MINLP Short Course Overview

- 1. Introduction, Applications, and Formulations
- 2. Classical Solution Methods
- 3. Modern Developments in MINLP
- 4. Implementation and Software

Today you will be "treated" to a draft of Part III. (Maybe a little bit of II.)

Examples Tricks

Introduction, Applications, and Formulations

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Motivation	What	Motivation	What
Examples	How	Examples	How
Tricks	Why?	Tricks	Why?

The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)

$$egin{array}{lll} { extsf{minimize}} & f(x,y) \ { extsf{subject to}} & c(x,y) \leq 0 \ & x \in X, \ y \in Y \ { extsf{integer}} \end{array}$$

- *f*, *c* smooth (convex) functions
- X, Y polyhedral sets, e.g. $Y = \{y \in [0, 1]^p \mid Ay \le b\}$
- $y \in Y$ integer \Rightarrow hard problem
- $f, c \text{ not convex} \Rightarrow \text{very hard problem}$

Why the N?

An anecdote: July, 1948. A young and frightened George Dantzig, presents his newfangled "linear programming" to a meeting of the Econometric Society of Wisconsin, attended by distinguished scientists like Hotelling, Koopmans, and Von Neumann. Following the lecture, Hotelling^a pronounced to the audience:

But we all know the world is nonlinear!

^ain Dantzig's words "a huge whale of a man"

The world is indeed nonlinear

- Physical Processes and Properties
 - Equilibrium
 - Enthalpy
- Abstract Measures
 - Economies of Scale
 - Covariance
 - Utility of decisions

Motivation W Examples He Tricks W

Why the MI?

- We can use 0-1 (binary) variables for a variety of purposes
 - Modeling yes/no decisions
 - Enforcing disjunctions
 - Enforcing logical conditions
 - Modeling fixed costs
 - Modeling piecewise linear functions
- If the variable is associated with a physical entity that is indivisible, then it must be integer
 - 1. Number of aircraft carriers to to produce. Gomory's Initial Motivation
 - 2. Yearly number of trees to harvest in Norrland

A Popular MINLP Method

Dantzig's Two-Phase Method for MINLP ${\scriptstyle \mbox{Adapted by Leyffer and Linderoth}}$

Motivation

- 1. Convince the user that he or she does not wish to solve a mixed integer nonlinear programming problem at all!
- 2. Otherwise, solve the continuous relaxation (NLP) and round off the minimizer to the nearest integer.
- Sometimes a continuous approximation to the discrete (integer) decision is accurate enough for practical purposes.
 - Yearly tree harvest in Norrland
- For 0 1 problems, or those in which the |y| is "small", the continuous approximation to the discrete decision is not accurate enough for practical purposes.
- Conclusion: MINLP methods must be studied!

Leyffer & Linderoth MINLP Leyffer & Linderoth MINLP				
	MINLP	Leyffer & Linderoth	MINLP	Leyffer & Linderoth
Motivation What Motivation What		Motivation		Motivation
Examples How Examples How		Examples		Examples
Tricks Why?		Tricks		Tricks

Example: Core Reload Operation (Quist, A.J., 2000)

Example: Core Reload Operation (Quist, A.J., 2000)

- max. reactor efficiency after reload subject to diffusion PDE & safety
- diffusion PDE ≃ nonlinear equation
 ⇒ integer & nonlinear model
- avoid reactor becoming sub-criticaloverheated

 $\Leftrightarrow \mathsf{node}\; i \; \mathsf{has}\; \mathsf{bundle}\; l \; \mathsf{of}\; \mathsf{cycle}\; m$

AMPL Model of Core Reload Operation

Exactly one bundle per node:

$$\sum_{l=1}^{L} \sum_{m=1}^{M} x_{ilm} = 1 \qquad \forall i \in I$$

AMPL model:

var x {I,L,M} binary ;
Bundle {i in I}: sum{l in L, m in M} x[i,l,m] = 1 ;

- Multiple Choice: One of the most common uses of IP
- Full AMPL model c-reload.mod at www.mcs.anl.gov/~leyffer/MacMINLP/

Belgium has no gas!

- All natural gas is imported from Norway, Holland, or Algeria.
- Supply gas to all demand points in a network in a minimum cost fashion.
- Gas is pumped through the network with a series of compressors
- There are constraints on the pressure of the gas within the pipe

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Motivation	Gas Transmission	Motivation	Gas Transmission
Examples	Portfolio Management	Examples	Portfolio Management
Tricks	Batch Processing	Tricks	Batch Processing

Pressure Loss is Nonlinear

- Assume horizontal pipes and steady state flows
- Pressure loss p across a pipe is related to the flow rate f as

$$p_{in}^2 - p_{out}^2 = \frac{1}{\Psi} \operatorname{sign}(f) f^2$$

Ψ: "Friction Factor"

Gas Transmission: Problem Input

- Network (N, A). $A = A_p \cup A_a$
 - A_a : active arcs have compressor. Flow rate can increase on arc
 - A_p : passive arcs simply conserve flow rate

Gas Transmission Problem (De Wolf and Smeers, 2000)

- $N_s \subseteq N$: set of supply nodes
- $c_i, i \in N_s$: Purchase cost of gas
- $\underline{s}_i, \overline{s}_i$: Lower and upper bounds on gas "supply" at node *i*
- $p_i, \overline{p}_i :$ Lower and upper bounds on gas pressure at node i
- $s_i, i \in N$: supply at node i.
 - $s_i > 0 \Rightarrow$ gas added to the network at node i
 - $s_i < \mathbf{0} \Rightarrow \mathbf{gas}$ removed from the network at node i to meet demand
- $f_{ij}, (i, j) \in A$: flow along arc (i, j)
 - $f(i,j) > 0 \Rightarrow$ gas flows $i \rightarrow j$
 - $f(i,j) < 0 \Rightarrow$ gas flows $j \rightarrow i$

Motivation	Gas Transmission	Motivation	
Examples	Portfolio Management	Examples	
Tricks	Batch Processing	Tricks	

Gas Transmission Model

$$\min\sum_{j\in N_s}c_js_j$$

subject to

$$\begin{split} \sum_{\substack{j \mid (i,j) \in A}} f_{ij} - \sum_{\substack{j \mid (j,i) \in A}} f_{ji} &= s_i \quad \forall i \in N \\ \operatorname{sign}(f_{ij}) f_{ij}^2 - \Psi_{ij} (p_i^2 - p_j^2) &= 0 \quad \forall (i,j) \in A_p \\ \operatorname{sign}(f_{ij}) f_{ij}^2 - \Psi_{ij} (p_i^2 - p_j^2) &\geq 0 \quad \forall (i,j) \in A_a \\ s_i &\in [\underline{s}_i, \overline{s}_i] \quad \forall i \in N \\ p_i &\in [\underline{p}_i, \overline{p}_i] \quad \forall i \in N \\ f_{ij} &\geq 0 \quad \forall (i,j) \in A_a \end{split}$$

Your First Modeling Trick

- Don't include nonlinearities or nonconvexities unless necessary!
- Replace $p_i^2 \leftarrow \rho_i$

$$sign(f_{ij})f_{ij}^{2} - \Psi_{ij}(\rho_{i} - \rho_{j}) = 0 \quad \forall (i, j) \in A_{p}$$

$$f_{ij}^{2} - \Psi_{ij}(\rho_{i} - \rho_{j}) \geq 0 \quad \forall (i, j) \in A_{a}$$

$$\rho_{i} \in [\sqrt{\underline{p}_{i}}, \sqrt{\overline{p}_{i}}] \quad \forall i \in N$$

- This trick only works because

 p_i² terms appear only in the bound constraints
 Also f_{ij} ≥ 0 ∀(i, j) ∈ A_a
- This model is nonconvex: sign $(f_{ij})f_{ij}^2$ is a nonconvex function

-				
	Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
	Motivation	Gas Transmission	Motivation	Gas Transmission
	Examples	Portfolio Management	Examples	Portfolio Management
	Tricks	Batch Processing	Tricks	Batch Processing

Dealing with sign(\cdot): The NLP Way

- Use auxiliary binary variables to indicate direction of flow
- Let $|f_{ij}| \leq F \ \forall (i,j) \in A_p$

$$z_{ij} = \left\{egin{array}{ccc} 1 & f_{ij} \geq 0 & f_{ij} \geq -F(1-z_{ij}) \ 0 & f_{ij} \leq 0 & f_{ij} \leq F z_{ij} \end{array}
ight.$$

• Note that

$$\operatorname{sign}(f_{ij}) = 2z_{ij} - 1$$

• Write constraint as

$$(2z_{ij}-1)f_{ij}^2 - \Psi_{ij}(\rho_i - \rho_j) = 0.$$

Dealing with sign(\cdot): The MIP Way

Model

$$f_{ij} > 0 \Rightarrow \begin{cases} f_{ij}^2 \le \Psi_{ij}(\rho_i - \rho_j) \\ f_{ij}^2 \ge \Psi_{ij}(\rho_i - \rho_j) \end{cases} \quad f_{ij} < 0 \Rightarrow \begin{cases} f_{ij}^2 \le \Psi_{ij}(\rho_j - \rho_i) \\ f_{ij}^2 \ge \Psi_{ij}(\rho_j - \rho_i) \end{cases}$$

$$m \leq f_{ij}^2 - \Psi(\rho_i - \rho_j) \leq M$$
 $l \leq f_{ij}^2 - \Psi(\rho_j - \rho_i) \leq L$

Example

$$egin{aligned} f_{ij} > 0 &\Rightarrow z_{ij} = 1 \Rightarrow f_{ij}^2 \leq \Psi(
ho_i -
ho_j) \ f_{ij} > 0 &\Rightarrow z_{ij} = 1 \Rightarrow f_{ij}^2 \leq \Psi(
ho_i -
ho_j) \ f_{ij} > 0 \Rightarrow z_{ij} = 1 \Rightarrow f_{ij}^2 \leq \Psi(
ho_i -
ho_j) \end{aligned}$$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP

tivation	Gas Transmission	Motivation	
kamples	Portfolio Management	Examples	
Tricks	Batch Processing	Tricks	

Dealing with sign(\cdot): The MIP Way

- Wonderful MIP Modeling reference is Williams (1993)
- If you put it all together you get...

