Facility Location-Routing-Scheduling Problem: LRS

Zeliha Akca Rosemary Berger
Lehigh University Lehigh University
zea2@lehigh.edu rtb3@lehigh.edu

(1) Definition of LRS
(2) Branch and Price Algorithm
(3) Mater and Pricing Problem
(4) Solution of Pricing Problem
(5) What We Have Done
(6) What We Will Do

LRS

Location Routing and Scheduling Problem:

3 dependent problems:
(1) locate facilities
(2) construct routes for vehicles
(3) assign routes to vehicles
\rightarrow capacitated facilifies
\rightarrow capacitated vehicles
\rightarrow time restriction for the vehicles

Location-Routing and Scheduling Problem:

\rightarrow In literature, heuristic solution for LRS problem (no IP formulation)
\rightarrow Exact solutions for RS and LR
\rightarrow We choose, Branch and Price Algorithm:

- IP formulation includes many constraints (s.t. sub tour elimination constraints)
- Can be written in set partitioning problem easily
- Easy to think routes in terms of columns
- With set partitioning formulation, many possible columns
\rightarrow Other methods to solve:
- Lagrangian Relaxation
- Branch and bound and cut
- Heuristic design
- ?

Problems in Literature

- Facility Location -too many
- Vehicle Routing -too many
- Routing Scheduling
- Location Routing
- Location Routing and Scheduling
\Rightarrow Location routing: $\quad \Rightarrow$ Location scheduling:
one-to-one relation
btw routes and vehicles.
not necessarily one-to-one relation
assignment of one vehicle to many paths.

IP Formulation

Objective: Minimize total cost.

$$
\begin{aligned}
& \text { TotalCost = Fixed cost of Facility and Vehicle }+ \\
& \text { Operating cost of Vehicles }
\end{aligned}
$$

Constraints:
(1) Each demand node should be served once
(2) \# of a vehicle entering a node must be equal to \# of the vehicle leaves this node
(3) Capacity restriction for facility
(4) Capacity restriction for vehicles
(5) Flow balance equations (to satisfy demand and eliminate the subtours)
(6) Time restriction to the routes

alternate Formulation

Set Partitioning Model:

- Pairing Concept: Set of routes assigned to a vehicle and can be served within the given time limit.

alternate Formulation

Set Partitioning Model:

- Variables for set partitioning based on pairing concept:
$Z_{j p}= \begin{cases}1 & \text { if pairing } p \text { is chosen for facility } j, \forall p \in P_{j}, \forall j \in M \\ 0 & \text { otherwise }\end{cases}$
P_{j} :set of feasible pairs of facility j

$$
T_{j}= \begin{cases}1 & \text { if facility } \mathrm{j} \text { is open }, \forall j \in M \\ 0 & \text { otherwise }\end{cases}
$$

N :set of customers; M :set of facilities; $I=N \cup M$

Set Partitioning Model:

$$
\begin{equation*}
\operatorname{Min} \sum_{j \in M} T_{j} . F i x C o s t+\sum_{j \in M} \sum_{p \in P_{j}} C_{j p} \cdot Z_{j p} \tag{1}
\end{equation*}
$$

s.t.

$$
\begin{array}{r}
\sum_{j \in M} \sum_{p \in P_{j}} a_{i p j} . Z_{j p}=1 \quad \forall i \in N \\
\sum_{i \in N} \sum_{p \in P_{j}} a_{i p j} \cdot \text { Demand }_{i} . Z_{j p} \leq C a p_{j} . T_{j} \forall j \in M \\
Z_{j p} \leq T_{j} \forall j \in M, p \in P_{j} \\
Z_{j p}, T_{j} \in\{0,1\}, \forall j \in M, p \in P_{j} \tag{5}
\end{array}
$$

$a_{i p j}=1$ if node i is in pairing p of facility j.

branch and Price Algorithm

Restricted Master Problem:

- Initial pairs are formed

- Each pair represent a column in set partitioning formulation
- Restricted-since includes set of columns, not all columns

Pricing problem:

- Create 'pair': a column for $Y_{j p}$
- If 3rd const changed to:

$$
\begin{equation*}
\sum_{j \in P_{j}} a_{i p} Z_{j p} \leq T_{j} \forall j \in M \text { and } i \in N \tag{6}
\end{equation*}
$$

