Lookahead Branching for MIP

Wasu Glankwamdee and Jeff Linderoth

Today's Outline

- Strong Branching
- Algorithm & Branching Rules
- Algorithmic Enhancements & Speed-Up
- Computational Results
- Conclusions & Future Research

MIP Formulation

Maximize

$$z_{MIP} = \sum_{j \in I} c_j x_j + \sum_{j \in C} c_j x_j$$

subject to

$$\sum_{j \in I} a_{ij} x_j + \sum_{j \in C} a_{ij} x_j \leq b_i \qquad i \in M, \tag{1}$$

$$l_j \le x_j \le u_j \qquad j \in N, \tag{2}$$

$$x_j \in \mathcal{Z}_+ \quad j \in I,$$
 (3)

$$x_j \in \mathcal{R}_+ \quad j \in C.$$
 (4)

Branching is Important

- Effective branching is more important near the top of the tree.
- We might want to evaluate more candidates near the top of the tree.
- More candidates almost always result in smaller trees, but the expense eventually causes an increase in running time.

Strong Branching

- Select a set C of basic fractional variables to branch up and down, and perform a specific number of dual simplex pivots on each variable in this set.
- How do we choose the set C?
 - ♦ x_j for which the values are furthest from being an integer. For 0-1 variable, this means those whose values are closest to 0.5.
 - $\diamond x_j$ for which the values are sufficiently fractional and the objective function coefficients are the largest.
 - $\diamond x_j$ for which the pseudocosts are the largest.

Motivation

- Can we do better by taking into account the branching information two-level deeper than the current local node?
- Can better branching decisions be made?
- "Ramp-Up"

Two-Levels Deep Search Tree

Definitions

• $\mathcal{G}_i^- = \{ j \in \mathcal{F}_i^- | \rho_{ij}^{--} = 0, \rho_{ij}^{-+} = 0 \}.$

•
$$\mathcal{G}_i^+ = \{ j \in \mathcal{F}_i^+ | \rho_{ij}^{+-} = 0, \rho_{ij}^{++} = 0 \}.$$

- ♦ The sets of indices of fractional variables in the corresponding feasible LP relaxations two-levels deep.
- $\mathcal{W}(a,b) = \{\alpha_1 \min(a,b) + \alpha_2 \max(a,b)\}.$
 - ♦ Weighting function.
- $D_{ij}^{s_1s_2} = z_{LP} z_{ij}^{s_1s_2}$, where $s_1, s_2 \in -, +$.
 - $\diamond\,$ The degradation in LP relaxation value two-levels deep.

Branching Rules

• Rule 1: Maximize Best Degradation

$$i^{*} = \arg \max_{i \in \mathcal{F}} \left\{ \max_{j \in \mathcal{G}_{i}^{-}} \{ \mathcal{W}(D_{ij}^{--}, D_{ij}^{-+}) \} + \max_{j \in \mathcal{G}_{i}^{+}} \{ \mathcal{W}(D_{ij}^{+-}, D_{ij}^{++}) \} \right\}.$$

• Rule 2: Maximize Sum of Degradation

$$i^* = \arg\max_{i\in\mathcal{F}} \left\{ \frac{1}{|\mathcal{G}_i^-|} \sum_{j\in\mathcal{G}_i^-} \mathcal{W}(D_{ij}^{--}, D_{ij}^{-+}) + \frac{1}{|\mathcal{G}_i^+|} \sum_{j\in\mathcal{G}_i^+} \mathcal{W}(D_{ij}^{+-}, D_{ij}^{++}) \right\}.$$

• Rule 3: Maximize Number of Infeasibility

$$i^* = \arg \max_{i \in \mathcal{F}} \eta_i.$$

• Rule 4: Maximize Degradation and Number of Infeasibility

$$i^* = \arg\max_{i\in\mathcal{F}} \left\{ \max_{j\in\mathcal{F}_i^-} \{\mathcal{W}(D_{ij}^{--}, D_{ij}^{-+})\} + \max_{j\in\mathcal{F}_i^+} \{\mathcal{W}(D_{ij}^{+-}, D_{ij}^{++})\} - \beta\eta_i \right\}.$$

