MINLP Short Course Overview

1. Introduction, Applications, and Formulations
2. Classical Solution Methods
3. Modern Developments in MINLP
4. Implementation and Software

Today you will be "treated" to a draft of Part III. (Maybe a little bit of II.)

MINLP

Leyffer \& Linderoth
 Motivation

 ExamplesPart I
Introduction, Applications, and Formulations

The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)

$$
\begin{cases}\underset{x, y}{\operatorname{minimize}} & f(x, y) \\ \text { subject to } & c(x, y) \leq 0 \\ & x \in X, y \in Y \text { integer }\end{cases}
$$

- f, c smooth (convex) functions
- X, Y polyhedral sets, e.g. $Y=\left\{y \in[0,1]^{p} \mid A y \leq b\right\}$
- $y \in Y$ integer \Rightarrow hard problem
- f, c not convex \Rightarrow very hard problem

Why the N?

An anecdote: July, 1948. A young and frightened George Dantzig, presents his newfangled "linear programming" to a meeting of the Econometric Society of Wisconsin, attended by distinguished scientists like Hotelling, Koopmans, and Von Neumann. Following the lecture, Hotelling ${ }^{a}$ pronounced to the audience:

But we all know the world is nonlinear!

[^0] man"

The world is indeed nonlinear

- Physical Processes and Properties
- Equilibrium
- Enthalpy
- Abstract Measures
- Economies of Scale
- Covariance
- Utility of decisions

Why the MI?

- We can use 0-1 (binary) variables for a variety of purposes
- Modeling yes/no decisions
- Enforcing disjunctions
- Enforcing logical conditions
- Modeling fixed costs
- Modeling piecewise linear functions
- If the variable is associated with a physical entity that is indivisible, then it must be integer

1. Number of aircraft carriers to to produce. Gomory's Initial Motivation
2. Yearly number of trees to harvest in Norrland

A Popular MINLP Method

Dantzig's Two-Phase Method for MINLP

1. Convince the user that he or she does not wish to solve a mixed integer nonlinear programming problem at all!
2. Otherwise, solve the continuous relaxation ($N L P$) and round off the minimizer to the nearest integer.

- Sometimes a continuous approximation to the discrete (integer) decision is accurate enough for practical purposes.
- Yearly tree harvest in Norrland
- For $0-1$ problems, or those in which the $|y|$ is "small", the continuous approximation to the discrete decision is not accurate enough for practical purposes.
- Conclusion: MINLP methods must be studied!

$\begin{array}{rll}\text { Leyffer \& Linderoth } & \text { MINLP } \\ \text { Motivation } & \text { What } \\ \text { Examples } & \text { How } \\ \text { Tricks } & \text { Why? }\end{array}$	$\begin{array}{rll}\text { Leyffer \& Linderoth } & \text { MINLP } \\ \text { Motivation } & \text { What } \\ \text { Examples } & \text { How } \\ \text { Tricks } & \text { Why? }\end{array}$	
Example: Core Reload Operation (Quist, A.J., 2000)	Example: Core Reload Operation (Quist, A.J., 2000)	
- max. reactor efficiency after reload subject to diffusion PDE \& safety diffusion PDE \simeq nonlinear equation \Rightarrow integer \& nonlinear model - avoid reactor becoming sub-criticaloverheated	look for cycles for moving bundles: e.g. $4 \rightarrow 6 \rightarrow 8 \rightarrow 10$ i.e. bundle moved from 4 to 6 ... model with binary $x_{i l m} \in\{0,1\}$ $x_{i l m}=1$ \Leftrightarrow node i has bundle l of cycle m	

AMPL Model of Core Reload Operation

Exactly one bundle per node:

$$
\sum_{l=1}^{L} \sum_{m=1}^{M} x_{i l m}=1 \quad \forall i \in I
$$

AMPL model:
var $\mathrm{x}\{\mathrm{I}, \mathrm{L}, \mathrm{M}\}$ binary ;
Bundle $\{i$ in $I\}: \operatorname{sum}\{1$ in L, m in $M\} x[i, l, m]=1$;