Leyffer &

- z_{ij} ∈ {0,1}: Indicator if flow is positive
- $y_{ij} \in \{0,1\}$: Indicator if flow is negative

 $\begin{array}{rcl} f_{ij} &\leq F z_{ij} \\ f_{ij} &\geq -F y_{ij} \\ z_{ij} + y_{ij} &= 1 \\ f_{ij}^2 + M z_{ij} &\leq M + \Psi_{ij}(\rho_i - \rho_j) \\ f_{ij}^2 + m z_{ij} &\geq m + \Psi_{ij}(\rho_i - \rho_j) \\ f_{ij}^2 + L y_{ij} &\leq L + \Psi_{ij}(\rho_j - \rho_i) \\ f_{ij}^2 + l y_{ij} &\geq l + \Psi_{ij}(\rho_i - \rho_i) \end{array}$

Special Ordered Sets

- Sven thinks the NLP way is better
- Jeff thinks the MIP way is better
- Neither way is how it is done in De Wolf and Smeers (2000).
- Heuristic for finding a good starting solution, then a local optimization approach based on a piecewise-linear simplex method
- Another (similar) approach involves approximating the nonlinear function by piecewise linear segments, but searching for the globally optimal solution: Special Ordered Sets of Type 2
- If the "multidimensional" nonlinearity cannot be removed, resort to Special Ordered Sets of Type 3

Leyffer & Linderoth

Linderoth	MINLP							
-----------	-------	--	--	--	--	--	--	--

Motivation Gas Transmission Examples Portfolio Management Tricks Batch Processing

Even More Models

- Model implication: $x_i > 0 \Rightarrow x_i \ge m$
- $x_i > 0 \Rightarrow y_i = 1 \Rightarrow x_i \ge m$ • $x_i < By_i, x_i > my_i \ \forall i \in N$
- Round Lots: $x_i \in \{kL_i, k = 1, 2, \ldots\}$ • $x_i - z_iL_i = 0, z_i \in \mathbb{Z}_+ \ \forall i \in N$
- Vector *h* of initial holdings
- Transactions: $t_i = |x_i h_i|$
- Turnover: $\sum_{i \in N} t_i \leq \Delta$
- Transaction Costs: $\sum_{i \in N} c_i t_i$ in objective
- Market Impact: $\sum_{i \in N} \gamma_i t_i^2$ in objective

• Suppose that the stocks are partitioned into sectors $S_1\subseteq N, S_2\subseteq N, \ldots S_K\subseteq N$

Examples

 The Fund Manager wants to invest all money into one sector "play"

$$\sum_{i \in S_k} x_i > \mathbf{0} \Rightarrow \sum_{j \in N \setminus S_k} x_j = \mathbf{0}$$

- Modeling Choices:
- Aggregated:

$$\sum_{i \in S_k} x_i \le Bz_k \quad \sum_{j \in N \setminus S_k} x_j + Bz_k \le B$$

• Disaggregated:

$$x_i \leq u_i z_i \quad \forall i \in N \qquad x_j + u_j z_i \leq u_j \; \forall j \mid i \in S_k, j \notin S_k$$

Which is better?: Part III has the answer

MINLP	Leyffer & Linderoth	MINLP
Gas Transmission	Motivation	
Portfolio Management	Examples	
Batch Processing	Tricks	
	Gas Transmission Portfolio Management	Gas Transmission Motivation Portfolio Management Examples

Multiproduct Batch Plants (Kocis and

Grossmann, 1988)

- M: Batch Processing Stages
- N: Different Products
- *H*: Horizon Time
- Q_i : Required quantity of product i
- t_{ij} : Processing time product i stage j
- S_{ij} : "Size Factor" product i stage j
- B_i : Batch size of product $i \in N$
- V_j : Stage j size: $V_j \ge S_{ij}B_i \forall i, j$
- C_i : Longest stage time for product i: $C_i \ge t_{ij}/N_j \forall i,j$

Leyffer & Linderoth MINLP

• N_j : Number of machines at stage j

Multiproduct Batch Plants

$$\min\sum_{j\in M}\alpha_j N_j V_j^{\beta_j}$$

s.t.

$$\begin{array}{rclcrcl} V_j - S_{ij}B_i & \geq & \mathsf{0} & \forall i \in N, \forall j \in M \\ C_i N_j & \geq & t_{ij} & \forall i \in N, \forall j \in M \\ & \displaystyle \sum_{i \in N} \frac{Q_i}{B_i}C_i & \leq & H \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

Leyffer & Linderoth

Motivation Examples Tricks

Modeling Trick #2

- Horizon Time and Objective Function Nonconvex. :-(
- Sometimes variable transformations work!

$$v_j = \ln(V_j), n_j = \ln(N_j), b_i = \ln(B_i), c_i = \ln C_i$$

$$\begin{split} \min \sum_{j \in M} \alpha_j e^{N_j + \beta_j V_j} \\ \text{s.t. } v_j - \ln(S_{ij}) b_i &\geq 0 \quad \forall i \in N, \forall j \in M \\ c_i + n_j &\geq \ln(\tau_{ij}) \quad \forall i \in N, \forall j \in M \\ \sum_{i \in N} Q_i e^{C_i - B_i} &\leq H \\ \end{split}$$
(Transformed) Bound Constraints on V_j, C_i, B_i

How to Handle the Integrality?

• But what to do about the integrality?

Motivation

Tricks

$$1 \le N_j \le \overline{N}_j \qquad \forall j \in M, N_j \in \mathbb{Z} \qquad \forall j \in M$$

• $n_j \in \{0, \ln(2), \ln(3), \ldots\}$

$$Y_{kj} = \begin{cases} 1 & n_j \text{ takes value } \ln(k) \\ 0 & \text{Otherwise} \end{cases}$$

$$n_j - \sum_{k=1}^K \ln(k) Y_{kj} = 0 \quad \forall j \in M$$

 $\sum_{k=1}^K Y_{kj} = 1 \quad \forall j \in M$

 This model is available at http://www-unix.mcs.anl.gov/ ~leyffer/macminlp/problems/batch.mod

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Motivation	Variable Transformation	Motivation	Variable Transformation
Examples Tricks	MIQP	Examples Tricks	MIQP

MIQP: Modeling Tricks

- In 0-1 quadratic programming, we can always make quadratic forms convex.
- Key: If y ∈ {0,1}, then y = y², so add a "large enough" constant to the diagonal, and subtract it from the linear term:
- $y \in \{0,1\}^n$ consider any quadratic

$$\begin{aligned} q(y) &= y^T Q y + g^T y \\ &= y^T W y + c^T y \end{aligned}$$

where $W = Q + \lambda I$ and $c = g - \lambda e$ (e = (1, ..., 1))

• If $\lambda \geq (\text{smallest eigenvalue of } Q)$, then $W \succeq 0$.

A Small Smattering of Other Applications

- Chemical Engineering Applications:
 - process synthesis (Kocis and Grossmann, 1988)
 - batch plant design (Grossmann and Sargent, 1979)
 - cyclic scheduling (Jain, V. and Grossmann, I.E., 1998)
 - design of distillation columns (Viswanathan and Grossmann, 1993)
 - pump configuration optimization (Westerlund, T., Pettersson, F. and Grossmann, I.E., 1994)
- Forestry/Paper
 - production (Westerlund, T., Isaksson, J. and Harjunkoski, I., 1995)
 - trimloss minimization (Harjunkoski, I., Westerlund, T., Pörn, R. and Skrifvars, H., 1998)
- Topology Optimization (Sigmund, 2001)

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP

Classical Solution Methods for MINLP

Part II

Classical Solution Methods

- 1. Classical Branch-and-Bound
- 2. Outer Approximation, Benders Decomposition et al.
- 3. Hybrid Methods
 - LP/NLP Based Branch-and-Bound
 - Integrating SQP with Branch-and-Bound

Leyffer & LinderothMINLPBranch-and-BoundDefinitionOuter ApproximationConvergenceHybrid MethodsVariable & Node Selection	Leyffer & Linderoth MINLP Branch-and-Bound Definition Outer Approximation Convergence Hybrid Methods Variable & Node Selection
Branch-and-Bound	Convergence of Branch-and-Bound
Solve relaxed NLP ($0 \le y \le 1$ continuous relaxation) solution value provides lower bound	
, solution value provides lower bound	$y^*=2.4$
• Branch on y_i non-integral • Solve NLPs & branch until	
1. Node infeasible $y_i = 1$ etc. 2. Node integer feasible \Box	
$\Rightarrow \text{ get upper bound } (U)$ 3. Lower bound $\geq U \dots \otimes$	$y \leq 2$ $y \geq 3$
	All NLP problems solved globally & finite number of NLPs on tree

Search until no unexplored nodes on tree

 \Rightarrow Branch-and-Bound converges

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0, 1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

- 1. user defined priorities
 - \ldots branch on most important variable first
- 2. maximal fractional branching

$$\max_{i} \{\min(1-\hat{y}_i, \hat{y}_i)\}$$

... find \hat{y}_i closest to $\frac{1}{2}$ \Rightarrow largest change in problem

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0, 1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

3. pseudo-cost branching estimates e_i^+ , e_i^- of change in f(x, y) after branching

$$\max_i \left\{ \min(\hat{f} + e_i^+(1 - \hat{y}_i), \hat{f} + e_i^- \hat{y}_i) \right\}$$

 \dots find $y_i,$ whose expected change of objective is largest \dots estimate $e_i^+,$ e_i^- by keeping track of

$$e_i^+ = rac{f_i^+ - \hat{f}}{1 - \hat{y}_i} \;\; {\rm and} \;\; e_i^- = rac{f_i^- - \hat{f}}{\hat{y}_i}$$

where $f_i^{+/-}$ solution value after branching

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound	Definition	Branch-and-Bound	Definition
Outer Approximation	Convergence	Outer Approximation	Convergence
Hybrid Methods	Variable & Node Selection	Hybrid Methods	Variable & Node Selection

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0, 1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

4. strong branching: solve all NLP child nodes:

$$f_i^{+/-} \leftarrow \begin{cases} \underset{x,y}{\text{minimize}} & f(x,y) \\ \text{subject to} & c(x,y) \leq 0 \\ & x \in X, \ y \in Y, \ y_i = 1/0 \end{cases}$$

choose branching variable as

$$\max_i \left\{ \min(f_i^+, f_i^-) \right\}$$

 \ldots find y_i that changes objective the most

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0,1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

5. **MIQP strong branching**: (Fletcher and Leyffer, 1998) parametric solution of QPs ... much cheaper than re-solve

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MIN
---------------------	-------	---------------------	-----

Which node n on tree \mathcal{T} should be solved next?

