Lookahead Branching for MIP

Wasu Glankwamdee and Jeff Linderoth

Today's Outline

- Strong Branching
- Algorithm \& Branching Rules
- Algorithmic Enhancements \& Speed-Up
- Computational Results
- Conclusions \& Future Research

MIP Formulation

Maximize

$$
z_{M I P}=\sum_{j \in I} c_{j} x_{j}+\sum_{j \in C} c_{j} x_{j}
$$

subject to

$$
\begin{array}{rlr}
\sum_{j \in I} a_{i j} x_{j}+\sum_{j \in C} a_{i j} x_{j} & \leq b_{i} & i \in M, \\
l_{j} \leq x_{j} & \leq u_{j} & j \in N, \\
x_{j} & \in \mathcal{Z}_{+} & j \in I, \\
x_{j} & \in \mathcal{R}_{+} & j \in C . \tag{4}
\end{array}
$$

Branching is Important

- Effective branching is more important near the top of the tree.
- We might want to evaluate more candidates near the top of the tree.
- More candidates almost always result in smaller trees, but the expense eventually causes an increase in running time.

Strong Branching

- Select a set C of basic fractional variables to branch up and down, and perform a specific number of dual simplex pivots on each variable in this set.
- How do we choose the set C ?
$\diamond x_{j}$ for which the values are furthest from being an integer. For 0-1 variable, this means those whose values are closest to 0.5 .
$\diamond x_{j}$ for which the values are sufficiently fractional and the objective function coefficients are the largest.
$\diamond x_{j}$ for which the pseudocosts are the largest.

Motivation

- Can we do better by taking into account the branching information two-level deeper than the current local node?
- Can better branching decisions be made?
- "Ramp-Up"

Two-Levels Deep Search Tree

Definitions

- $\mathcal{G}_{i}^{-}=\left\{j \in \mathcal{F}_{i}^{-} \mid \rho_{i j}^{--}=0, \rho_{i j}^{-+}=0\right\}$.
- $\mathcal{G}_{i}^{+}=\left\{j \in \mathcal{F}_{i}^{+} \mid \rho_{i j}^{+-}=0, \rho_{i j}^{++}=0\right\}$.
\diamond The sets of indices of fractional variables in the corresponding feasible LP relaxations two-levels deep.
- $\mathcal{W}(a, b)=\left\{\alpha_{1} \min (a, b)+\alpha_{2} \max (a, b)\right\}$.
\diamond Weighting function.
- $D_{i j}^{s_{1} s_{2}}=z_{L P}-z_{i j}^{s_{1} s_{2}}$, where $s_{1}, s_{2} \in-,+$.
\diamond The degradation in LP relaxation value two-levels deep.

Branching Rules

- Rule 1: Maximize Best Degradation

$$
i^{*}=\arg \max _{i \in \mathcal{F}}\left\{\max _{j \in \mathcal{G}_{i}^{-}}\left\{\mathcal{W}\left(D_{i j}^{--}, D_{i j}^{-+}\right)\right\}+\max _{j \in \mathcal{G}_{i}^{+}}\left\{\mathcal{W}\left(D_{i j}^{+-}, D_{i j}^{++}\right)\right\}\right\}
$$

- Rule 2: Maximize Sum of Degradation

$$
i^{*}=\arg \max _{i \in \mathcal{F}}\left\{\frac{1}{\left|\mathcal{G}_{i}^{-}\right|} \sum_{j \in \mathcal{G}_{i}^{-}} \mathcal{W}\left(D_{i j}^{--}, D_{i j}^{-+}\right)+\frac{1}{\left|\mathcal{G}_{i}^{+}\right|} \sum_{j \in \mathcal{G}_{i}^{+}} \mathcal{W}\left(D_{i j}^{+-}, D_{i j}^{++}\right)\right\} .
$$

Branching Rules

- Rule 3: Maximize Number of Infeasibility

$$
i^{*}=\arg \max _{i \in \mathcal{F}} \eta_{i}
$$

- Rule 4: Maximize Degradation and Number of Infeasibility

$$
i^{*}=\arg \max _{i \in \mathcal{F}}\left\{\max _{j \in \mathcal{F}_{i}^{-}}\left\{\mathcal{W}\left(D_{i j}^{--}, D_{i j}^{-+}\right)\right\}+\max _{j \in \mathcal{F}_{i}^{+}}\left\{\mathcal{W}\left(D_{i j}^{+-}, D_{i j}^{++}\right)\right\}-\beta \eta_{i}\right\} .
$$

