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Overview

Multi-stage stochastic linear programs (MSLP) are difficult.

They are cast as large-scale optimization problems.
There is no viable software tools for solving large-scale MSLP instances.

Grid is a very powerful computational platform but needs to be used
wisely.

This research focus on implementing parallel nested decomposition
algorithm on a computational Grid.

We discuss the challenges and propose the approaches.

We also study the value of MSLP as we can do comprehensive
numerical testings on large-scale MSLP instances.
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Stochastic Linear Program Linear Program v.s Stochastic Linear Program

Linear Program v.s Stochastic Linear Program

Linear Program

min cTx
s.t. Ax = b,

x ≥ 0,

c ∈ <n, A ∈ <m×n, b ∈ <m.

All functions are linear.

Does not consider uncertainty in the model.

Easy.

Jerry Shen (Lehigh University) Solving MSLP on the Grid Thesis Proposal 5 / 46



lehigh-logo

Stochastic Linear Program Linear Program v.s Stochastic Linear Program

Linear Program v.s Stochastic Linear Program

Linear Program

min cTx
s.t. Ax = b,

x ≥ 0,

c ∈ <n, A ∈ <m×n, b ∈ <m.

All functions are linear.

Does not consider uncertainty in the model.

Easy.

Jerry Shen (Lehigh University) Solving MSLP on the Grid Thesis Proposal 5 / 46



lehigh-logo

Stochastic Linear Program Linear Program v.s Stochastic Linear Program

Linear Program v.s Stochastic Linear Program

Not all decisions are made at the same time.

There is uncertainty!

ξ1
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ξ2

x2

ξ3

xT−1

ξT

xT

How to make a good decision (x1) now by taking into account all future
uncertainty?
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Stochastic Linear Program Linear Program v.s Stochastic Linear Program

Linear Program vs Stochastic Linear Program

Stochastic Linear Program

min cT1 x1 + Q1(x1)
s.t. A1x1 = b1,

x1 ≥ 0,

c1 ∈ <n, A1 ∈ <m×n, b1 ∈ <m.

where Q1(x1) is the expected recourse function.

Q1(x1) measures the cost of making corrective actions on your initial
decision x1, after a random events have taken place.
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Stochastic Linear Program Multi-stage Stochastic Linear Program

Multi-stage Scenario Tree

N : Set of nodes in the tree

ρ(n): Unique predecessor of node n in
the tree

S(n): Set of successor nodes of n

p̂n: Conditional probability that the
sequence of events leading to node n
occurs

xn: Decision taken at node n

Qn(·): Recourse function at node n

Qn(xn) =
∑

m∈S(n)

p̂mQm(xn): Expected

Recourse function at node n
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Stochastic Linear Program Multi-stage Stochastic Linear Program

Multi-stage Stochastic Linear Program
Recursive Model

Z = min cT
1 x1 + Q1(x1)

s.t. W1x1 = h1,
x1 ≥ 0,

where
Qn(xn)

def
=

X
ñ∈S(n)

p̂ñQñ(xn), ∀n ∈ N ,

and
Qn(xρ(n))

def
= min

xn≥0

n
cT

nxn +Qn(xn) | Wnxn = hn − Tnxρ(n)

o
,

∀n ∈ N \ {1}.

Bad news: Qn(·) is extremely difficult to evaluate;

Good news: Evaluation of Qn(·) can be broken down into smaller
function evaluation Qn(·).
Better news: Qn(·) is convex function. (So is Qn(·))
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Stochastic Linear Program Multi-stage Stochastic Linear Program

Evaluation of Qn(xn)

xn

Qn(xn)
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Stochastic Linear Program Multi-stage Stochastic Linear Program

Recourse Function Properties

Model function – lower bound to the True model

LPn(xρ(n)) :

