A review of François Margot’s paper

Jim Ostrowski
Lehigh University

15 September 2005
Preliminaries

- Let \(\Pi^n \) be the set of all permutations of \(I^n = \{1, \ldots, n\} \).
- \(\Pi^n \) is the symmetric group of \(I^n \).
- \(\pi \in \Pi \) is an n-vector.
- \(\pi[i] \) is the image of \(i \) under \(\pi \).
- Let \(w \) be the vector obtained by permuting \(v \) according to \(\pi \):
 \[
 w[\pi[i]] = v[i] \quad \text{for all } i \in I^n
 \]
Preliminaries

- Consider the following ILP

\[
\begin{align*}
\text{min } & \quad c^T x \\
\text{s.t. } & \quad Ax \geq b, \\
x & \in \{0, 1\}^n,
\end{align*}
\]

- WLOG we can assume \(A, b, \) and \(c \) are all integers

- Let \(\pi \) be a permutation of \(n \) variable, \(\sigma \) a permutation

- Let \(A(\pi, \sigma) \) be the matrix obtained from \(A \) by permuting variables and columns

- Let \(G = \{ \pi | \pi(c) = c \text{ and } \exists \sigma \text{ s.t. } \sigma(b) = b, A(\pi, \sigma) = A \} \)
Preliminaries

- **Definition**: The orbit of S under G is

\[\text{orb}(S, G) = \{ S' \subseteq I^n | S' = g(S) \text{ for some } g \in G \} \]

- **Definition**: the stabilizer of S in G is:

\[\text{stab}(S, G) = \{ g \in G | g(S) = S \} \]

- Denote F_k^a to be the set of variables fixed to k at node a.

- N^a the set of variables not fixed at node a.
• Subproblems are isomorphic if \exists a permutation $g \in G$ with $g(F^a_k) = F^b_k$ for $k = 0, 1$.

• Using this definition is difficult.
 ✴ How do you find g for given nodes a and b?
 ✴ This will have to be done a lot.
Ranked Branching Rule

- Goal: evaluate a single node, not pairs of nodes
- Let R be a rank vector, indicating the order in which variables have been used for branching
- The rule to select the branching variable x_f at a is:

 \((i)\) If $\exists j \in N^a$ with $R[j] < n + 1$, then $f = \text{arg min} \{ R[j] \mid j \in N^a \}$

 \((ii)\) Else, choose $f \in N^a$
Ranked Branching Rule

- Let $J = \{j_1, \ldots, j_p\}$ be unordered multiset of I^{n+1}
- Let J^* be the ordered multiset formed by listing J in non-decreasing order
- Given set J_i, J_j, $J_i \preceq J_j$ if J_i is lexicographically smaller
- For a given R, J is a representative of the sets in its orbit if J is lex. min. under G:
 \[R(j) \preceq R(g(J)) \quad \forall g \in G \]
Lemma 1

- Let R_1 and R_2 be two rank vectors obtained during branch and cut, assume R_2 is obtained after R_1, then:

- (i) If J is not a representative w.r.t. R_1, then J is not a representative w.r.t. R_2

- (ii) If J is a rep. w.r.t. R_1 and all entries in $R(j)$ are less than $n+1$, then J is the unique rep. to R_1

- (iii) If J is a rep w.r.t. R_1 and all entries in $R(j)$ are less than $n+1$, then J is a rep w.r.t. R_2
Lemma 2

Let \(J \subseteq I^n \) be a rep under G w.r.t. R. Let \(j' := J - j \) with \(j \in \text{arg max}\{R[i]|i \in J\} \). Then \(J' \) is also a rep w.r.t. R.

- Isomorphism Pruning: If \(F_1^a \) is not a representative, prune node a.
• At node a, all variables in the orbit of \(\text{stab}(F_1^a) \) can be set to k as soon as we know any variable can be set to k.

• Standard setting algorithms let you set a variable to k when you can show \(\exists \) an optimal solution with that variable equal to k. That does not work, that solution can be pruned by isomorphic pruning.

• If you are able to set \(x_i = k \), then for any \(g \in G \), we can set \(x_{g(i)} \) to k.