Integer Programming Duality

CORAL Seminar Series

Scott DeNegre

17 March 2005

References

- Gomory, R.E., An algorithm for integer solutions to linear programs. In R.L. Graves and P.Wolfe, editors, Recent Advances in Mathematical Programming, 269-302. McGraw-Hill, New York, 1963.
- Klamroth, K., J. Tind, and S. Zust. Integer programming duality in multiple objective programming. Journal of Global Optimization,29 , 1-18, 2004.
- Nemhauser G.L. and L.A. Wolsey, Integer and Combinatorial Optimization. John Wiley \& Sons, Inc., New York, 1999.
- Wolsey, L.A., Integer programming duality: Price functions and sensitivity analysis. Mathematical Programming, 20, 173-195, 1981.

Basic Definitions

- Let \mathcal{F} be the set of nondecreasing functions $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$

$$
\mathcal{F}:=\left\{\left(F: \mathbb{R}^{m} \rightarrow \mathbb{R}\right): F(a) \leq F(b) \forall a, b \in \mathbb{R}^{m}, a \leq b\right\}
$$

- A function F is said to superadditive if $F(a)+F(b) \leq F(a+b) \forall a, b \in$ \mathbb{R}^{m}.
- Let \mathcal{G} be the set of nondecreasing superadditive functions

$$
\begin{aligned}
\mathcal{G}:=\left\{\left(F: \mathbb{R}^{m} \rightarrow \mathbb{R}\right):\right. & F(0)=0,\left(F(a) \leq F(b) \forall a, b \in \mathbb{R}^{m}, a \leq b\right), \\
& \text { and } \left.\left(F(a)+F(b) \leq F(a+b) \forall a, b \in \mathbb{R}^{m}\right)\right\}
\end{aligned}
$$

Generalized Dual

- Consider the IP

$$
\begin{align*}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \tag{1}\\
& x \geq 0, \text { integer }
\end{align*}
$$

- We can write the dual of (1) as

$$
\begin{array}{cl}
\min & F(b) \\
\text { s.t. } & F\left(A_{j}\right) \geq c^{t} \quad j=1, \ldots, n \tag{2}\\
& F \in \mathcal{G}
\end{array}
$$

- When we consider generation of F via specific IP algorithms, we will see a generalization of this dual that does not require superadditivity.

Main IP Duality Results

Theorem 1. [Weak Duality] $c^{T} x \leq F(b)$ for all feasible solutions x of (1) and all dual feasible functions F of (2).

Theorem 2. [Strong Duality] If either (1) or (2) has a finite optimal solution, then there exists solutions x^{*} of (1) and F^{*} of (2) such that $c^{T} x^{*}=F^{*}(b)$. Further if (1) is infeasible, then (2) is either infeasible or unbounded, and if (2) is infeasible, then (1) is either infeasible or unbounded.

Theorem 3. [Complementary Slackness] Let x^{*}, F^{*} be optimal solutions to (1) and (2), respectively. Let $s^{*}=b-A x^{*}$ and $v_{j}^{*}=c_{j}-F^{*}\left(A_{j}\right), j=1 \ldots, n$, then

- $v_{j}^{*} \leq 0, j=1 \ldots, n$
- if $x_{j}^{*}>0$, then $v_{j}^{*}=0$
- $F^{*} \in \mathcal{G}$
- $F^{*}(b)=F^{*}\left(A x^{*}\right)$ and $F^{*}\left(s^{*}\right)=0$.

Sensitivity Analysis

Let $x^{*}, F^{*} \in \mathcal{G}$ be an optimal solution pair with associated optimal value Z^{*} and let x^{\prime} and Z^{\prime} denote the optimal solution and value, respectively of the problem after a change in the original problem.

- $b \rightarrow b^{\prime}$
- F^{*} remains dual feasible $\Rightarrow Z^{\prime} \leq F^{*}\left(b^{\prime}\right)$
- If F^{*} is still optimal, then $x^{\prime} \in Y^{*}:=\left\{y \mid F^{*}(A y)=c^{T} y\right\}$
- $c \rightarrow c^{\prime}$
- x^{*} remains feasible $\Rightarrow Z^{\prime} \geq\left(c^{\prime}\right)^{T} x^{*}$
- If $c_{j}^{\prime} \leq F^{*}\left(A_{j}\right) \forall j, F^{*}$ remains feasible $\Rightarrow Z^{\prime} \leq F^{*}(b)$
- If $c_{j}^{\prime} \leq F^{*}\left(A_{j}\right)$ when $x_{j}^{*}=0$ and $c_{j}^{\prime}=c_{j}$ when $x_{j}^{*}>0, x^{*}$ remains optimal

Sensitivity Analysis

- New variable added, (\bar{c}, \bar{A})
- x^{*} remains primal feasible $\Rightarrow Z^{\prime} \geq Z$
- x^{*} remains optimal if $F^{*}(\bar{A}) \geq \bar{c}$
- New constraint added $a_{0}^{\prime} x \leq b_{0}$
- If x^{*} is still feasible, it is optimal
- $\bar{F}: \mathbb{R}^{m+1} \rightarrow \mathbb{R}$ defined by $\bar{F}\left(d, d_{m+1}\right)=F^{*}(d)$ is dual feasible for the new problem $\Rightarrow Z^{\prime} \leq Z=\bar{F}\left(b, b_{0}\right)$