Ml
n(xρ(n)) = min cT

n xn +

CnX
j=1

θn,[j]

s.t. Wnxn = hn − Tnxρ(n),

0 ≥ −dxn + δ, ∀(d, δ) ∈ Dl
n

θn,[j] ≥ −exn + ε, ∀(e, ε) ∈ El
n,[j], ∀j ∈ {1, . . . , Cn}

xn ≥ 0 , θn,[j] ≥ −M, ∀j ∈ {1, . . . , Cn}

LPn is the master linear program to be solved on node n.
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Stochastic Linear Program Nested Decomposition Algorithm

Nested Decomposition Algorithm

Main steps

Start from root node n = 1:

1 Solve LPn(xρ(n)). If infeasible, go to step 2, otherwise go to step 3.

2 If n = 1, STOP. Otherwise, find feasibility cut. Go to step 4.

3 Decide the direction (According to the sequencing method).

If Forward, record the primal solution as policy. Add nodes m ∈ S(n) into queue.
Go to step 4.
If go Backward, record the simplex multiplier and find optimality cut. Add node
ρ(n) into queue and go to step 4.

4 If stopping criteria meet, STOP. Otherwise get the next node from queue and return to
step 1.

A lot of freedom when choosing the directions.
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Stochastic Linear Program Nested Decomposition Algorithm

Nested Decomposition Algorithm

Sequencing method

Fast Forward Fast Backward (FFFB)
Makes complete passes through the tree. Change the direction as
little as possible.

Fast Forward (FF)
Computational work are focus at the latter stages. Always find the
best model function.

Fast Backward (FB)
Choose to go to the stage that requires the least amount of work.
Try to find the best policy before function evaluation.

Hybrid Methods
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Distributed Computing Grid Computing

Distributed Computing

Supercomputer

1960s: Computer with fast scalar processor.

Run mathematical operations on one data element at a time.

1970s: Computer with vector processor.

Run mathematical operations on multiple data elements
simultaneously.

1980s: Computers with a vector processors work in parallel.

Typical numbers of parallel processors only limited to 16 or less.

1990s: Massive parallel processing systems.

Thousands of processors. BlueGene/L (IBM): 131,072 processors
(Nov. 2005)

Next: ?
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Distributed Computing Grid Computing

Why do we need a supercomputer?

We want to have a supercomputer that

can solve bigger problems (large-scale MSLP)

can be used over a long time horizon (days/weeks)

Grid Computing
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Distributed Computing Grid Computing

Grid Computing

Challenges

Security

Who should be allowed to tap in?

Interfaces

How should they tap in?

Heterogeneous

Different hardware, operating systems, software...

Dynamic

You don’t know when one machine will leave the pool
You don’t know when one machine will join the pool
Fault-Tolerance is a very important issue when designing the program

Distributed

Machines may be very far apart ⇒ slow communication
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Distributed Computing Condor & MW

Grid Computing

Tools

Condor (http://www.cs.wisc.edu/condor)

User need not have an account or access to the machines
Machine owner specifies conditions under which jobs are allowed to run
Condor use matchmaking to schedule jobs among the pool
Jobs can be check-pointed and migrated

MW (http://www.cs.wisc.edu/condor/MW)

Master assigns tasks to the workers
Workers execute tasks and report results to the master
Workers need not to communicate with each other
Simple and Fault-Tolerant
A set of C++ abstract base classes
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Distributed Computing Condor & MW

Grid Computing

Master-Worker (MW) Structure

MWDriver

get userinfo()
setup initial tasks()
pack worker init data()
act on completed task()

MWTask

pack work()
unpack work()
pack results()
unpack results()

MWWorker

unpack init data()
execute task()
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CDF Framework

Goal

1 Correctly implement parallel nested decomposition algorithm on the
Grid

Algorithm terminates and converges to the correct solution

2 Support different sequencing mechanisms

FFFB, FF, FB, hybrid

3 Allow asynchronous algorithm behaviors

Partial evaluation of Qn(·)
4 Be efficient with the MW-Grid Framework

Buffering, aggregating evaluations into reasonable-sized tasks
(computational units)
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CDF Framework

CDF Framework – Record Node Status

Iteration Counter νn

Child Counter φνn
n

Cut Counter ψνn
n

CDF Status: STn = (COLOR, DIRECTION, FLAG)