Variables' Bound Fixing

Derivation	Implication
$\xi_i^- = 1$	$x_i \ge \lceil x_i^* \rceil$
$\xi_i^+ = 1$	$x_i \le \lfloor x_i^* \rfloor$
$\rho_{ij}^{} = 1 \text{ and } \rho_{ij}^{-+} = 1$	$x_i \ge \lceil x_i^* \rceil$
$\rho_{ij}^{+-} = 1 \text{ and } \rho_{ij}^{++} = 1$	$x_i \le \lfloor x_i^* \rfloor$

Clique Inequalities

Derivation	Implication
$\rho_{ij}^{} = 0$	$(1 - x_i) + (1 - x_j) \le 1$
$\rho_{ij}^{+-} = 0$	$(1-x_i) + x_j \le 1$
$\rho_{ij}^{+-} = 0$	$x_i + (1 - x_j) \le 1$
$\rho_{ij}^{++} = 0$	$x_i + x_j \le 1$

Branching Rule	Avg. Ranking		
	w/ Fix&Cut	w/o Fix&Cut	
One-Level	4.40	2.85	
Rule 1	2.46	3.60	
Rule 2	2.13	2.43	
Rule 3	3.13	3.05	
Rule 4	2.88	4.08	

 Table 1: Summary of Experiments

Branching Rule	# Evaluated Nodes		
	w/ Fix&Cut	w/o Fix&Cut	
MINTO Default	16974	16974	
One-Level	8471	8471	
Rule 1	1319	8946	
Rule 2	946	8004	
Rule 3	1571	8145	
Rule 4	1191	8832	

 Table 2: Average Number of Evaluated Nodes in Solved Instances

Branching Rule	Avg. Integrality Gap		
	w/ Fix&Cut	w/o Fix&Cut	
One-Level	45.36	45.36	
Rule 1	9.41	47.70	
Rule 2	9.22	43.02	
Rule 3	11.29	45.98	
Rule 4	9.60	48.80	

Table 3: Average Integrality Gap in Unsolved Instances

- Limit the number of simplex iterations on all fractional variables at two-levels deep nodes.
- Limit the number of fractional variables on which to perform simplex iteration both at one-level and two-levels deep node,
 i.e. reduce the size of the candidate branching set.

Branching Rule	# Evaluated Nodes		
	(limit iter.)	(limit frac.)	(w/o limit)
One-Level	8608	8623	8471
Rule 1	9106	10422	8946
Rule 2	8321	10272	8004
Rule 3	8140	8337	8145
Rule 4	8668	10386	8832

 Table 4: Average Number of Evaluated Nodes in Solved Instances

Branching Rule	Avg. Integrality Gap		
	(limit iter.)	(limit frac.)	(w/o limit)
One-Level	38.99	31.08	45.36
Rule 1	42.57	41.54	47.70
Rule 2	40.57	41.56	43.02
Rule 3	40.04	31.94	45.98
Rule 4	42.49	41.54	48.80

Table 5: Average Integrality Gap in Unsolved Instances

Branching Rule	Avg. Integrality Gap		
	(limit iter.)	(limit frac.)	(w/o limit)
One-Level	59.73	59.70	57.28
Rule 1	60.05	62.99	58.18
Rule 2	59.96	62.99	53.99
Rule 3	60.67	59.97	57.56
Rule 4	59.99	62.99	59.79

Table 6: Average Integrality Gap When the Same Number of NodesAre Solved

Conclusions

- There exists significantly important branching information at two-levels deep.
- The branching rules often reduce the size of the search tree in comparison to "full" strong branching, and to branching rules implemented in commercial solvers.
- Tighter representation of MIP and an even smaller branch and bound tree are achieved by incorporating preprocessing and probing techniques.
- Similar branching decision can still be made, but with less computational effort, by limiting number of simplex iterations or the number of fractional variables.

Future Research

- Can we develop other useful branching rules based on measuring the degradation in LP relaxation value two-levels deep? We are particularly interested in methods based on multiobjective optimization, extending our branching rule 4.
- Can we derive implication inequalities for general integer variables at two-levels deep?
- Can we speed up the two-levels deep branching algorithm even more by imposing the limitation on both the number of simplex iterations and the number of fractional variables?
- Can the ideas presented here be incorporated into practical methods for integer programming to solve larger problems?