0, x \in \mathcal{Z}^{n}\right\}
$$

- Define several base inequalities for each row.
- for a fixed $i \in B V$ and coefficient $\sigma \in \mathcal{Z}$, define

$$
\begin{aligned}
& g(x)=\sigma x_{i}+\sum_{j \in N V}\left\lfloor\sigma \bar{a}_{i j}\right\rfloor x_{j} \\
& f(x)=\sum_{j \in N V}\left(\sigma \bar{a}_{i j}-\left\lfloor\sigma \bar{a}_{i j}\right\rfloor\right) x_{j}
\end{aligned}
$$

- Relax to $f(x)+g(x) \geq \sigma \bar{b}_{i}(B=1)$.
- When $\sigma=1,(2) \equiv \mathrm{GMI}$ cut.

Strengthening MIR and Mixed MIR inequalities

For a fixed $i \in B V$ and $\sigma \in c Z$, let $\tau=\left\lceil\sigma \bar{b}_{i}\right\rceil$ and $\gamma=\sigma \bar{b}_{i}-(\tau-1)$

- Associated MIR inequality:

$$
\begin{equation*}
\sigma \gamma x_{i}+\sum_{j \in N V}\left[\left(\sigma \bar{a}_{i j}-\left\lfloor\sigma \bar{a}_{i j}\right\rfloor\right) x_{j}+\gamma\left\lfloor\sigma \bar{a}_{i j}\right\rfloor\right] x_{j} \geq \gamma \tau \tag{5}
\end{equation*}
$$

- if $\left(\sigma \bar{a}_{i j}-\left\lfloor\sigma \bar{a}_{i j}\right\rfloor\right)>\gamma$ for some $j \in N V$, then redefine $g(x)$ and $f(x)$:

$$
g(x)=\sigma x_{i}+\sum_{j \in N V: \sigma \bar{a}_{i j}-\left\lfloor\sigma \bar{a}_{i j}\right\rfloor>\gamma}\left\lceil\sigma \bar{a}_{i j}\right\rceil x_{j}+
$$

Strengthening MIR and Mixed MIR inequalities...

$$
f(x)=\sum_{j \in N V: \sigma \bar{a}_{i j}-\left\lfloor\sigma \bar{a}_{i j}\right\rfloor \leq \gamma}\left(\sigma \bar{a}_{i j}-\left\lfloor\sigma \bar{a}_{i j}\right\rfloor\right) x_{j}
$$

This gives the following MIR inequality (2):

$$
\sigma \gamma x_{i}+\sum_{j \in N V}\left[\min \left(\sigma \bar{a}_{i j}-\left\lfloor\sigma \bar{a}_{i j}\right\rfloor, \gamma\right)+\gamma\left\lfloor\sigma \bar{a}_{i j}\right\rfloor\right] x_{j} \geq \gamma \tau
$$

- This is clearly stronger than (5).
- For mixed MIR inequalities: same approach but more involved.
- pick a threshold value $\beta_{j} \in \mathcal{R}$ for each $j \in N V$ and relax the base inequality $f(x)+g(x) \geq \sigma \bar{b}_{i}$ if coefficient of x_{j} in $f(x)$ is greater than $\beta_{j} \ldots$

Strength of Mixing procedure

Possible to generalize (3) and (4)...

Lemma

The following inequality is valid for S

$$
\begin{equation*}
\bar{f}(x)+\alpha \geq \sum_{i \in \mathcal{I}} \delta^{i}\left(\tau^{i}-g^{i}(x)\right) \tag{6}
\end{equation*}
$$

provided:
(1) $(\delta, \alpha) \in \mathcal{P}^{C}$, where

$$
\begin{aligned}
\mathcal{P}^{C}=\left\{(\delta, \alpha) \in \mathcal{R}_{+}^{|\mathcal{I}|+1}:\right. & \sum_{i \in \mathcal{I}} \delta^{i} \leq B \\
& \left.\sum_{j \leq i} \delta^{j} \leq \alpha+\gamma^{i}, \forall i \in \mathcal{I}\right\}
\end{aligned}
$$

(2) $\bar{f}(x) \geq f^{i}(x)$ for all $x \in S, i \in \mathcal{I}$ with $\delta^{i}>0$.

Strength of Mixing procedure...

(3) and (4) contain all important inequalities of form (6) with $(\delta, \alpha) \in \mathcal{P}^{C}$.