COLOR
Red: Job is completed

Green: Job is under process

DIRECTION

→ Forward: Forward job is under process or information will
be passed from parent

← Backward: Backward job is under process or information
will be passed from children

FLAG
∗ Star: True model is obtained (M l

n(xρ(n)) = Qn(xρ(n)))

∅ Null: True model is not obtained (M l
n(xρ(n)) < Qn(xρ(n)))
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CDF Framework

CDF Framework – Trigger Signals

Start

To children: “Here is a policy, start to evaluate your recourse function.”

Update

To children: “Here is a policy, update my model function.”

Restart

To parent: “Give me a new policy.”

Done

To parent: “Model function is not a true model, but we are done.”

End

To parent: “Model function is a true model, we are done.”

Terminate

To siblings: “Terminate, do not evaluate the recourse function any
more.”
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CDF Framework

CDF Framework – Example 1 (FFFB)

n = 1: Start

n ∈ S(1): Start

n ∈ S(2): Start

n ∈ S(3) ∪ S(4): Start

n ∈ S(6): Update
...

n = ρ(19): Done
...

n = ρ(2): Restart
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CDF Framework

CDF Framework

CDF State Evolving Procedure
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CDF Framework

CDF Framework
Signal Triggering Module SYN-FFFB-B
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CDF Framework

Synchronicity is

Bad
in the Grid
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CDF Framework

CDF Framework (Asynchronous)

Signal Triggering Module ASYN-FFFB-B
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CDF Framework

CDF Framework (Asynchronous)

Asynchronicity Level

Enough children α1.

Enough cuts α2.

φ
νρ(n)

ρ(n) = |B (ρ(n))|, ψ
νρ(n)

ρ(n) = 0 No Cut

φ
νρ(n)

ρ(n) 6= |B (ρ(n))|, ψ
νρ(n)

ρ(n) = 0 Not Enough

φ
νρ(n)

ρ(n) = |B (ρ(n))|, 0 < ψ
νρ(n)

ρ(n) < α2Γρ(n) Enough

φ
νρ(n)

ρ(n) 6= |B (ρ(n))|, 0 < ψ
νρ(n)

ρ(n) < α2Γρ(n) Not Enough

φ
νρ(n)

ρ(n) = |B (ρ(n))|, ψ
νρ(n)

ρ(n) ≥ α2Γρ(n) Enough

φ
νρ(n)

ρ(n) 6= |B (ρ(n))|, ψ
νρ(n)

ρ(n) ≥ α2Γρ(n) Enough

Table: The criteria for enough cutting plain information.
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CDF Framework

CDF Framework (with buffering)

Purpose: To obtain a reasonable task (computational unit) size.

Buffering

Buffer

Temporary storage room for jobs

new COLOR – Yellow

Create jobs on the node, and add the job into the buffer

new Signal – Go

Aggregate the jobs in the buffer and start to execute the task in Grid
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CDF Framework

CDF Framework – Example 2 (buffer size = 3)

n = 1: Go

n ∈ S(1): Start

n ∈ S(1): Go

n ∈ S(2): Start

n ∈ S(4): Start

n in buffer 1: Go
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Research Challenges

Outline

Stochastic Linear Program

Linear Program vs. Stochastic Linear Program
Multi-stage Stochastic Linear Program
Nested Decomposition Algorithm

Distributed Computing

Grid Computing
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CDF Framework

Research Challenges

Value of Multistage Stochastic Linear Program
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Research Challenges

Research Challenges

How to ensure effective algorithm performance?

How to efficiently utilize the Grid resource?