• minimizes number of NLPs solved

minimizes number of NLP nodes stored
exploit warm-starts (MILP/MIQP only)

choose node with least value of parent node $f_{p(n)}$

Leyffer & Linderoth MINLP

1. depth-first search

2. best lower bound

select deepest node in tree

Node Selection for Branch-and-Bound

Which node n on tree ${\mathcal T}$ should be solved next?

3. best estimate

choose node leading to best expected integer solution

$$\max_{n \in \mathcal{T}} \left\{ f_{p(n)} + \sum_{i: y_i \text{fractional}} \min \left\{ e_i^+ (1 - y_i), e_i^- y_i \right\} \right\}$$

summing pseudo-cost estimates for all integers in subtree

Leyffer & Linderoth

Leyffer & LinderothMINLPBranch-and-BoundDefinitionOuter ApproximationConvergenceHybrid MethodsBenders Decomposition	Leyffer & LinderothMINLPBranch-and-BoundDefinitionOuter ApproximationConvergenceHybrid MethodsBenders Decomposition
Outer Approximation (Duran and Grossmann, 1986)	Outer Approximation (Duran and Grossmann, 1986)
Motivation: avoid solving huge number of NLPs • Exploit MILP/NLP solvers: decompose integer/nonlinear part Key idea: reformulate MINLP as MILP (implicit) • Solve alternating sequence of MILP & NLP NLP subproblem y_j fixed: NLP (y_j) $\begin{cases} minimize & f(x, y_j) \\ subject to & c(x, y_j) \leq 0 \\ & x \in X \end{cases}$ NLP (y_j)	• let (x_j, y_j) solve NLP (y_j) • linearize f , c about $(x_j, y_j) =: z_j$ • new objective variable $\eta \ge f(x, y)$ • MINLP $(P) \equiv$ MILP (M) $\left(M \right) \begin{cases} \underset{z=(x,y),\eta}{\text{minimize}} & \eta \\ \text{subject to} & \eta \ge f_j + \nabla f_j^T (z - z_j) \forall y_j \in Y \\ & 0 \ge c_j + \nabla c_j^T (z - z_j) \forall y_j \in Y \\ & x \in X, y \in Y \text{ integer} \end{cases}$
Main Assumption: f, c are convex	SNAG : need all $y_j \in Y$ linearizations

Outer Approximation (Duran and Grossmann, 1986)

 (M_k) : lower bound (underestimate convex f, c) NLP (y_j) : upper bound U (fixed y_j)

 \Rightarrow stop, if lower bound \ge upper bound

Convergence of Outer Approximation

Lemma: Each $y_i \in Y$ generated at most once.

Proof: Assume $y_i \in Y$ generated again at iteration j > i $\Rightarrow \exists \hat{x}$ such that (\hat{x}, y_i) feasible in (M_j) :

> $\eta \ge f_i + \nabla_x f_i^T (\hat{x} - x_i)$ $0 \ge c_i + \nabla_x c_i^T (\hat{x} - x_i)$

... because $y_i - y_i = 0$ Now sum with $(1, \lambda_i)$ multipliers of NLP (y_i) $\Rightarrow \eta \ge f_i + (\nabla_x f_i + \nabla_x c_i \lambda_i)^T (\hat{x} - x_i) \dots$ KKT conditions $\Rightarrow \eta \ge f_i$ contradicts $\eta < U \le f_i$ upper bound \Rightarrow each $y_i \in Y$ generated at most once \Box **Refs**: (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound	Definition	Branch-and-Bound	Definition
Outer Approximation	Convergence	Outer Approximation	Convergence
Hybrid Methods	Benders Decomposition	Hybrid Methods	Benders Decomposition

Convergence of Outer Approximation

Convexity important!!!

Outer Approximation & Benders Decomposition

Take OA master ... z := (x, y) ... wlog $X = \mathbb{R}^n$

 $(M) \begin{cases} \begin{array}{ll} \underset{z=(x,y),\eta}{\text{minimize}} & \eta \\ \text{subject to} & \eta \ge f_j + \nabla f_j^T (z - z_j) & \forall y_j \in Y \\ & 0 \ge c_j + \nabla c_j^T (z - z_j) & \forall y_j \in Y \\ & y \in Y \text{ integer} \end{cases} \end{cases}$

sum constraints $0 \ge c_j ...$ weighted with multipliers $\lambda_j \ \forall j$

$$\Rightarrow \quad \eta \ge f_j + \lambda_j^T c_j + \left(\nabla f_j + \nabla c_j \lambda_j\right)^T (z - z_j) \qquad \forall y_j \in Y$$

... is a valid inequality. **References**: (Geoffrion, 1972)

Leyffer & Linderoth	MINLP
---------------------	-------

Outer Approximation & Benders Decomposition

Valid inequality from OA master; z = (x, y):

$$\eta \ge f_j + \lambda_j^T c_j + (\nabla f_j + \nabla c_j \lambda_j)^T (z - z_j)$$

use first order conditions of $NLP(y_j)$...

$$\nabla_x f_j + \nabla_x c_j \lambda_j = \mathbf{0}$$

... to eliminate x components from valid inequality in y

 $\Rightarrow \quad \eta \ge f_j + \lambda_j^T c_j + (\nabla_y f_j + \nabla_y c_j \lambda_j)^T (y - y_j)$ $\Leftrightarrow \quad \eta \ge \mathcal{L}_j + (\mu_j)^T (y - y_j)$

where $\mathcal{L}_j = f(z_j) + \lambda_j^T c(z_j)$ Lagrangian $\mu_j = \nabla_y f_j + \nabla_y c_j \lambda_j$ multiplier of $y = y_j$ in NLP (y_j)

Outer Approximation & Benders Decomposition

 \Rightarrow remove x from master problem ... Benders master problem

$$(M_B) \begin{cases} \underset{y,\eta}{\text{minimize}} & \eta \\ \text{subject to} & \eta \geq \mathcal{L}_j + (\mu_j)^T (y - y_j) \quad \forall y_j \in Y \\ & y \in Y \text{ integer} \end{cases}$$

where \mathcal{L}_j Lagrangian & μ_j multiplier of $y = y_j$ in NLP(y_j)

- (M_B) has less constraints & variables (no x!)
- (M_B) almost ILP (except for η)
- (M_B) weaker than OA (from derivation)

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound	Definition	Branch-and-Bound	Definition
Outer Approximation	Convergence	Outer Approximation	Convergence
Hybrid Methods	Benders Decomposition	Hybrid Methods	Benders Decomposition

Disadvantages of Outer Approximation

Second order master (MIQP): (Fletcher and Leyffer, 1994): • add Hessian term to MILP (M_i) becomes MIQP:

minimize
$$\eta + rac{1}{2}(z-z_i)^T W(z-z_i)$$
 subject to \ldots

Replace NLP(y_i) solve in OA by linearization about solution of (M_j) get cutting plane for violated constraint \Rightarrow no NLP(y_j) solves Kelley's cutting plane method instead \Rightarrow slow nonlinear convergence: > 1 evaluation per y

Extended Cutting Plane Method

References: (Westerlund, T. and Pettersson, F., 1995)

Branch-and-Bound Outer Approximation Hybrid Methods LP/NLP Based Branch-and-Bound Integrating SQP and Branch-and-Bound	Branch-and-Bound Outer Approximation Hybrid Methods LP/NLP Based Branch-and-Bound Integrating SQP and Branch-and-Bound
LP/NLP Based Branch-and-Bound	LP/NLP Based Branch-and-Bound
AIM : avoid re-solving MILP master (M)	

- Consider MILP branch-and-bound
- interrupt MILP, when y_j found \Rightarrow solve NLP (y_j) get x_j
- linearize f, c about (x_j, y_j) \Rightarrow add linearization to tree
- continue MILP tree-search

... until lower bound \geq upper bound

- need access to MILP solver ... call back
 o exploit good MILP (branch-cut-price) solver
 - (Akrotirianakis et al., 2001) use Gomory cuts in tree-search
- no commercial implementation of this idea
- preliminary results: order of magnitude faster than OA
 same number of NLPs, but only one MILP
- similar ideas for Benders & Extended Cutting Plane methods

References: (Quesada and Grossmann, 1992)

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound Outer Approximation Hybrid Methods	LP/NLP Based Branch-and-Bound Integrating SQP and Branch-and-Bound	Branch-and-Bound Outer Approximation Hybrid Methods	LP/NLP Based Branch-and-Bound Integrating SQP and Branch-and-Bound

Integrating SQP & Branch-and-Bound

AIM: Avoid solving NLP node to convergence.

