Facility Location-Routing-Scheduling Problem: LRS

Zeliha Akca Rosemary Berger Lehigh University Lehigh University zea2@lehigh.edu rtb3@lehigh.edu

① Definition of LRS

- ② Branch and Price Algorithm
- ③ Mater and Pricing Problem
- ④ Solution of Pricing Problem
- 5 What We Have Done
- 6 What We Will Do

LRS

Location Routing and Scheduling Problem:

3 dependent problems:

- ① locate facilities
- ② construct routes for vehicles
- ③ assign routes to vehicles
- → capacitated facilities
- → capacitated vehicles
- \rightarrow time restriction for the vehicles

Location-Routing and Scheduling Problem:

- → In literature, heuristic solution for LRS problem (no IP formulation)
- → Exact solutions for RS and LR
- \rightarrow We choose, Branch and Price Algorithm:
 - IP formulation includes many constraints (s.t. sub tour elimination constraints)
 - Can be written in set partitioning problem easily
 - Easy to think routes in terms of columns
 - With set partitioning formulation, many possible columns
- → Other methods to solve:
 - Lagrangian Relaxation
 - Branch and bound and cut
 - Heuristic design
 - ?

Problems in Literature

- Facility Location -too many
- Vehicle Routing -too many
- Routing Scheduling
- Location Routing
- Location Routing and Scheduling

\Rightarrow Location routing:	\Rightarrow Location scheduling:
one-to-one	not necessarily one-to-one
relation	relation
btw routes and vehicles.	assignment of one vehicle
	to many paths.

IP FORMULATION

Objective: Minimize total cost.

```
TotalCost = Fixed cost of Facility and Vehicle +
Operating cost of Vehicles
```

Constraints:

- ① Each demand node should be served once
- ② # of a vehicle entering a node must be equal to # of the vehicle leaves this node
- ③ Capacity restriction for facility
- ④ Capacity restriction for vehicles
- 5 Flow balance equations (to satisfy demand and eliminate the subtours)
- 6 Time restriction to the routes

ALTERNATE FORMULATION

Set Partitioning Model:

• Pairing Concept:

Set of routes assigned to a vehicle and can be served within the given time limit.

ALTERNATE FORMULATION

Set Partitioning Model:

• Variables for set partitioning based on pairing concept:

$$Z_{jp} = \begin{cases} 1 & \text{if pairing } p \text{ is chosen for facility } j, \forall p \in P_j, \forall j \in M \\ 0 & \text{otherwise} \end{cases}$$

 P_j :set of feasible pairs of facility j

$$T_j = \begin{cases} 1 & \text{if facility j is open,} \forall j \in M \\ 0 & \text{otherwise} \end{cases}$$

N:set of customers; M:set of facilities; $I=N \cup M$

Set Partitioning Model:

$$Min\sum_{j\in M} T_j.FixCost + \sum_{j\in M} \sum_{p\in P_j} C_{jp}.Z_{jp}$$
(1)

s.t.

$$\sum_{j \in M} \sum_{p \in P_j} a_{ipj} Z_{jp} = 1 \quad \forall i \in N$$
(2)

$$\sum_{i \in N} \sum_{p \in P_j} a_{ipj}.Demand_i.Z_{jp} \le Cap_j.T_j \ \forall j \in M$$
(3)

$$Z_{jp} \leq T_j \quad \forall j \in M, p \in P_j$$
 (4)

$$Z_{jp}, T_j \in \{0, 1\}, \forall j \in M, p \in P_j$$
 (5)

 $a_{ipj}=1$ if node *i* is in pairing *p* of facility *j*.

