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Basic Definitions

• Let F be the set of nondecreasing functions F : Rm → R

F := {(F : Rm → R) : F (a) ≤ F (b)∀a, b ∈ Rm, a ≤ b}

• A function F is said to superadditive if F (a) + F (b) ≤ F (a + b)∀a, b ∈
Rm.

• Let G be the set of nondecreasing superadditive functions

G := {(F : Rm → R) : F (0) = 0, (F (a) ≤ F (b)∀a, b ∈ Rm, a ≤ b),

and (F (a) + F (b) ≤ F (a + b)∀a, b ∈ Rm)}
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Generalized Dual

• Consider the IP

max cTx

s.t. Ax ≤ b (1)

x ≥ 0, integer

• We can write the dual of (1) as

min F (b)

s.t. F (Aj) ≥ ct j = 1, . . . , n (2)

F ∈ G

– When we consider generation of F via specific IP algorithms, we will
see a generalization of this dual that does not require superadditivity.
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Main IP Duality Results

Theorem 1. [Weak Duality] cTx ≤ F (b) for all feasible solutions x of
(1) and all dual feasible functions F of (2).

Theorem 2. [Strong Duality] If either (1) or (2) has a finite optimal
solution, then there exists solutions x∗ of (1) and F ∗ of (2) such that
cTx∗ = F ∗(b). Further if (1) is infeasible, then (2) is either infeasible
or unbounded, and if (2) is infeasible, then (1) is either infeasible or
unbounded.

Theorem 3. [Complementary Slackness] Let x∗, F ∗ be optimal
solutions to (1) and (2), respectively. Let s∗ = b − Ax∗ and
v∗j = cj − F ∗(Aj), j = 1 . . . , n, then

• v∗j ≤ 0, j = 1 . . . , n

• if x∗j > 0, then v∗j = 0

• F ∗ ∈ G
• F ∗(b) = F ∗(Ax∗) and F ∗(s∗) = 0.
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Sensitivity Analysis

Let x∗, F ∗ ∈ G be an optimal solution pair with associated optimal value
Z∗ and let x′ and Z ′ denote the optimal solution and value, respectively of
the problem after a change in the original problem.

• b → b′

– F ∗ remains dual feasible ⇒ Z ′ ≤ F ∗(b′)
– If F ∗ is still optimal, then x′ ∈ Y ∗ := {y|F ∗(Ay) = cTy}

• c → c′

– x∗ remains feasible ⇒ Z ′ ≥ (c′)Tx∗

– If c′j ≤ F ∗(Aj)∀j, F ∗ remains feasible ⇒ Z ′ ≤ F ∗(b)
– If c′j ≤ F ∗(Aj) when x∗j = 0 and c′j = cj when x∗j > 0, x∗ remains

optimal

5



6

Sensitivity Analysis

• New variable added, (c̄, Ā)

– x∗ remains primal feasible ⇒ Z ′ ≥ Z
– x∗ remains optimal if F ∗(Ā) ≥ c̄

• New constraint added a′0x ≤ b0

– If x∗ is still feasible, it is optimal
– F̄ : Rm+1 → R defined by F̄ (d, dm+1) = F ∗(d) is dual feasible for

the new problem ⇒ Z ′ ≤ Z = F̄ (b, b0)
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Generation of Dual Optimal Functions

We will focus on two methods for solving IPs

• Cutting Planes

• Branch and Bound
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Cutting Plane Algorithm

In iteration r ≥ 0 of the algorithm, we solve an LP (Pr) of the form

max cTx

s.t.
n∑

j=1

aijxj ≤ bi i = 1, . . . , m + r (3)

x ≥ 0

• If (Pr) is infeasible or x∗ integer, we are done.

• Otherwise, ∃ am+r+1 = (am+r+1,1, . . . , am+r+1,n) ∈ Rn and bm+r+1 ∈
R such that

am+r+1x = bm+r+1

is a separating hyperplane.
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Cutting Plane Algorithm

Specifically, we have

am+r+1,j = Gr+1(Aj), bm+r+1 = Gr+1(b)

where

Gr+1(d) :=

⌊
m∑

i=1

λr
idi +

r∑

i=1

λr
m+iG

i(d)

⌋

λr = (λr
1, . . . , λ

r
m+r) ≥ 0

The cut am+r+1x ≤ bm+r+1 is added as the (m + r + 1)st constraint

• See Chvatal (1993) or Nemhauser and Wolsey (1999) for the details.
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Dual Function Construction

Proposition 1. Let ur ∈ Rm+r
+ be a dual feasible solution of (Pr). Then

the functions

F r(d) :=
m∑

i=1

ur
idi +

r∑

i=1

ur
m+iG

i(d) (4)

are superadditive dual feasible functions for (1). If xr is optimal for (Pr)
and ur is dual optimal for (Pr), cTxr = F r(b).

This leads to a constructive version of Theorem 2.

Theorem 4. Suppose the cutting plane algorithm terminates finitely when
applied to (1).

• If (1) has a finite optimal solution, then ∃ an optimal feasible solution
xr of (1) and a dual optimal function F r of (2) of the form (4) such
that cTxr = F r(b).

• If (1) is infeasible, then ∃ a dual function F r of the form (4) satisfying
F r(Aj) ≥ 0, j = 1, . . . , n and F r(b) < 0, and (2) is unbounded.
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Alternate Dual Formulation

In general, Branch and Bound will not produce superadditive functions.
This leads the introduction of a more general dual of (1)

min F (b)

s.t. F (Ax) ≥ ctx ∀x ≥ 0, integer (5)

F ∈ F

It is easily shown that (5) is a strong dual for (2).
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Branch and Bound

In B & B, we replace the original problem (1) with a finite series of
subproblems (Pt)

max cTx

s.t. Ax ≤ b (6)

x ∈ Xt (7)

for t = 1, . . . , r such that {x ∈ Rn : x ≥ 0, integer} ⊆ ⋃r
t=1 Xt.

• The algorithm terminates if

– All subproblems are infeasible
– A solution xt∗ ∈ Z is optimal for (Pt∗) such that cTxt∗ = z∗t ≥ zt for

all t 6= t∗

• Otherwise, the algorithm continues with further division of at least one
subproblem.
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Dual Function Construction

Proposition 2. If Ft ∈ F are dual feasible functions for (Pt) (i.e.
Ft(Ax) ≥ cTx∀x ∈ Xt, t = 1 . . . , r) then

F (d) := max
t=1,...,r

Ft(d)

is a dual feasible function for (1).

Under some mild assumptions (which will hold using LP-based branch and
bound), we have

Theorem 5. Let (1) have finite optimum. If a linear programming based
branch and bound algorithm terminates with a finite series of subproblems
(Pt), t = 1, . . . , r, then ∃ a dual optimal function F ∈ F of the form

F (d) := max
t=1,...,r

(πtd + αt), αt ∈ R, πt ∈ Rm, πt ≥ 0. (8)
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