Sequential Quadratic Programming (SQP) \rightarrow solve sequence (QP_k) at every node

$$(QP_k) \begin{cases} \begin{array}{ll} \underset{d}{\text{minimize}} & f_k + \nabla f_k^T d + \frac{1}{2} d^T H_k d \\ \text{subject to} & c_k + \nabla c_k^T d \leq 0 \\ & x_k + d_x \in X \\ & y_k + d_y \in \hat{Y}. \end{array} \end{cases}$$

Early branching:

After QP step choose non-integral y_i^{k+1} , branch & continue SQP **References**: (Borchers and Mitchell, 1994; Leyffer, 2001)

Integrating SQP & Branch-and-Bound

SNAG: (QP_k) not lower bound \Rightarrow no fathoming from upper bound minimize $f_k + \nabla f_k^T d + \frac{1}{2} d^T H_k c$ subject to $c_k + \nabla c_k^T d \leq 0$ $x_k + d_x \in X$ $y_k + d_y \in \hat{Y}.$

Remedy: Exploit OA underestimating property (Leyffer, 2001):

 $f(y) = -\ln(1+y)$

- add objective cut $f_k + \nabla f_k^T d \leq U \epsilon$ to (QP_k)
- fathom node, if (QP_k) inconsistent

 \Rightarrow converge for *convex* MINLP

NB: (QP_k) inconsistent and trust-region active \Rightarrow do not fathom

Comparison of Classical MINLP Techniques

Summary of numerical experience

- 1. Quadratic OA master: usually fewer iteration MIQP harder to solve
- 2. NLP branch-and-bound faster than OA ... depends on MIP solver
- 3. LP/NLP-based-BB order of magnitude faster than OA \dots also faster than B&B
- 4. Integrated SQP-B&B up to $3 \times$ faster than B&B \simeq number of QPs per node
- 5. ECP works well, if function/gradient evals expensive

Part III

Modern Developments in MINLP

Leyffer & Linderoth MINLP Formulations Importance of Relaxations Inequalities Big M Dealing with Nonconvexity Aggregation	Leyffer & LinderothMINLPFormulationsImportance of RelaxationsInequalitiesBig MDealing with NonconvexityAggregation
Modern Methods for MINLP	Relaxations
 Formulations Relaxations Good formulations: big M's and disaggregation Cutting Planes Cuts from relaxations and special structures Cuts from integrality Global methods Envelopes Methods 	• $z(S) \stackrel{\text{def}}{=} \min_{x \in S} f(x)$ • $z(T) \stackrel{\text{def}}{=} \min_{x \in T} f(x)$ • Independent of f, S, T : $z(T) \leq z(S)$ • If $x_T^* = \arg \min_{x \in T} f(x)$ • And $x_T^* \in S$, then • $x_T^* = \arg \min_{x \in S} f(x)$

Formulations Importance of Relaxations Inequalities Big M Dealing with Nonconvexity Aggregation	Formulations Importance of Relaxations Inequalities Big M Dealing with Nonconvexity Aggregation		
A Pure Integer Program	How to Solve Integer Programs?		
$z(S) = \min\{c^T x : x \in S\}, \qquad S = \{x \in \mathbb{Z}^n_+ : Ax \le b\}$	• Relaxations! • $T \supseteq S \Rightarrow z(T) \le z(S)$ • People commonly use the linear programming relaxation: $z(LP(S)) = \min\{c^T x : x \in LP(S)\}$ $LP(S) = \{x \in \mathbb{R}^n_+ : Ax \le b\}$		
$S = \{(x_1, x_2) \in \mathbb{Z}^2_+ : 6x_1 + x_2 \leq 15, \ 5x_1 + 8x_2 \leq 20, x_2 \leq 2\} \ = \{(0, 0), (0, 1), (0, 2), (1, 0), \ (1, 1), (1, 2), (2, 0)\}$	 If LP(S) = conv(S), we are done. Minimum of any linear function over any convex set occurs on the boundary We need only know conv(S) in the direction of c. 		

• The "closer" LP(S) is to conv(S) the better.

Leyffer & LinderothMINLPFormulationsImportance of RelaxationsInequalitiesBig MDealing with NonconvexityAggregation	Leyffer & LinderothMINLPFormulationsImportance of RelaxationsInequalitiesBig MDealing with NonconvexityAggregation
Small M's Good. Big M's Baaaaaaaaaaaaaaaaaad!	P
 Sometimes, we can get a better relaxation (make LP(S) a closer approximation to conv(S)) through a different tighter formulation Let's look at the geometry 	M
$P = \{x \in \mathbb{R}_+, z \in \{0, 1\} : x \le Mz, x \le u\}$	
$LP(P) = \{x \in \mathbb{R}_+, z \in [0,1] : x \le Mz, x \le u\}$	
$conv(P) = \{x \in \mathbb{R}_+, z \in \{0,1\} : x \le uz\}$	$P=\{x\in\mathbb{R}_+,z\in\{0,1\}:x\leq Mz,x\leq u\}$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP

Valid Inequalities

- Sometimes we can get a better formulation by dynamically improving it.
- An inequality $\pi^T x \le \pi_0$ is a valid inequality for S if $\pi^T x \le \pi_0 \ \forall x \in S$
- Alternatively: $\max_{x \in S} \{\pi^T x\} \le \pi_0$
- Thm: (Hahn-Banach). Let $S \subset \mathbb{R}^n$ be a closed, convex set, and let $\hat{x} \notin S$. Then there exists $\pi \in \mathbb{R}^n$ such that

 $\pi^T \hat{x} > \max_{x \in S} \{\pi^T x\}$

Nonlinear Branch-and-Cut

Consider MINLP

$$\left\{\begin{array}{ll} \underset{x,y}{\text{minimize}} & f_x^T x + f_y^T y\\ \text{subject to} & c(x,y) \leq 0\\ & y \in \{0,1\}^p, \ 0 \leq x \leq U \end{array}\right.$$

- Note the Linear objective
- This is WLOG:

 $\min f(x,y) \qquad \Leftrightarrow \qquad \min \eta \ \text{s.t.} \ \eta \geq f(x,y)$

Formulations	Preliminaries	Formulations	Preliminaries
Inequalities	MILP Inequalities Applied to MINLP	Inequalities	MILP Inequalities Applied to MINLP
n Nonconvexity	Disjunctive Inequalities	Dealing with Nonconvexity	Disjunctive Inequalities

It's Actually Important!

Dealing

- We want to approximate the convex hull of integer solutions, but without a linear objective function, the solution to the relaxation might occur in the interior.
- No Separating Hyperplane! :-(

$$\min(y_1 - 1/2)^2 + (y_2 - 1/2)^2$$

s.t. $y_1 \in \{0, 1\}, y_2 \in \{0, 1\}$

$$\eta \ge (y_1 - 1/2)^2 + (y_2 - 1/2)^2$$

$$\eta$$
 y_2 (\hat{y}_1, \hat{y}_2) y_1

Simple Relaxations

- Idea: Consider one row relaxations **?**
- If $P = \{x \in \{0, 1\}^n \mid Ax \leq b\}$, then for any row i, $P_i = \{x \in \{0,1\}^n \mid a_i^T x \leq b_i\}$ is a relaxation of P.
- If the intersection of the relaxations is a good approximation to the true problem, then the inequalities will be quite useful.
- Crowder et al. (1983) is the seminal paper that shows this to be true for IP.
- MINLP: Single (linear) row relaxations are also valid ⇒ same inequalities can also be used

Valid Inequalities From Relaxations

- Idea: Inequalities valid for a relaxation are valid for original
- Generating valid inequalities for a relaxation is often easier.

• Separation Problem over T: Given \hat{x}, T find (π, π_0) such that $\pi^T \hat{x} > \pi_0$, $\pi^T x < \pi_0 \forall x \in T$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Formulations		Formulations	Preliminaries
Inequalities	MILP Inequalities Applied to MINLP	Inequalities	MILP Inequalities Applied to MINLP
, with Nonconvexity		Dealing with Nonconvexity	Disjunctive Inequalities

Knapsack Covers

$$K = \{ x \in \{0, 1\}^n \mid a^T x \le b \}$$

- A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_j > b$
- A cover C is a minimal cover if $C \setminus j$ is not a cover $\forall j \in C$
- If $C \subseteq N$ is a cover, then the *cover inequality*

$$\sum_{j \in C} x_j \le |C| - 1$$

is a valid inequality for S

• Sometimes (minimal) cover inequalities are facets of conv(K)

2

$$K = \{x \in \{0,1\}^7 \mid 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19\}$$

 $LP(K) = \{x \in [0,1]^7 \mid 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19\}$

•
$$(1, 1, 1/3, 0, 0, 0, 0) \in LP(K)$$

• CHOPPED OFF BY $x_1 + x_2 + x_3 \le$

- $(0,0,1,1,1,3/4,0) \in LP(K)$
 - CHOPPED OFF BY $x_3 + x_4 + x_5 + x_6 \leq 3$

nequalities

Dealing with Nonco

Other Substructures

• Single node flow: (Padberg et al., 1985)

$$S = \left\{ x \in \mathbb{R}^{|N|}_{+}, y \in \{0,1\}^{|N|} \mid \sum_{j \in N} x_j \le b, x_j \le u_j y_j \ \forall \ j \in N \right\}$$

• Knapsack with single continuous variable: (Marchand and Wolsey, 1999)

$$S = \left\{ x \in \mathbb{R}_+, y \in \{0,1\}^{|N|} \mid \sum_{j \in N} a_j y_j \le b + x \right\}$$

• Set Packing: (Borndörfer and Weismantel, 2000)

$$S = \left\{y \in \{0,1\}^{|N|} \mid Ay \le e
ight\}$$
 $A \in \{0,1\}^{|M| imes |N|}, e = (1,1,\dots,1)^T$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Formulations	Preliminaries	Formulations	Preliminaries
Inequalities	MILP Inequalities Applied to MINLP	Inequalities	MILP Inequalities Applied to MINLP
Dealing with Nonconvexity	Disjunctive Inequalities	Dealing with Nonconvexity	Disjunctive Inequalities