- Multiple Choice: One of the most common uses of IP
- Full AMPL model c-reload.mod at
www.mcs.anl.gov/~leyffer/MacMINLP/

- Belgium has no gas!
- All natural gas is imported from Norway, Holland, or Algeria.
- Supply gas to all demand points in a network in a minimum cost fashion.
- Gas is pumped through the network with a series of compressors
- There are constraints on the pressure of the gas within the pipe

Pressure Loss is Nonlinear

- Assume horizontal pipes and steady state flows
- Pressure loss p across a pipe is related to the flow rate f as

$$
p_{\text {in }}^{2}-p_{\text {out }}^{2}=\frac{1}{\psi} \operatorname{sign}(f) f^{2}
$$

- Ψ : "Friction Factor"

MINLP
Gas Transmission
Portfolio Managem

Gas Transmission: Problem Input

- Network (N, A). $A=A_{p} \cup A_{a}$
- A_{a} : active arcs have compressor. Flow rate can increase on arc
- A_{p} : passive arcs simply conserve flow rate
- $N_{s} \subseteq N$: set of supply nodes
- $c_{i}, i \in N_{s}$: Purchase cost of gas
- $\underline{s}_{i}, \bar{s}_{i}$: Lower and upper bounds on gas "supply" at node i
- $\underline{p}_{i}, \bar{p}_{i}$: Lower and upper bounds on gas pressure at node i
- $s_{i}, i \in N$: supply at node i.
- $s_{i}>0 \Rightarrow$ gas added to the network at node i
- $s_{i}<0 \Rightarrow$ gas removed from the network at node i to meet demand
- $f_{i j},(i, j) \in A$: flow along arc (i, j)
- $f(i, j)>0 \Rightarrow$ gas flows $i \rightarrow j$
- $f(i, j)<0 \Rightarrow$ gas flows $j \rightarrow i$

Gas Transmission Model

$$
\min \sum_{j \in N_{s}} c_{j} s_{j}
$$

subject to

$$
\begin{array}{rlrl}
\sum_{j \mid(i, j) \in A} f_{i j}-\sum_{j \mid(j, i) \in A} f_{j i} & =s_{i} & \forall i \in N \\
\operatorname{sign}\left(f_{i j}\right) f_{i j}^{2}-\Psi_{i j}\left(p_{i}^{2}-p_{j}^{2}\right) & =0 & \forall(i, j) \in A_{p} \\
\operatorname{sign}\left(f_{i j}\right) f_{i j}^{2}-\Psi_{i j}\left(p_{i}^{2}-p_{j}^{2}\right) & \geq 0 \quad \forall(i, j) \in A_{a} \\
s_{i} & \in\left[\underline{s}_{i}, \bar{s}_{i}\right] \quad \forall i \in N \\
p_{i} & \in\left[\underline{p}_{i}, \bar{p}_{i}\right] \quad \forall i \in N \\
f_{i j} & \geq 0 \quad \forall(i, j) \in A_{a}
\end{array}
$$

Your First Modeling Trick

- Don't include nonlinearities or nonconvexities unless necessary!
- Replace $p_{i}^{2} \leftarrow \rho_{i}$

$$
\begin{aligned}
\operatorname{sign}\left(f_{i j}\right) f_{i j}^{2}-\Psi_{i j}\left(\rho_{i}-\rho_{j}\right) & =0 \quad \forall(i, j) \in A_{p} \\
f_{i j}^{2}-\Psi_{i j}\left(\rho_{i}-\rho_{j}\right) & \geq 0 \quad \forall(i, j) \in A_{a} \\
\rho_{i} & \in\left[\sqrt{\underline{p}_{i}}, \sqrt{\bar{p}_{i}}\right] \quad \forall i \in N
\end{aligned}
$$

- This trick only works because

1. p_{i}^{2} terms appear only in the bound constraints
2. Also $f_{i j} \geq 0 \forall(i, j) \in A_{a}$