How to manage the large amount of data?
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Research Challenges Algorithmic Challenges

Algorithmic Challenges

Challenge: To determine the proper level of asynchronicity level

Asynchronicity Level

High level:

High utilization of the resources
Less accurate recourse function evaluation at each iteration
More iterations required

Low level:

More accurate recourse function evaluation at each iteration
Lower overall parallel performance

Proposal: Dynamic asynchronicity level

Stage-dependent (later stage ⇒ lower asynchronicity level)

Iteration-dependent (later iteration ⇒ lower asynchronicity level)
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Algorithmic Challenges

Challenge: To ensure non-blocking behavior of the algorithm

Sequencing Method

x1
1

No cut

No cut

ST3 = (R,F, ∅)
ST4 = (R,F, ∅)
If using FFFB, nothing can be done
regardless of the asynchronicity level

Potential work: continue evaluate
Q3(x

1
1) and Q4(x

1
1)
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Algorithmic Challenges

Challenge: To ensure non-blocking behavior of the algorithm

Sequencing Method

Algorithm may be blocking even though the asynchronicity level is
set to high.

More flexibility is preferred.

Proposal: Dynamic double layer sequencing protocol

First layer: main iteration, suggest FFFB

Second layer: fine tune, (whenever resource is available)
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Grid Resource Utilization Challenges

Challenge: To limit the negative effects of both contention and starvation

Buffer size

Too small: Too big:

Workers report results
frequently

Contention occurs

Can not create enough tasks
to meet the demand.

Starvation occurs

Proposal: Dynamic tasking scheme with node aggregation

Dynamic tasking based on stages, LP size, and # available workers

Aggregating nodes to increase task size
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Large Data Management Challenges

Challenge: To handle the massive amounts of cuts that the algorithm
generated

Large amount of data – Cuts

Required memory to store the cuts may be huge

For example: 27,000 nodes in period T − 1, each node has 20 cuts,
xn ∈ <100, requires ≥ 400MB to store cuts.
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Large Data Management Challenges

Challenge: To handle the massive amounts of cuts that the algorithm
generated

Large amount of data – Cuts

We can not store cuts on the workers as we do not have control over
workers, and do not know when the worker will be leaving;

Master memorizes all the cuts, and will be very busy handling these
cuts as the number increases.

We must do our best to compress or reduce the amount of data.

Proposal: Cut Management

Cut Hashing: To quickly sort and locate identical cuts

Cut Sharing: To allow information sharing among nodes;

Cut Purging: To reduce the number of inactive or loose cuts;

Cut Aggregation: To generate aggregated cuts by clustering the
nodes.
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Value of Multi-stage Stochastic Lander Program

Value of MSLP

x4S
1

VMS2S
4S = v2S − v4S ≥ 0
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Value of Multi-stage Stochastic Lander Program

Value of MSLP

Test Problems

Asset Management Problem (Blomvall and Shapiro [2004])

Network Planning Problem (Sen, Doverspike and Cosares [1994])

Enterprise-wide Optimization Problem (EWO-AP project)

Dynamic Vehicle Allocation Problem (Powell [1988])

More?
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Future Research

Accomplishments

1 Defined a set of consistent notations

2 Laying out challenges for Grid computing implementation.

3 Developed a CDF framework that enables an easy implementation of
parallel nested decomposition algorithm

4 Extended the CDF framework to an asynchronous version with
buffering

5 Created two large scale test problem instances (Asset Management
and Network Planning)

6 Implemented node aggregation

7 Created a Cut-Management class in the code that enables cut hashing
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Future Research

Things To Do

1 Implement the dynamic asynchronicity level (Algorithmic Challenge)

2 Implement the double layer sequencing protocol (Algorithmic
Challenge)

3 Implement the dynamic tasking scheme (Grid Resource Utilization
Challenge)

4 Increase functions in Cut-Management including cut sharing purging,
and aggregation (Large Date Management Challenge)

5 Create other large-scale MSLP instances (SMPS files)

6 Study the value of MSLP
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Future Research

Road Map

Clean up the current code, add Cut Management functions, create
more instances. (4-6 weeks)

Test dynamic asynchronicity, sequencing, tasking. Prepare to run
problem on larger Grid. (8-10 weeks)

Keep all results for further VMS analysis.

Run larger computational problems, study VMS (8-10 weeks)

Thesis writing (n months)
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