The Chvátal-Gomory Procedure

- A general procedure for generating valid inequalities for integer programs
- Let the columns of $A \in \mathbb{R}^{m imes n}$ be denoted by $\{a_1, a_2, \ldots a_n\}$
- $S = \{x \in \mathbb{Z}^n_+ \mid Ax \le b\}.$
 - 1. Choose nonnegative multipliers $u \in \mathbb{R}^m_+$
 - 2. $u^T Ax \leq u^T b$ is a valid inequality $(\sum_{j \in N}^{T} u^T a_j x_j \leq u^T b)$.
 - 3. $\sum_{j \in N} \lfloor u^T a_j \rfloor x_j \le u^T b$ (Since $x \ge 0$).
 - 4. $\sum_{j\in N} \lfloor u^T a_j \rfloor x_j \leq \lfloor u^T b \rfloor$ is valid for X since $\lfloor u^T a_j \rfloor x_j$ is an integer
- Simply Amazing: This simple procedure suffices to generate every valid inequality for an integer program

Extension to MINLP (Çezik and Iyengar, 2005)

• This simple idea also extends to mixed 0-1 conic programming

 $\begin{array}{ll} \underset{z \stackrel{\text{def}}{=} (x,y) \\ \text{subject to} & Az \succeq_{\mathcal{K}} b \\ & y \in \{0,1\}^p, \ 0 \leq x \leq U \end{array}$

• $\mathcal{K}:$ Homogeneous, self-dual, proper, convex cone

•
$$x \succeq_{\mathcal{K}} y \Leftrightarrow (x - y) \in \mathcal{K}$$

Gomory On Cones (Çezik and Iyengar, 2005)

Dealing with Nonconvex

- LP: $\mathcal{K}_l = \mathbb{R}^n_+$
- SOCP: $\mathcal{K}_q = \{(x_0, \bar{x}) \mid x_0 \ge \|\bar{x}\|\}$
- SDP: $\mathcal{K}_s = \{x = \operatorname{vec}(X) \mid X = X^T, X \text{ p.s.d}\}$

Inequalities

- Dual Cone: $\mathcal{K}^* \stackrel{\text{def}}{=} \{ u \mid u^T z \ge \mathbf{0} \ \forall z \in \mathcal{K} \}$
- Extension is clear from the following equivalence:

$$Az \succeq_{\mathcal{K}} b \quad \Leftrightarrow \quad u^T Az \ge u^T b \ \forall u \succeq_{\mathcal{K}^*} \mathbf{C}$$

 Many classes of nonlinear inequalities can be represented as

 $Ax \succ_{\mathcal{K}_a} b$ or $Ax \succ_{\mathcal{K}_a} b$

 Go to other SIAM Short Course to find out about Semidefinite Programming

Mixed Integer Rounding-MIR

Almost everything comes from considering the following very simple set, and observation.

- $X = \{(x, y) \in \mathbb{R} \times \mathbb{Z} \mid y \le b + x\}$
- $f = b \lfloor b \rfloor$: fractional
 - NLP People are silly and use *f* for the objective function
- LP(X)
- conv(X)
- $y \leq \lfloor b \rfloor + \frac{1}{1-f}x$ is a valid inequality for X

*				
Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP	
Formulations	Preliminaries	Formulations	Preliminaries	
Inequalities	MILP Inequalities Applied to MINLP	Inequalities	MILP Inequalities Applied to MINLP	
Dealing with Nonconvexity	Disjunctive Inequalities	Dealing with Nonconvexity	Disjunctive Inequalities	

Extension of MIR

$$X_{2} = \left\{ (x^{+}, x^{-}, y) \in \mathbb{R}^{2}_{+} \times \mathbb{Z}^{|N|} \mid \sum_{j \in N} a_{j} y_{j} + x^{+} \leq b + x^{-} \right\}$$

• The inequality

$$\sum_{j \in N} \left(\lfloor (a_j) \rfloor + \frac{(f_j - f)^+}{1 - f} \right) y_j \le \lfloor b \rfloor + \frac{x^-}{1 - f}$$

is valid for X_2

•
$$f_j \stackrel{\text{def}}{=} a_j - \lfloor a_j \rfloor, \ (t)^+ \stackrel{\text{def}}{=} \max(t, 0)$$

- \boldsymbol{X} is a one-row relaxation of a general mixed integer program
 - Continuous variables aggregated into two: x^+, x^-

It's So Easy, Even I Can Do It

Proof:

- $N_1 = \{ j \in N \mid f_j \le f \}$
- $N_2 = N \setminus N_1$
- Let

$$P = \{(x,y) \in \mathbb{R}^2_+ imes \mathbb{Z}^{|N|} \mid \ \sum_{j \in N_1} \lfloor a_j
floor y_j + \sum_{j \in N_2} \lceil a_j
floor y_y \le b + x^- + \sum_{j \in N_2} (1 - f_j) y_j \}$$

- 1. Show $X \subseteq P$
- 2. Show simple (2-variable) MIR inequality is valid for P (with an appropriate variable substitution).
- 3. Collect the terms

Gomory Mixed Integer Cut is a MIR Inequality

Inequalities

• Consider the set

$$X^{=} = \left\{ (x^{+}, x^{-}, y_{0}, y) \in \mathbb{R}^{2}_{+} \times \mathbb{Z} \times \mathbb{Z}^{|N|}_{+} \mid y_{0} + \sum_{j \in N} a_{j} y_{j} + x^{+} - x^{-} \right\}$$

which is essentially the row of an LP tableau

- Relax the equality to an inequality and apply MIR
- Gomory Mixed Integer Cut:

$$\sum_{j \in N_1} f_j y_j + x^+ + \frac{f}{1-f} x^- + \sum_{j \in N_2} (f_j - \frac{f_j - f}{1-f}) y_j \ge f$$

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

Inequalities

• LP/NLP Based Branch-and-Bound solves MILP instances:

$$\begin{cases} \begin{array}{ll} \underset{z \stackrel{\text{def}}{=} (x,y), \eta}{\text{subject to}} & \eta \geq f_j + \nabla f_j^T (z - z_j) & \forall y_j \in Y^k \\ & 0 \geq c_j + \nabla c_j^T (z - z_j) & \forall y_j \in Y^k \\ & x \in X, \ y \in Y \text{ integer} \end{cases} \end{cases}$$

• Create Gomory mixed integer cuts from

$$\begin{aligned} \eta &\geq f_j + \nabla f_j^T z - z_j \\ 0 &\geq c_j + \nabla c_j^T (z - z_j) \end{aligned}$$

- Akrotirianakis et al. (2001) shows modest improvements
- Research Question: Other cut classes?
- Research Question: Exploit "outer approximation" property?

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP	
Formulations	Preliminaries	Formulations	Preliminaries	
Inequalities	MILP Inequalities Applied to MINLP	Inequalities	MILP Inequalities Applied to MINLP	
Dealing with Nonconvexity	Disjunctive Inequalities	Dealing with Nonconvexity	Disjunctive Inequalities	

min

Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

. .

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993)

Continuous relaxation
$$(z \stackrel{\text{der}}{=} (x, y))$$

• $C \stackrel{\text{def}}{=} \{z | c(z) \leq 0, \ 0 \leq y \leq 1, \ 0 \leq x \leq U\}$
• $C \stackrel{\text{def}}{=} \operatorname{conv}(\{x \in C \mid y \in \{0, 1\}^p\})$
• $C_j^{0/1} \stackrel{\text{def}}{=} \{z \in C \mid y_j = 0/1\}$
let $\mathcal{M}_j(C) \stackrel{\text{def}}{=} \left\{ \begin{array}{c} z = \lambda_0 u_0 + \lambda_1 u_1 \\ \lambda_0 + \lambda_1 = 1, \ \lambda_0, \lambda_1 \geq 0 \\ u_0 \in C_j^0, \ u_1 \in C_j^1 \end{array} \right\}$
 $\Rightarrow \mathcal{P}_j(C) := \text{ projection of } \mathcal{M}_j(C) \text{ onto } z$
 $\Rightarrow \mathcal{P}_j(C) = \operatorname{conv}(C \cap y_j \in \{0, 1\}) \text{ and } \mathcal{P}_{1...p}(C) = C$

Disjunctive Cuts: Example

Formulations Inequalities Dealing with Nonconvexity	Preliminaries MILP Inequalities Applied to MINLP Disjunctive Inequalities	Formulations Preliminaries Inequalities MILP Inequalities Applied to MINLP Dealing with Nonconvexity Disjunctive Inequalities
Disjunctive Cuts Example		What to do? (Stubbs and Mehrotra, 1999)
	$z^* \stackrel{def}{=} rg\min \ z - \hat{z}\ $	
	s.t. $\lambda_0 u_0 + \lambda_1 u_1 = z$	 Look at the perspective of c(z), which gives a convex reformulation of M_i(C): M_i(C̃), where
<i>z</i> *	$egin{array}{rcl} \lambda_0+\lambda_1&=&1\ igl(egin{array}{cc} -0.16\ 0\end{array}igr)\leq u_0&\leq&igl(egin{array}{cc} 0.66\ 1\end{array}igr)\ igl(egin{array}{cc} -0.47\ 0\end{array}igr)\leq u_1&\leq&igl(egin{array}{cc} 1.47\ 1\end{array}igr)\ \lambda_0,\lambda_1&\geq&0 \end{array}$	$\tilde{C} := \left\{ (z, \mu) \middle \begin{array}{l} \mu c_i(z/\mu) \leq 0 \\ 0 \leq \mu \leq 1 \\ 0 \leq x \leq \mu U, \ 0 \leq y \leq \mu \end{array} \right\}$ • $c(0/0) = 0 \Rightarrow \text{ convex representation}$

 $\hat{z} = (\hat{x}, \hat{y})$

NONCONVEX

 (\mathbf{v},\mathbf{v})