- This model is nonconvex: $\operatorname{sign}\left(f_{i j}\right) f_{i j}^{2}$ is a nonconvex function

Leyffer \& Linderoth
 Motivation Examples

Dealing with $\operatorname{sign}(\cdot)$: The NLP Way

- Use auxiliary binary variables to indicate direction of flow
- Let $\left|f_{i j}\right| \leq F \forall(i, j) \in A_{p}$

$$
z_{i j}=\left\{\begin{array}{lll}
1 & f_{i j} \geq 0 \\
0 & f_{i j} \leq 0
\end{array} \quad f_{i j} \geq-F\left(1-z_{i j}\right)\right.
$$

- Note that

$$
\operatorname{sign}\left(f_{i j}\right)=2 z_{i j}-1
$$

- Write constraint as

$$
\left(2 z_{i j}-1\right) f_{i j}^{2}-\Psi_{i j}\left(\rho_{i}-\rho_{j}\right)=0
$$

Leyffer \& Linderoth

Motivation
Examples
Tricks
Gas Transmission
Gas Transmission
Portfolio Manage

Dealing with sign(•): The MIP Way

Model

$$
f_{i j}>0 \Rightarrow\left\{\begin{array}{l}
f_{i j}^{2} \leq \Psi_{i j}\left(\rho_{i}-\rho_{j}\right) \\
f_{i j}^{2} \geq \Psi_{i j}\left(\rho_{i}-\rho_{j}\right)
\end{array} \quad f_{i j}<0 \Rightarrow\left\{\begin{array}{l}
f_{i j}^{2} \leq \Psi_{i j}\left(\rho_{j}-\rho_{i}\right) \\
f_{i j}^{2} \geq \Psi_{i j}\left(\rho_{j}-\rho_{i}\right)
\end{array}\right.\right.
$$

$$
m \leq f_{i j}^{2}-\Psi\left(\rho_{i}-\rho_{j}\right) \leq M \quad l \leq f_{i j}^{2}-\Psi\left(\rho_{j}-\rho_{i}\right) \leq L
$$

Example

$$
\begin{aligned}
& f_{i j}>0 \Rightarrow z_{i j}=1 \Rightarrow f_{i j}^{2} \leq \Psi\left(\rho_{i}-\rho_{j}\right) \\
& f_{i j}>0 \Rightarrow z_{i j}=1 \Rightarrow f_{i j}^{2} \leq \Psi\left(\rho_{i}-\rho_{j}\right) \\
& f_{i j}>0 \Rightarrow z_{i j}=1 \Rightarrow f_{i j}^{2} \leq \Psi\left(\rho_{i}-\rho_{j}\right)
\end{aligned}
$$

Dealing with $\operatorname{sign}(\cdot)$: The MIP Way

- Wonderful MIP Modeling reference is Williams (1993)
- If you put it all together you get...
- $z_{i j} \in\{0,1\}$: Indicator if flow is positive
- $y_{i j} \in\{0,1\}$: Indicator if flow is negative

$$
\begin{aligned}
f_{i j} & \leq F z_{i j} \\
f_{i j} & \geq-F y_{i j} \\
z_{i j}+y_{i j} & =1 \\
f_{i j}^{2}+M z_{i j} & \leq M+\Psi_{i j}\left(\rho_{i}-\rho_{j}\right) \\
f_{i j}^{2}+m z_{i j} & \geq m+\Psi_{i j}\left(\rho_{i}-\rho_{j}\right) \\
f_{i j}^{2}+L y_{i j} & \leq L+\Psi_{i j}\left(\rho_{j}-\rho_{i}\right) \\
f_{i j}^{2}+l y_{i j} & \geq l+\Psi_{i j}\left(\rho_{j}-\rho_{i}\right)
\end{aligned}
$$

Special Ordered Sets

- Sven thinks the NLP way is better
- Jeff thinks the MIP way is better
- Neither way is how it is done in De Wolf and Smeers (2000).
- Heuristic for finding a good starting solution, then a local optimization approach based on a piecewise-linear simplex method
- Another (similar) approach involves approximating the nonlinear function by piecewise linear segments, but searching for the globally optimal solution: Special Ordered Sets of Type 2
- If the "multidimensional" nonlinearity cannot be removed, resort to Special Ordered Sets of Type 3