Lemma

Let $p=(\delta, \alpha)$ be an arbitrary non-zero extreme point of \mathcal{P}^{C}, define $I=\left\{i \in \mathcal{I}: \delta^{i}>0\right\}=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ with $i_{1}<i_{2}<\ldots<i_{n}$. The extreme point $p=(\delta, \alpha)$ is characterized by:

$$
\begin{aligned}
& \alpha \in\left\{0, B-\gamma^{i_{n}}\right\} \\
& \delta^{i_{1}}=\gamma^{i_{1}}+\alpha \\
& \delta^{i_{j}}=\gamma^{i_{j}}-\gamma^{i_{j-1}} j=2, \ldots, n \\
& \delta^{i}=0 \text { for } i \in \mathcal{I} \backslash I .
\end{aligned}
$$

(6) generated by $(\delta, \alpha) \in \mathcal{P}^{C}$ is equivalent to or dominated by positive combinations of (3) and (4).

Finding violated inequalities

- If \bar{f} is fixed or known apriori, given a point $\bar{x} \in \mathcal{R}^{m_{1}} \times \mathcal{Z}^{m_{2}}$,
- separation problem is finding $(\hat{\delta}, \hat{\alpha}) \in \mathcal{P}^{C}$ that maximizes the RHS of

$$
\begin{equation*}
\bar{f}(\bar{x}) \geq \sum_{i \in \mathcal{I}} \hat{\delta}^{i}\left(\tau^{i}-g^{i}(\bar{x})\right)-\hat{\alpha} . \tag{7}
\end{equation*}
$$

- Let $h^{i}(x)=\tau^{i}-g^{i}(x)$. Let $(\hat{\delta}, \hat{\alpha})$ be such that it has minimum number of non-zero components.
- Define $\hat{I}=\left\{i \in \mathcal{I}: \hat{\delta}^{i}>0\right\}=\left\{i_{1}, \ldots, i_{n}\right\}$ with $i_{1}<i_{2}<\ldots<i_{n}$.
- $\hat{\alpha} \neq 0 \Leftrightarrow \max _{j \in \mathcal{I}}\left\{h^{j}(x)\right\}>1$.

Finding violated inequalities...

- For all $i \in \mathcal{I}, i \in \hat{I} \Leftrightarrow$

$$
\begin{aligned}
& h^{i}(\bar{x})>h^{j}(\bar{x}) \forall j>i \\
& h^{i}(\bar{x})>\max _{j \in \mathcal{I}}\left[h^{j}(\bar{x})-1\right] \\
& h^{i}(\bar{x})>0
\end{aligned}
$$

- The optimal \hat{I} must satisfy

$$
h^{i_{1}}(\bar{x})>h^{i_{2}}(\bar{x})>\ldots>h^{i_{n}}(\bar{x})>\max \left\{h^{i_{1}}(\bar{x})-1,0\right\}
$$

- Can be found easily by computing and sorting $h^{i}(\bar{x})$.
- Values $\hat{\delta}^{i}$ for $i \in \hat{I}$ can be fixed using previous lemma.
- If $n \geq 1$ and $h^{i_{1}}(\bar{x})>1$, fix $\hat{\alpha}=B-\max _{j \in \hat{I}}\left\{\gamma^{j}\right\}$ and 0 otherwise.

Variations

- When $f^{i}(x)<0$ for base inequality $i \in \mathcal{I}$, MIR (2) not valid.
- If we know a lower bound, $f^{i}(x) \geq L B^{i}$, then we can rewrite the base inequality:

$$
\left(f^{i}(x)-L B^{i}\right)+B g^{i}(x) \geq \pi^{i}-L B^{i}
$$

- If base inequalities have the form

$$
f^{i}(x)+B^{i} g^{i}(x) \geq \pi^{i}
$$

then we define $\tau^{i}=\left\lceil\pi^{i} / B^{i}\right\rceil$ and $\gamma^{i}=\pi^{i}-B^{i}\left(\tau^{i}-1\right)$.

- check if $\hat{B}=\min _{i \in I}\left\{B^{i}\right\} \geq \bar{\gamma}=\max _{i \in I}\left\{\gamma^{i}\right\}$
- relax base inequalities with small B^{i} 's by replacing with $\hat{\gamma}$.
- Another approach is to scale inequalities to increase \bar{B} or reduce $\bar{\gamma}$.

Mixing independent constraints

Next time... along with some more stuff... :)