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP	
Formulations	Preliminaries	Formulations	Preliminaries	
Inequalities	MILP Inequalities Applied to MINLP	Inequalities	MILP Inequalities Applied to MINLP	
Dealing with Nonconvexity	Disjunctive Inequalities	Dealing with Nonconvexity	Disjunctive Inequalities	

Disjunctive Cuts Example

$\tilde{C} = \left\{ \left(\begin{array}{c} x \\ y \\ \mu \end{array} \right) \right $	$\mu \left[(x/\mu - 1/2)^2 + (y/\mu - 2\mu \le x) \\ 0 \le y \le 0 \le \mu \le x \right]$	$\leq 2\mu \leq \mu$
$\mu_{\mathbf{x}}^{\mathbf{x}} = \mathbf{C}_{j\mathbf{y}}^{1}$		

Example, cont.

$$\tilde{C}_j^{\mathsf{0}} = \{(z,\lambda) \mid y_j = \mathsf{0}\} \quad \tilde{C}_j^{\mathsf{1}} = \{(z,\lambda) \mid y_j = \lambda\}$$

 $\min \|z - \hat{z}\|$

s.t. $v_0 + v_1 = z$ $egin{array}{rcl} \lambda_0 + \lambda_1 &=& 1 \ \lambda_0 + \lambda_1 &=& 1 \ (v_0,\lambda_0) &\in& ilde{C}_j^0 \ (v_0,\lambda_1) &\in& ilde{C}_j^1 \ \lambda_0,\lambda_1 &\geq& 1 \end{array}$

$$\left(\begin{array}{c}x^*\\y^*\end{array}\right) = \left(\begin{array}{c}-0.401\\0.780\end{array}\right)$$

• separating hyperplane: $\psi^T(z-\hat{z})$, where $\psi\in\partial\|z-\hat{z}\|$

Formulations Inequalities Dealing with Nonconvexity	Preliminaries MILP Inequalities Applied to MINLP Disjunctive Inequalities	Formulations Preliminaries Inequalities MILP Inequalities Applied to MINLP Dealing with Nonconvexity Disjunctive Inequalities
Example, Cont.		Nonlinear Branch-and-Cut (Stubbs and Mehrotra, 1999)
$0.198x + 0.061y = -0.032$ $\hat{z} = (\hat{x}, \hat{y})$	$\psi = \left(egin{array}{c} 2x^* + 0.5 \ 2y^* - 0.75 \end{array} ight) \ 0.198x + 0.061y \geq -0.032$	 Can do this at <i>all</i> nodes of the branch-and-bound tree Generalize disjunctive approach from MILP solve one convex NLP per cut Generalizes Sherali and Adams (1990) and Lovász and Schrijver (1991) tighten cuts by adding semi-definite constraint Stubbs and Mehrohtra (2002) also show how to generate convex quadratic inequalities, but computational results are not that promising

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Formulations		Formulations	Preliminaries
Inequalities		Inequalities	MILP Inequalities Applied to MINLP
Dealing with Nonconvexity	Disjunctive Inequalities	Dealing with Nonconvexity	Disjunctive Inequalities

Disjunctive Programming [Grossmann]

Consider disjunctive NLP

$$\begin{cases} \underset{x,Y}{\text{minimize}} & \sum f_i + f(x) \\ \text{subject to} & \begin{bmatrix} Y_i \\ c_i(x) \le 0 \\ f_i = \gamma_i \end{bmatrix} \bigvee \begin{bmatrix} \neg Y_i \\ B_i x = 0 \\ f_i = 0 \end{bmatrix} \forall i \in I \\ f_i = 0 \\ 0 \le x \le U, \ \Omega(Y) = \text{true}, \ Y \in \{\text{true}, \text{false}\}^p \end{cases}$$

convex hull representation ...

$$\begin{aligned} x &= v_{i1} + v_{i0}, & \lambda_{i1} + \lambda_{i0} = 1\\ \lambda_{i1}c_i(v_{i1}/\lambda_{i1}) &\leq 0, & B_iv_{i0} = 0\\ 0 &\leq v_{ij} &\leq \lambda_{ij}U, & 0 &\leq \lambda_{ij} \leq 1, & f_i = \lambda_{i1}\gamma_i \end{aligned}$$

Disjunctive Programming: Example

Dealing with Nonconvex Constraints

Dealing with Nonconvexities

Formulations

Dealing with Nonconvexity

- Functional nonconvexity causes serious problems.
 - Branch and bound must have true lower bound (global solution)
- Underestimate nonconvex functions. Solve relaxation. Provides lower bound.
- If relaxation is not exact, then branch

• If nonconvexity in constraints, may need to overestimate and underestimate the function to get a convex region

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Formulations	Difficulties	Formulations	Difficulties
Inequalities	Envelopes	Inequalities	Envelopes
Dealing with Nonconvexity	Using Envelopes	Dealing with Nonconvexity	Using Envelopes

Envelopes

- Convex Envelope (vex $_{\Omega}(f)$): Pointwise supremum of convex underestimators of fover Ω .
- Concave Envelope $(cav_{\Omega}(f))$: Pointwise infimum of concave overestimators of f over Ω .

Bilinear Terms

The convex and concave envelopes of the bilinear function xy over a rectangular region

$$R \stackrel{\mathsf{def}}{=} \{ (x, y) \in \mathbb{R}^2 \mid l_x \le x \le u_x, \ l_y \le y \le u_y \}$$

are given by the expressions

$$\begin{array}{llll} \mathsf{vexxy}_R(x,y) &=& \max\{l_yx+l_xy-l_xl_y,u_yx+u_xy-u_xu_y\}\\ \mathsf{cavxy}_R(x,y) &=& \min\{u_yx+l_xy-l_xu_y,l_yx+u_xy-u_xl_y\} \end{array}$$

Branch-and-Bound Global Optimization Methods

Formulations

Dealing with Nonconvexity

- Under/Overestimate "simple" parts of (Factorable) Functions individually
 - Bilinear Terms
 - Trilinear Terms
 - Fractional Terms
 - Univariate convex/concave terms
- General nonconvex functions f(x) can be underestimated over a region [l, u] "overpowering" the function with a quadratic function that is ≤ 0 on the region of interest

$$\mathcal{L}(x) = f(x) + \sum_{i=1}^{n} \alpha_i (l_i - x_i)(u_i - x_i)$$

Refs: (McCormick, 1976; Adjiman et al., 1998; Tawarmalani and Sahinidis, 2002)

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Formulations	Difficulties	Formulations	Difficulties
Inequalities	Envelopes	Inequalities	Envelopes
Dealing with Nonconvexity	Using Envelopes	Dealing with Nonconvexity	Using Envelopes

Disaggregation Tawarmalani et al. (2002)

Consider convex problem with bilinear objective

$$\begin{array}{ll} \underset{w,x_1,\ldots,x_n}{\text{minimize}} & w \sum_{i=1}^n c_i x_i \\ \text{subject to} & (w,x) \in P \quad \text{Polyhedron} \\ & 0 \leq w \leq v \ 0 \leq x \leq u \end{array}$$

Formulation #1

Formulation #2

Summary

- MINLP: Good relaxations are important
- Relaxations can be improved
 - Statically: Better formulation/preprocessing
 - Dynamically: Cutting planes
- Nonconvex MINLP:
 - Methods exist, again based on relaxations
- Tight relaxations is an active area of research

Leyffer & Linderoth

• Lots of empirical questions remain

Implementation and Software for MINLP

Part IV

Implementation and Software

1. Special Ordered Sets

- 2. Parallel BB and Grid Computing
- 3. Implementation & Software Issues

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Special Ordered Sets	Special Ordered Sets of Type 1	Special Ordered Sets	Special Ordered Sets of Type 1
Parallel BB and Grid Computing	Special Ordered Sets of Type 2	Parallel BB and Grid Computing	
Implementation & Software Issues	Special Ordered Sets of Type 3	Implementation & Software Issues	

Special Ordered Sets of Type 1

SOS1: $\sum \lambda_i = 1$ & at most one λ_i is nonzero

Example 1: $d \in \{d_1, \ldots, d_p\}$ discrete diameters $\Leftrightarrow d = \sum \lambda_i d_i$ and $\{\lambda_1, \dots, \lambda_p\}$ is SOS1 $\Leftrightarrow d = \sum \lambda_i d_i \text{ and } \sum \lambda_i = 1 \text{ and } \lambda_i \in \{0, 1\}$ $\ldots d$ is convex combination with coefficients λ_i

Example 2: nonlinear function c(y) of single integer $\Leftrightarrow y = \sum i \lambda_i$ and $c = \sum c(i) \lambda_i$ and $\{\lambda_1, \dots, \lambda_p\}$ is SOS1

References: (Beale, 1979; Nemhauser, G.L. and Wolsey, L.A., 1988; Williams, 1993) ...

Special Ordered Sets of Type 1

SOS1: $\sum \lambda_i = 1$ & at most one λ_i is nonzero

Branching on SOS1

- 1. reference row $a_1 < \ldots < a_p$ e.g. diameters
- 2. fractionality: $a := \sum a_i \lambda_i$
- 3. find $t : a_t < a < a_{t+1}$
- 4. branch: $\{\lambda_{t+1}, ..., \lambda_p\} = 0$ or $\{\lambda_1, \ldots, \lambda_t\} = 0$

Leyffer & Linderoth

 $a \leq a$

 $a \ge a_{t+1}$

Special Ordered Sets of Type 2

Special Ordered Sets of Type 2

SOS2: $\sum \lambda_i = 1$ & at most two adjacent λ_i nonzero

Example: Approximation of nonlinear function z = z(x)

... convex combination of two breakpoints ...

