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Basic Definitions

o Let F be the set of nondecreasing functions F' : R™ — R

F={(F:R"—->R): F(a) < F(b)Va,b € R™, a < b}

e A function F is said to superadditive if F(a)+ F(b) < F(a+ b)Va,b €
R™.

e Let G be the set of nondecreasing superadditive functions

G={F:R"—=R) : F(0)=0,(F(a) < F(b)Va,beR™ a<b),
and (F(a)+ F(b) < F(a+ b)Va,b e R™)}



Generalized Dual

e Consider the IP

max CTCC

s.t. Ax <b (1)
x > 0, integer

e We can write the dual of (1) as

min  F(b)
s.t. F(A)>c j=1,...,n (2)
Freg

— When we consider generation of F' via specific IP algorithms, we will
see a generalization of this dual that does not require superadditivity.



Main IP Duality Results

Theorem 1. [Weak Duality] ¢’z < F(b) for all feasible solutions x of
(1) and all dual feasible functions F of (2).

Theorem 2. [Strong Duality] /f either (1) or (2) has a finite optimal
solution, then there exists solutions x* of (1) and F* of (2) such that
cl'z* = F*(b). Further if (1) is infeasible, then (2) is either infeasible
or unbounded, and if (2) is infeasible, then (1) is either infeasible or
unbounded.

Theorem 3. [Complementary Slackness] Let x*, F* be optimal
solutions to (1) and (2), respectively. Let s* = b — Ax* and
vi =c; — F*(Aj),5 =1...,n, then

e v;<0,7=1...,n

° if:z:;‘f > 0, then v;-k =0

o ' *c (g

o ['*(b) = F*(Ax™*) and F*(s*) = 0.



Sensitivity Analysis

Let x*, F'* € G be an optimal solution pair with associated optimal value
Z* and let ' and Z’ denote the optimal solution and value, respectively of
the problem after a change in the original problem.

o b—1U

— F* remains dual feasible = 7’ < F*(V')
— If F* is still optimal, then 2’ € Y* := {y|F*(Ay) = cly}

e c —

— 2* remains feasible = 7’/ > (¢/)12*

— If ¢, < F*(A;)Vj, F* remains feasible = Z" < F™*(b)
— If ¢ < F*(A;) when 27 = 0 and ¢; = ¢; when z7 > 0, x* remains
optimal



Sensitivity Analysis

o New variable added, (¢, A)

— x* remains primal feasible = 7/ > Z

— x* remains optimal if F*(A) > ¢
e New constraint added apx < by

— If x* 1s still feasible, it is optir_nal
— F: R™" — R defined by F(d,dpn+1) = F*(d) is dual feasible for
the new problem = Z' < Z = F(b, by)



Generation of Dual Optimal Functions

We will focus on two methods for solving IPs

e Cutting Planes

e Branch and Bound



Cutting Plane Algorithm

In iteration r > 0 of the algorithm, we solve an LP (P,) of the form

max ¢ x
n
s.t. Zaijxjgbi i=1,...,m+r (3)
j=1
x>0

e If (P,) is infeasible or x* integer, we are done.

L OtherWise, 3 a/m—i_r_i_l — (am+7ﬂ+1’17 IR am_|_fr'_|_]_,n) 6 Rn and bm_|_fr'_|_]_ 6

R such that
1
am Ty = bm—i—r—{—l

Is a separating hyperplane.



Cutting Plane Algorithm

Specifically, we have

Am+r+1,j = Gr—i_l(Aj)a Drntr41 = GTJrl(b)

where
Gt (d) = | Ndi+)» A,..GHd)
1=1 1=1
ATo= (AL ML) >0

The cut a™ "1z < b,,4,41 is added as the (m + 7 + 1)5* constraint

e See Chvatal (1993) or Nemhauser and Wolsey (1999) for the details.
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Dual Function Construction

Proposition 1. Let u” € RT™" be a dual feasible solution of (P,). Then

the functions . .
= ujdi+ Y up, G(d) (4)
i=1 i=1

are superadditive dual feasible functions for (1). If " is optimal for (P,)
and u” is dual optimal for (P,), c'a" = F"(b).

This leads to a constructive version of Theorem 2.

Theorem 4. Suppose the cutting plane algorithm terminates finitely when
applied to (1).

e If (1) has a finite optimal solution, then 3 an optimal feasible solution
x" of (1) and a dual optimal function F" of (2) of the form (4) such
that ct'z" = F"(b).

e If (1) is infeasible, then 3 a dual function F" of the form (4) satisfying
F(A;)>0,j=1,...,n and F"(b) <0, and (2) is unbounded.
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Alternate Dual Formulation

In general, Branch and Bound will not produce superadditive functions.
This leads the introduction of a more general dual of (1)

min  F(b)
s.t. F(Az) > 'z Vx >0, integer (5)
FelF

It is easily shown that (5) is a strong dual for (2).
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Branch and Bound

In B & B, we replace the original problem (1) with a finite series of
subproblems (F;)

T

max C I
S.t. Ax <b (6)

for t =1,...,7 such that {x € R": z > 0, integer} C {J,_, X;.

e The algorithm terminates if

— All subproblems are infeasible
— A solution ' € Z is optimal for (P+) such that ¢!zt = zF > 2¢ for
all t £ t*

e Otherwise, the algorithm continues with further division of at least one
subproblem.
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Dual Function Construction

Proposition 2. [If F, € F are dual feasible functions for (P;) (i.e.
Fy(Ax) > clave € X;,t =1...,r) then

F(d) := max F(d)

t=1,...,r

is a dual feasible function for (1).

Under some mild assumptions (which will hold using LP-based branch and
bound), we have

Theorem 5. Let (1) have finite optimum. If a linear programming based
branch and bound algorithm terminates with a finite series of subproblems
(P),t=1,...,r, then 3 a dual optimal function F' € F of the form

F(d) == max (n'd+a'), o' eR,7* € R™,x">0. (8)