Variables' Bound Fixing

Derivation	Implication
$\xi_{i}^{-}=1$	$x_{i} \geq\left\lceil x_{i}^{*}\right\rceil$
$\xi_{i}^{+}=1$	$x_{i} \leq\left\lfloor x_{i}^{*}\right\rfloor$
$\rho_{i j}^{--}=1$ and $\rho_{i j}^{-+}=1$	$x_{i} \geq\left\lceil x_{i}^{*}\right\rceil$
$\rho_{i j}^{+-}=1$ and $\rho_{i j}^{++}=1$	$x_{i} \leq\left\lfloor x_{i}^{*}\right\rfloor$

Clique Inequalities

Derivation	Implication
$\rho_{i j}^{--}=0$	$\left(1-x_{i}\right)+\left(1-x_{j}\right) \leq 1$
$\rho_{i j}^{+-}=0$	$\left(1-x_{i}\right)+x_{j} \leq 1$
$\rho_{i j}^{+-}=0$	$x_{i}+\left(1-x_{j}\right) \leq 1$
$\rho_{i j}^{++}=0$	$x_{i}+x_{j} \leq 1$

Computational Results

Branching Rule	Avg. Ranking	
	w/ Fix\&Cut	w/o Fix\&Cut
One-Level	4.40	2.85
Rule 1	2.46	3.60
Rule 2	2.13	2.43
Rule 3	3.13	3.05
Rule 4	2.88	4.08

Table 1: Summary of Experiments

Computational Results

Branching Rule	\# Evaluated Nodes w/ Fix\&Cut	
w/o Fix\&Cut		
MINTO Default	16974	16974
One-Level	8471	8471
Rule 1	1319	8946
Rule 2	946	8004
Rule 3	1571	8145
Rule 4	1191	8832

Table 2: Average Number of Evaluated Nodes in Solved Instances

Computational Results

Branching Rule	Avg. Integrality Gap	
	w/ Fix\&Cut	w/o Fix\&Cut
One-Level	45.36	45.36
Rule 1	9.41	47.70
Rule 2	9.22	43.02
Rule 3	11.29	45.98
Rule 4	9.60	48.80

Table 3: Average Integrality Gap in Unsolved Instances

Speed-Up

- Limit the number of simplex iterations on all fractional variables at two-levels deep nodes.
- Limit the number of fractional variables on which to perform simplex iteration both at one-level and two-levels deep node, i.e. reduce the size of the candidate branching set.

Computational Results

Branching Rule	\# Evaluated Nodes		
	(limit iter.)	(limit frac.)	(w/o limit)
One-Level	8608	8623	8471
Rule 1	9106	10422	8946
Rule 2	8321	10272	8004
Rule 3	8140	8337	8145
Rule 4	8668	10386	8832

Table 4: Average Number of Evaluated Nodes in Solved Instances

Computational Results

Branching Rule	Avg. Integrality Gap		
	(limit iter.)	(limit frac.)	(w/o limit)
One-Level	38.99	31.08	45.36
Rule 1	42.57	41.54	47.70
Rule 2	40.57	41.56	43.02
Rule 3	40.04	31.94	45.98
Rule 4	42.49	41.54	48.80

Table 5: Average Integrality Gap in Unsolved Instances

Computational Results

Branching Rule	Avg. Integrality Gap		
	(limit iter.)	(limit frac.)	(w/o limit)
One-Level	59.73	59.70	57.28
Rule 1	60.05	62.99	58.18
Rule 2	59.96	62.99	53.99
Rule 3	60.67	59.97	57.56
Rule 4	59.99	62.99	59.79

Table 6: Average Integrality Gap When the Same Number of Nodes Are Solved

Conclusions

- There exists significantly important branching information at two-levels deep.
- The branching rules often reduce the size of the search tree in comparison to "full" strong branching, and to branching rules implemented in commercial solvers.
- Tighter representation of MIP and an even smaller branch and bound tree are achieved by incorporating preprocessing and probing techniques.
- Similar branching decision can still be made, but with less computational effort, by limiting number of simplex iterations or the number of fractional variables.

Future Research

- Can we develop other useful branching rules based on measuring the degradation in LP relaxation value two-levels deep? We are particularly interested in methods based on multiobjective optimization, extending our branching rule 4.
- Can we derive implication inequalities for general integer variables at two-levels deep?
- Can we speed up the two-levels deep branching algorithm even more by imposing the limitation on both the number of simplex iterations and the number of fractional variables?
- Can the ideas presented here be incorporated into practical methods for integer programming to solve larger problems?