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Special Ordered Sets	Special Ordered Sets of Type 1	Special Ordered Sets	
Parallel BB and Grid Computing	Special Ordered Sets of Type 2	Parallel BB and Grid Computing	
Implementation & Software Issues	Special Ordered Sets of Type 3	Implementation & Software Issues	Special Ordered Sets of Type 3

Special Ordered Sets of Type 3

Example: Approximation of 2D function u = g(v, w)

Triangularization of $[v_L, v_U] \times [w_L, w_U]$ domain

1. $v_L = v_1 < \ldots < v_k = v_U$

2. $w_L = w_1 < \ldots < w_l = w_U$

3. function
$$u_{ij} := g(v_i, w_j)$$

4.
$$\lambda_{ij}$$
 weight of vertex (i, j)

•
$$v = \sum \lambda_{ij} v_i$$

• $w = \sum \lambda_{ij} w_j$
• $u = \sum \lambda_{ij} u_{ij}$

 $1 = \sum \lambda_{ij}$ is SOS3 . . .

Special Ordered Sets of Type 3

SOS3: $\sum \lambda_{ij} = 1$ & set condition holds

1. $v = \sum \lambda_{ij} v_i$... convex combinations 2. $w = \sum \lambda_{ij} w_j$ 3. $u = \sum \lambda_{ij} u_{ij}$

 $\{\lambda_{11},\ldots,\lambda_{kl}\}$ satisfies set condition

$$\Leftrightarrow \exists \mathsf{ trangle } \Delta : \{(i,j) : \lambda_{ij} > 0\} \subset \Delta$$

i.e. nonzeros in single triangle Δ

violates set condn

Branching on SOS3

 λ violates set condition

vertical branching: branching:

ing: $\sum_{L} \lambda_{ij} = 0$ $\sum_{R} \lambda_{ij} = 0$ horizontal $\sum_{T} \lambda_{ij} = 0$ $\sum_{B} \lambda_{ij} = 0$

Branching on SOS3

Example: gas network from first lecture ...

• pressure loss p across pipe is related to flow rate f as

Ordered Sets

$$p_{in}^2 - p_{out}^2 = \Psi^{-1} \operatorname{sign}(f) f \Leftrightarrow p_{in} = \sqrt{p_{out}^2 + \Psi^{-1} \operatorname{sign}(f) f}$$

where Ψ : "Friction Factor"

- nonconvex equation u = q(v, w)... assume pressures needed elsewhere
- (Martin et al., 2005) use SOS3 model ... study polyhedral properties
 - ... solve medium sized problem

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Special Ordered Sets		Special Ordered Sets	
Parallel BB and Grid Computing		Parallel BB and Grid Computing	
Implementation & Software Issues		Implementation & Software Issues	

Parallel Branch-and-Bound

meta-computing platforms:

- set of distributed heterogeneous computers, e.g.
 - pool of workstations
 - group of supercomputers or anything
- low quality with respect to bandwidth, latency, availability
- low cost: *it*'s free!!! ... huge amount of resources
- ... use *Condor* to "build" MetaComputer
- ... high-throughput computing

Parallel Branch-and-Bound

Master Worker Paradigm (MWdriver) Object oriented C++ library on top of Condor-PVM

Fault tolerance via master check-pointing

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP

Parallel Branch-and-Bound

First Strategy: 1 worker \equiv 1 NLP \Rightarrow grain-size *too small* ... NLPs solve in seconds

New Strategy:

1 worker \equiv 1 subtree (MINLP) ... "streamers" running down tree

Parallel Branch-and-Bound

Trimloss optimization with 56 general integers \Rightarrow solve 96,408 MINLPs on 62.7 workers \Rightarrow 600,518,018 NLPs

Wall clock time = 15.5 hours Cumulative worker CPU time = 752.7 hours \simeq 31 days

efficiency := $\frac{\text{work-time}}{\text{work} \times \text{job-time}} = \frac{752.7}{62.7 \times 15.5} = 80.5$

... proportion of time workers were busy

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Special Ordered Sets		Special Ordered Sets	Detecting Infeasibility
Parallel BB and Grid Computing		Parallel BB and Grid Computing	Choice of NLP Solver
Implementation & Software Issues		Implementation & Software Issues	MINLP Software

Parallel Branch-and-Bound: Results

Detecting Infeasibility

NLP node inconsistent (BB, OA, GBD) \Rightarrow NLP solver must prove infeasibility \Rightarrow solve feasibility problem: restoration

 $(F) \begin{cases} \underset{x,y}{\text{minimize}} & \|c^+(x,y)\|\\ \text{subject to} & x \in X, \ y \in \hat{Y} \end{cases}$ where $c^+(x,y) = \max(c(x,y),0)$ and $\| \|$ any norm

If \exists solution (\hat{x}, \hat{y}) such that $||c^+(\hat{x}, \hat{y})|| > 0$ \Rightarrow no feasible point (if convex) in neighborhood (if nonconvex)

Special Ordered Sets Detecting Infeasibility	Special Ordered Sets Detecting Infeasibility	
Parallel BB and Grid Computing Choice of NLP Solver	Parallel BB and Grid Computing Choice of NLP Solver	
Implementation & Software Issues MINLP Software	Implementation & Software Issues MINLP Software	

Feasibility Cuts for OA et al.

 $\hat{Y} = \{\hat{y}\}$ singleton & c(c,y) convex

 (\hat{x}, \hat{y}) solves $F(\hat{y})$ with $||c^+(\hat{x}, \hat{y})|| > 0$ \Rightarrow valid cut to eliminate \hat{y} given by

$$\mathsf{0} \geq c^+(\hat{x},\hat{y}) + \hat{\gamma}^T \left(egin{array}{c} x - \hat{x} \ y - \hat{y} \end{array}
ight)$$

where $\hat{\gamma} \in \partial \|c^+(\hat{x}, \hat{y})\|$ subdifferential

Polyhedral norms: $\hat{\gamma} = \nabla \hat{c} \lambda$ where

1.
$$\ell_{\infty}$$
 norm: $\sum \lambda_i = 1$, and $0 \le \lambda_i \perp \hat{c}_i \le \|\hat{c}^+\|$

- 2. ℓ_1 norm: $0 \leq \lambda_i \leq 1 \perp \hat{c}_i$
- $\ldots \lambda$ multipliers of equivalent smooth NLP \ldots easy exercise

Geometry of Feasibility Cuts

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Special Ordered Sets	Detecting Infeasibility	Special Ordered Sets	Detecting Infeasibility
Parallel BB and Grid Computing	Choice of NLP Solver	Parallel BB and Grid Computing	Choice of NLP Solver
Implementation & Software Issues	MINLP Software	Implementation & Software Issues	MINLP Software

Infeasibility in Branch-and-Bound

FilterSQP restoration phase

- satisfiable constraints: $J := \{j : c_j(\hat{x}, \hat{y}) \leq 0\}$
- violated constraints J^{\perp} (complement of J)

$$\left\{egin{array}{ll} {
m minimize} & \sum_{j\in J^{\perp}}c_j(x,y) \ {
m subject to} & c_j(x,y)\leq 0 \ & x\in X, \ y\in \hat{Y} \end{array}
ight. orall j\in J$$

- filter SQP algorithm on $\|c_J^+\|$ and $\|c_{J^\perp}^+\|$ \Rightarrow 2nd order convergence
- adaptively change ${\cal J}$
- similar to ℓ_1 -norm, but $\lambda_i \not\leq 1$

Choice of NLP Solver

MILP/MIQP branch-and-bound

- (\hat{x}, \hat{y}) solution to parent node
- new bound: $y_i \geq \lfloor \hat{y}_i \rfloor$ added to parent LP/QP
- \Rightarrow dual active set method; (\hat{x}, \hat{y}) dual feasible
- \Rightarrow fast re-optimization (MIQP 2-3 pivots!)

MILP exploit factorization of constraint basis \Rightarrow no re-factorization, just updates ... also works for MIQP (KKT matrix factorization)

 \Rightarrow interior-point methods not competitive

... how to check $\lambda_i > 0$ for SOS branching ???

MINLP branch-and-bound

- (\hat{x}, \hat{y}) solution to parent node
- new bound: $y_i \geq \lfloor \hat{y}_i \rfloor$ added to parent NLP

Snag: $\nabla c(x,y), \nabla^2 \mathcal{L}$ etc. change ...

- factorized KKT system at (x^k,y^k) to find step (d_x,d_y)
- NLP solution: $(\hat{x}, \hat{y}) = (x^{k+1}, y^{k+1}) = (x^k + \alpha d_x, y^k + \alpha d_y)$ but KKT system at (x^{k+1}, y^{k+1}) never factorized
-SQP methods take 2-3 iterations (good active set)

Outer Approximation et al.

no good warm start (y changes too much) \Rightarrow interior-point methods or SQP can be used

Software for MINLP

• Outer Approximation: DICOPT++

Parallel BB and Grid Computing

Implementation & Software Issues

- Branch-and-Bound Solvers: SBB & MINLP
- Global MINLP: BARON & MINOPT
- Online Tools: MINLP World, MacMINLP & NEOS

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Special Ordered Sets	Detecting Infeasibility	Special Ordered Sets	Detecting Infeasibility
Parallel BB and Grid Computing	Choice of NLP Solver	Parallel BB and Grid Computing	Choice of NLP Solver
Implementation & Software Issues	MINLP Software	Implementation & Software Issues	MINLP Software

Outer Approximation: DICOPT++

Outer approximation with equality relaxation & penalty **Reference**: (Kocis and Grossmann, 1989) **Features**:

- GAMS interface
- NLP solvers: CONOPT, MINOS, SNOPT
- MILP solvers: CPLEX, OSL2
- solve root NLP, or $NLP(y^0)$ initially
- relax linearizations of nonlinear equalities: λ_i multiplier of $c_i(z) = 0 \dots$

$$c_i(\hat{z}) +
abla c_i(\hat{z})^T (z-\hat{z}) \left\{egin{array}{c} \geq \mathsf{0} & ext{if } \lambda_i > \mathsf{0} \ \leq \mathsf{0} & ext{if } \lambda_i < \mathsf{0} \ \end{array}
ight.$$