Generation of Dual Optimal Functions

We will focus on two methods for solving IPs

- Cutting Planes
- Branch and Bound

Cutting Plane Algorithm

In iteration $r \geq 0$ of the algorithm, we solve an LP $\left(P_{r}\right)$ of the form

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad i=1, \ldots, m+r \tag{3}\\
& x \geq 0
\end{array}
$$

- If $\left(P_{r}\right)$ is infeasible or x^{*} integer, we are done.
- Otherwise, $\exists a^{m+r+1}=\left(a_{m+r+1,1}, \ldots, a_{m+r+1, n}\right) \in \mathbb{R}^{n}$ and $b_{m+r+1} \in$ \mathbb{R} such that

$$
a^{m+r+1} x=b_{m+r+1}
$$

is a separating hyperplane.

Cutting Plane Algorithm

Specifically, we have

$$
a_{m+r+1, j}=G^{r+1}\left(A_{j}\right), \quad b_{m+r+1}=G^{r+1}(b)
$$

where

$$
\begin{aligned}
G^{r+1}(d) & :=\left\lfloor\sum_{i=1}^{m} \lambda_{i}^{r} d_{i}+\sum_{i=1}^{r} \lambda_{m+i}^{r} G^{i}(d)\right\rfloor \\
\lambda^{r} & =\left(\lambda_{1}^{r}, \ldots, \lambda_{m+r}^{r}\right) \geq 0
\end{aligned}
$$

The cut $a^{m+r+1} x \leq b_{m+r+1}$ is added as the $(m+r+1)^{\text {st }}$ constraint

- See Chvatal (1993) or Nemhauser and Wolsey (1999) for the details.

Dual Function Construction

Proposition 1. Let $u^{r} \in \mathbb{R}_{+}^{m+r}$ be a dual feasible solution of $\left(P_{r}\right)$. Then the functions

$$
\begin{equation*}
F^{r}(d):=\sum_{i=1}^{m} u_{i}^{r} d_{i}+\sum_{i=1}^{r} u_{m+i}^{r} G^{i}(d) \tag{4}
\end{equation*}
$$

are superadditive dual feasible functions for (1). If x^{r} is optimal for $\left(P_{r}\right)$ and u^{r} is dual optimal for $\left(P_{r}\right), c^{T} x^{r}=F^{r}(b)$.

This leads to a constructive version of Theorem 2.
Theorem 4. Suppose the cutting plane algorithm terminates finitely when applied to (1).

- If (1) has a finite optimal solution, then \exists an optimal feasible solution x^{r} of (1) and a dual optimal function F^{r} of (2) of the form (4) such that $c^{T} x^{r}=F^{r}(b)$.
- If (1) is infeasible, then \exists a dual function F^{r} of the form (4) satisfying $F^{r}\left(A_{j}\right) \geq 0, j=1, \ldots, n$ and $F^{r}(b)<0$, and (2) is unbounded.

Alternate Dual Formulation

In general, Branch and Bound will not produce superadditive functions. This leads the introduction of a more general dual of (1)

$$
\begin{array}{ll}
\min & F(b) \\
\text { s.t. } & F(A x) \geq c^{t} x \quad \forall x \geq 0, \text { integer } \tag{5}\\
& F \in \mathcal{F}
\end{array}
$$

It is easily shown that (5) is a strong dual for (2).

Branch and Bound

In B \& B, we replace the original problem (1) with a finite series of subproblems $\left(P_{t}\right)$

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& x \in X_{t} \tag{7}
\end{array}
$$

for $t=1, \ldots, r$ such that $\left\{x \in \mathbb{R}^{n}: x \geq 0\right.$, integer $\} \subseteq \bigcup_{t=1}^{r} X_{t}$.

- The algorithm terminates if
- All subproblems are infeasible
- A solution $x^{t^{*}} \in \mathbb{Z}$ is optimal for $\left(P_{t^{*}}\right)$ such that $c^{T} x^{t^{*}}=z_{t}^{*} \geq z^{t}$ for all $t \neq t^{*}$
- Otherwise, the algorithm continues with further division of at least one subproblem.

Dual Function Construction

Proposition 2. If $F_{t} \in \mathcal{F}$ are dual feasible functions for $\left(P_{t}\right)$ (i.e. $\left.F_{t}(A x) \geq c^{T} x \forall x \in X_{t}, t=1 \ldots, r\right)$ then

$$
F(d):=\max _{t=1, \ldots, r} F_{t}(d)
$$

is a dual feasible function for (1).
Under some mild assumptions (which will hold using LP-based branch and bound), we have

Theorem 5. Let (1) have finite optimum. If a linear programming based branch and bound algorithm terminates with a finite series of subproblems $\left(P_{t}\right), t=1, \ldots, r$, then \exists a dual optimal function $F \in \mathcal{F}$ of the form

$$
\begin{equation*}
F(d):=\max _{t=1, \ldots, r}\left(\pi^{t} d+\alpha^{t}\right), \quad \alpha^{t} \in \mathbb{R}, \pi^{t} \in \mathbb{R}^{m}, \pi^{t} \geq 0 \tag{8}
\end{equation*}
$$