We have: $\pi_{i}, \mu_{j}, \gamma_{j i}$ dual variables

- Reduced Cost for $Y_{j p}$
$\hat{C_{j p}}=C_{j p}-\sum_{i \in N} a_{i p j} \cdot \pi_{i}+\sum_{i \in N} a_{i p j} \cdot$ Demand $_{i} \cdot \mu_{j}+\sum_{i \in N} a_{i p j} \cdot \sigma_{j i}$
$C_{j p}=$ Operating cost of the vehicle (α travel time) + Fixed Cost of a vehicle
\Rightarrow Independent pricing problem for each facility

Elementary Shorthest Path with resource constraint

\Rightarrow Pricing Problem = ESPRC If:
\rightarrow Set up a network, including all customers and a source and sink nodes
\rightarrow Arc costs:

$$
\begin{equation*}
c_{k l}=\text { OperCost. } d_{k l}-\pi_{l}+\text { Demand }_{i} \cdot \mu_{j}+\sigma_{j l} \tag{8}
\end{equation*}
$$

\rightarrow find minimum cost path to the sink
\rightarrow in our case allow visits more than once to sink
\rightarrow If Total cost of path + Vehicle fixed Cost ≤ 0, add the column to restricted master problem
\rightarrow stop when the shorthest path does not give negative cost column

Elementary Shorthest Path with resource constraint

- What is an elementary path?

Each node can be visited at most once.

- Why elementary instead of walks?

Trade of between more difficult pricing problem and more depth in branch and bound tree

- In our case: \# of visits to sink ≥ 1
- In each visit to sink, current truck load is set to zero
- Adapt the Labelling Algorithm for ESPRC by Feillet, Dejax, Gendreau, Geuguen.

ESPRC

- Problem: too many feasible paths
- Keep resource consumptions, visited nodes, and cost
- Keep unreachable nodes for each label
- A node may be unreachable from other if not enough resource or is already visited.
- Eliminate dominated labels with respect to resource consumption and unreachable nodes.

Currently

What we have done
\rightarrow Design Master Problem and Pricing Problem
\rightarrow Adapted ESPRC algorithm to solve Pricing Problem
\rightarrow Do the column generation
\rightarrow Solve the root node

MINTO

\rightarrow MINTO:Mixed INTeger Optimizer
\rightarrow MINTO uses LP solver and do branch and bound algorithm
\rightarrow MINTO can do many applications such as preprocessing, constraint generation, primal heurisitcs
\rightarrow MINTO allows user to write own algorithm (for column generation, constraint generation, heuristics, ..) specific to the problem

Prof. Linderoth supports MINTO in our University

WHAT ELSE?

\rightarrow COIN-BCP:(Common Optimization INterface) and SYMPHONY

- Open source
- allows parallellization in branch and bound tree
- supported by Prof. Ralphs

Next

What we will do
\rightarrow More implementation

- Test problems
- Determine the right number of columns to be generated in each time
- Different LP algorithms, to find better reduced costs
- See how well the root node solution
- Create column pool
- Branching strategies
- parallelization
\rightarrow Alternate solution: 2-sub problems approach
\rightarrow IP formulation
\rightarrow Focus on the pricing problem

2-SUB PROBLEM APPROACH

\rightarrow Master problem includes 3 set of variables:

- Location variables

$$
Z_{j p}= \begin{cases}1 & \text { if pairing } p \text { is chosen for facility } j, \forall p \in P_{j}, \forall j \in M \\ 0 & \text { otherwise }\end{cases}
$$

$$
X_{j k}= \begin{cases}1 & \text { if path } k \text { is chosen for facility } j, \forall k \in S_{j}, \forall j \in M \\ 0 & \text { otherwise }\end{cases}
$$

$\rightarrow 2$ nested sub problems: generating paths, and combining these paths as pairs.
\rightarrow SP1: Generating paths: vehicle routing problem or elementary shortest path with 2 resources
\rightarrow SP2: Combining paths: knapsack problem

2-sub problem Algorithm

Thanks...

Any Questions?