• heuristic stopping rule: STOP if $NLP(y^j)$ gets worse AIMMS has version of outer approximation

SBB: (Bussieck and Drud, 2000)

Features:

- GAMS branch-and-bound solver
- variable types: integer, binary, SOS1, SOS2, semi-integer
- variable selection: integrality, pseudo-costs
- node selection: depth-first, best bound, best estimate
- multiple NLP solvers: CONOPT, MINOS, SNOPT
 ⇒ multiple solves if NLP fails

Comparison to DICOPT (OA):

- DICOPT better, if combinatorial part dominates
- SBB better, if difficult nonlinearities

Features:

- AMPL branch-and-bound solver
- variable types: integer, binary, SOS1
- variable selection: integrality, priorities
- node selection: depth-first & best bound after infeasible node
- NLP solver: filterSQP \Rightarrow feasibility restoration
- CUTEr interface available

Global MINLP Solvers

$\alpha\text{-BB}$ & MINOPT: (Schweiger and Floudas, 1998)

Special Ordered Sets Parallel BB and Grid Computing

Implementation & Software Issues

- problem classes: MINLP, DAE, optimal control, etc
- multiple solvers: OA, GBD, MINOS, CPLEX
- own modeling language

BARON: (Sahinidis, 2000)

- global optimization from underestimators & branching
- range reduction important
- classes of underestimators & factorable NLP exception: cannot handle sin(x), cos(x)
- CPLEX, MINOS, SNOPT, OSL
- mixed integer semi-definite optimization: SDPA

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	
Special Ordered Sets	Detecting Infeasibility	Special Ordered Sets	
Parallel BB and Grid Computing	Choice of NLP Solver	Parallel BB and Grid Computing	
Implementation & Software Issues	MINLP Software	Implementation & Software Issues	

Online Tools

Model Libraries

- MINLP World www.gamsworld.org/minlp/ scalar GAMS models ... difficult to read
- GAMS library www.gams.com/modlib/modlib.htm
- MacMINLP www.mcs.anl.gov/~leyffer/macminlp/ AMPL models

NEOS Server

- MINLP solvers: SBB (GAMS), MINLPBB (AMPL)
- MIQP solvers: FORTMP, XPRESS

COIN-OR

http://www.coin-or.org

- COmputational INfrastructure for Operations Research
- A library of (interoperable) software tools for optimization
- A development platform for open source projects in the OR community
- Possibly Relevant Modules:
 - OSI: Open Solver Interface
 - CGL: Cut Generation Library
 - CLP: Coin Linear Programming Toolkit
 - CBC: Coin Branch and Cut
 - IPOPT: Interior Point OPTimizer for NLP
 - NLPAPI: NonLinear Programming API

Conclusions

MINLP rich modeling paradigm • most popular solver on NEOS

Algorithms for MINLP:

• Branch-and-bound (branch-and-cut)

 \circ Outer approximation et al.

"MINLP solvers lag 15 years behind MIP solvers"

 \Rightarrow many research opportunities!!!

Part V

References

Leyffer & Linderoth MINLP	Leyffer & Linderoth MINLP
References	References
C. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization method, aBB, for general twice-differentiable constrained NLPs - I. Theoretical	H. Crowder, E. L. Johnson, and M. W. Padberg. Solving large scale zero-one linear programming problems. <i>Operations Research</i> , 31:803–834, 1983.
advances. <i>Computers and Chemical Engineering</i> , 22:1137–1158, 1998. I. Akrotirianakis, I. Maros, and B. Rustem. An outer approximation based	D. De Wolf and Y. Smeers. The gas transmission problem solved by an extension of the simplex algorithm. <i>Management Science</i> , 46:1454–1465, 2000.
branch-and-cut algorithm for convex 0-1 MINLP problems. <i>Optimization Methods</i> and Software, 16:21–47, 2001.	 M. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. <i>Mathematical Programming</i>, 36:307–339, 1986.
E. Balas. Disjunctive programming. In Annals of Discrete Mathematics 5: Discrete Optimization, pages 3–51. North Holland, 1979.	R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approximation. <i>Mathematical Programming</i> , 66:327–349, 1994.
E. Balas, S. Ceria, and G. Corneujols. A lift-and-project cutting plane algorithm for mixed 0-1 programs. <i>Mathematical Programming</i> , 58:295–324, 1993.	R. Fletcher and S. Leyffer. Numerical experience with lower bounds for MIQP branch-and-bound. SIAM Journal on Optimization, 8(2):604–616, 1998.
E. M. L. Beale. Branch-and-bound methods for mathematical programming systems. Annals of Discrete Mathematics, 5:201–219, 1979.	A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10:237–260, 1972.
B. Borchers and J. E. Mitchell. An improved branch and bound algorithm for Mixed Integer Nonlinear Programming. <i>Computers and Operations Research</i> , 21(4):	I. E. Grossmann and R. W. H. Sargent. Optimal design of multipurpose batch plants. Ind. Engng. Chem. Process Des. Dev., 18:343–348, 1979.
359–367, 1994. R. Borndörfer and R. Weismantel. Set packing relaxations of some integer programs. <i>Mathematical Programming</i> , 88:425 – 450, 2000.	Harjunkoski, I., Westerlund, T., Pörn, R. and Skrifvars, H. Different transformations for solving non-convex trim-loss problems by MINLP. <i>European Journal of</i> Opertational Research, 105:594–603, 1998.
M. R. Bussieck and A. Drud. SBB: A new solver for mixed integer nonlinear programming. In <i>Recent Advances in Nonlinear Mixed Integer Optimization</i> .	Jain, V. and Grossmann, I.E. Cyclic scheduling of continuous parallel-process units with decaying performance. AIChE Journal, 44:1623–1636, 1998.
INFORMS Fall, 2000. Invited talk.M. T. Çezik and G. Iyengar. Cuts for mixed 0-1 conic programming. <i>Mathematical Programming</i>, 2005. to appear.	G. R. Kocis and I. E. Grossmann. Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. <i>Industrial Engineering Chemistry Research</i> , 27:1407–1421, 1988.
Leyffer & Linderoth MINLP	Leyffer & Linderoth MINLP

References

- G. R. Kocis and I. E. Grossmann. Computational experience with DICOPT solving MINLP problems in process systems engineering. *Computers and Chemical Engineering*, 13(3):307–315, 1989.
- S. Leyffer. User manual for MINLP_BB. University of Dundee, 1998.
- S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear programming. *Computational Optimization & Applications*, 18:295–309, 2001.
- L. Lovász and A. Schrijver. Cones of matrices and setfunctions, and 0-1 optimization. *SIAM Journal on Optimization*, 1, 1991.
- H. Marchand and L. Wolsey. The 0-1 knapsack problem with a single continuous variable. *Mathematical Programming*, 85:15–33, 1999.
- A. Martin, M. Möller, and S. Moritz. Mixed integer models for the stationary case of gas network optimization. Technical report, Darmstadt University of Technology, 2005.
- G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. *Mathematical Programming*, 10:147–175, 1976.
- Nemhauser, G.L. and Wolsey, L.A. Integer and Combinatorial Optimization. John Wiley, New York, 1988.
- M. Padberg, T. J. Van Roy, and L. Wolsey. Valid linear inequalities for fixed charge problems. *Operations Research*, 33:842–861, 1985.
- I. Quesada and I. E. Grossmann. An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. *Computers and Chemical Engineering*, 16: 937–947, 1992.

Leyffer & Linderoth MINL

References

- M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Boston MA, 2002.
- J. Viswanathan and I. E. Grossmann. Optimal feed location and number of trays for distillation columns with multiple feeds. *I&EC Research*, 32:2942–2949, 1993.
- Westerlund, T. and Pettersson, F. An extended cutting plane method for solving convex MINLP problems. *Computers and Chemical Engineering Supplement*, 19: S131–S136, 1995. ESCAPE–95.
- Westerlund, T., Isaksson, J. and Harjunkoski, I. Solving a production optimization problem in the paper industry. Report 95–146–A, Department of Chemical Engineering, Abo Akademi, Abo, Finland, 1995.
- Westerlund, T., Pettersson, F. and Grossmann, I.E. Optimization of pump configurations as MINLP problem. *Computers & Chemical Engineering*, 18(9): 845–858, 1994.
- H. P. Williams. Model Solving in Mathematical Programming. John Wiley & Sons Ltd., Chichester, 1993.

Quist, A.J. Application of Mathematical Optimization Techniques to Nuclear Reactor Reload Pattern Design. PhD thesis, Technische Universiteit Delft, Thomas Stieltjes Institute for Mathematics, The Netherlands, 2000.

References

- N. V. Sahinidis. BARON: Branch and reduce optimization navigator. Technical report, University of Illinois at Urbana-Champaign, Department of Chemical Engineering, 2000.
- C. A. Schweiger and C. A. Floudas. MINOPT: A modeling language and algorithmic framework for linear, mixed-integer, nonlinear, dynamic, and mixed-integer nonlinear optimization. Technical report, Department of Chemical Engineering, Princeton University, 1998.
- H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. *SIAM Journal* on Discrete Mathematics, 3:411–430, 1990.
- O. Sigmund. A 99 line topology optimization code written in matlab. *Structural Multidisciplinary Optimization*, 21:120–127, 2001.
- R. Stubbs and S. Mehrohtra. Generating convex polynomial inequalities for mixed 0-1 programs. *Journal of Global Optimization*, 24:311–332, 2002.
- R. A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex programming. *Mathematical Programming*, 86:515-532, 1999.
- M. Tawarmalani, S. Ahmed, and N. Sahinidis. Product disaggregation in global optimization and relaxations of rational programs. *Optimization and Engineering*, 3:281–303, 2002.

Leyffer & Linderoth