BRANCH AND PRICE ALGORITHM

Restricted Master Problem:

• Initial pairs are formed

- Each pair represent a column in set partitioning formulation
- Restricted-since includes set of columns, not all columns

Pricing problem:

- Create 'pair': a column for Y_{jp}
- If 3rd const changed to:

$$\sum_{j \in P_j} a_{ip} Z_{jp} \leq T_j \ \forall j \in M \text{ and } i \in N$$
 (6)

We have: π_i , μ_j , γ_{ji} dual variables

• Reduced Cost for Y_{jp}

$$\hat{C}_{jp} = C_{jp} - \sum_{i \in N} a_{ipj} \cdot \pi_i + \sum_{i \in N} a_{ipj} \cdot Demand_i \cdot \mu_j + \sum_{i \in N} a_{ipj} \cdot \sigma_{ji} \quad (7)$$

 $C_{jp} = \text{Operating cost of the vehicle } (\propto \text{travel time}) + \text{Fixed Cost}$ of a vehicle

 \Rightarrow Independent pricing problem for each facility

ELEMENTARY SHORTHEST PATH WITH RESOURCE CONSTRAINT

- \Rightarrow Pricing Problem = ESPRC If:
 - Set up a network, including all customers and a source and sink nodes
 - → Arc costs:

$$c_{kl} = OperCost.d_{kl} - \pi_l + Demand_i.\mu_j + \sigma_{jl}$$
(8)

- \rightarrow find minimum cost path to the sink
- \rightarrow in our case allow visits more than once to sink
- → If Total cost of path + Vehicle fixed Cost ≤ 0 , add the column to restricted master problem
- stop when the shorthest path does not give negative cost column

ELEMENTARY SHORTHEST PATH WITH RESOURCE CONSTRAINT

- What is an elementary path? Each node can be visited at most once.
- Why elementary instead of walks?
 Trade of between more difficult pricing problem and more depth in branch and bound tree
- In our case: # of visits to sink ≥ 1
- In each visit to sink, current truck load is set to zero
- Adapt the Labelling Algorithm for ESPRC by Feillet, Dejax, Gendreau, Geuguen.

ESPRC

- Problem: too many feasible paths
- Keep resource consumptions, visited nodes, and cost
- Keep unreachable nodes for each label
- A node may be unreachable from other if not enough resource or is already visited.
- Eliminate dominated labels with respect to resource consumption and unreachable nodes.

CURRENTLY

What we have done

- → Design Master Problem and Pricing Problem
- → Adapted ESPRC algorithm to solve Pricing Problem
- \rightarrow Do the column generation
- \rightarrow Solve the root node

MINTO

- → MINTO: Mixed INTeger Optimizer
- → MINTO uses LP solver and do branch and bound algorithm
- MINTO can do many applications such as preprocessing, constraint generation, primal heurisitcs
- → MINTO allows user to write own algorithm (for column generation, constraint generation, heuristics, ..) specific to the problem
- Prof. Linderoth supports MINTO in our University **WHAT ELSE?**
 - → COIN-BCP:(Common Optimization INterface) and SYMPHONY
 - Open source
 - allows parallellization in branch and bound tree
 - supported by Prof. Ralphs

Next

What we will do

- \rightarrow More implementation
 - Test problems
 - Determine the right number of columns to be generated in each time
 - Different LP algorithms, to find better reduced costs
 - See how well the root node solution
 - Create column pool
 - Branching strategies
 - parallelization
- → Alternate solution: 2-sub problems approach
- \rightarrow IP formulation
- ➔ Focus on the pricing problem

2-SUB PROBLEM APPROACH

- → Master problem includes 3 set of variables:
 - Location variables
 - $Z_{jp} = \begin{cases} 1 & \text{if pairing } p \text{ is chosen for facility } j, \forall p \in P_j, \forall j \in M \\ 0 & \text{otherwise} \end{cases}$

 $X_{jk} = \begin{cases} 1 & \text{if path } k \text{ is chosen for facility } j, \forall k \in S_j, \forall j \in M \\ 0 & \text{otherwise} \end{cases}$

- → 2 nested sub problems: generating paths, and combining these paths as pairs.
- SP1: Generating paths: vehicle routing problem or elementary shortest path with 2 resources
- → SP2: Combining paths: knapsack problem

2-SUB PROBLEM ALGORITHM

THANKS...

Any Questions?