MINLP Gas Transmission Portfolio Management Batch Processing

- N : Universe of asset to purchase
- x_{i} : Amount of asset i to hold
- B: Budget

$$
\min _{x \in \mathbb{R}_{+}^{|N|}}\left\{u(x) \mid \sum_{i \in N} x_{i}=B\right\}
$$

- Markowitz: $u(x) \stackrel{\text { def }}{=}-\alpha^{T} x+\lambda x^{T} Q x$
- α : Expected returns
- Q : Variance-covariance matrix of expected returns
- λ : Risk aversion parameter

Portfolio Management

Motivation
Examples

MINLP

Gas Transmission
Portfolio Management

Even More Models

- Min Holdings: $\left(x_{i}=0\right) \vee\left(x_{i} \geq m\right)$
- Model implication: $x_{i}>0 \Rightarrow x_{i} \geq m$
- $x_{i}>0 \Rightarrow y_{i}=1 \Rightarrow x_{i} \geq m$
- $x_{i} \leq B y_{i}, x_{i} \geq m y_{i} \forall i \in N$
- Round Lots: $x_{i} \in\left\{k L_{i}, k=1,2, \ldots\right\}$

$$
\text { - } x_{i}-z_{i} L_{i}=0, z_{i} \in \mathbb{Z}_{+} \forall i \in N
$$

- Vector h of initial holdings
- Transactions: $t_{i}=\left|x_{i}-h_{i}\right|$
- Turnover: $\sum_{i \in N} t_{i} \leq \Delta$
- Transaction Costs: $\sum_{i \in N} c_{i} t_{i}$ in objective
- Market Impact: $\sum_{i \in N} \gamma_{i} t_{i}^{2}$ in objective

Leyffer \& Linderoth
 Votivation Examples

Multiproduct Batch Plants (Kocis and Grossmann, 1988)

- M: Batch Processing Stages
- N : Different Products
- H: Horizon Time
- Q_{i} : Required quantity of product i
- $t_{i j}$: Processing time product i stage j
- $S_{i j}$: "Size Factor" product i stage j
- B_{i} : Batch size of product $i \in N$
- V_{j} : Stage j size: $V_{j} \geq S_{i j} B_{i} \forall i, j$
- C_{i} : Longest stage time for product i : $C_{i} \geq t_{i j} / N_{j} \forall i, j$
- N_{j} : Number of machines at stage j

Making "Plays"

- Suppose that the stocks are partitioned into sectors $S_{1} \subseteq N, S_{2} \subseteq N, \ldots S_{K} \subseteq N$
- The Fund Manager wants to invest all money into one sector "play"

$$
\text { - } \sum_{i \in S_{k}} x_{i}>0 \Rightarrow \sum_{j \in N \backslash S_{k}} x_{j}=0
$$

- Modeling Choices:
- Aggregated:

$$
\sum_{i \in S_{k}} x_{i} \leq B z_{k} \quad \sum_{j \in N \backslash S_{k}} x_{j}+B z_{k} \leq B
$$

- Disaggregated:

$$
x_{i} \leq u_{i} z_{i} \quad \forall i \in N \quad x_{j}+u_{j} z_{i} \leq u_{j} \forall j \mid i \in S_{k}, j \notin S_{k}
$$

Which is better?: Part III has the answer

Multiproduct Batch Plants

$$
\min \sum_{j \in M} \alpha_{j} N_{j} V_{j}^{\beta_{j}}
$$

s.t.

$$
\begin{array}{rlr}
V_{j}-S_{i j} B_{i} & \geq 0 & \forall i \in N, \forall j \in M \\
C_{i} N_{j} & \geq t_{i j} \quad \forall i \in N, \forall j \in M \\
\sum_{i \in N} \frac{Q_{i}}{B_{i}} C_{i} & \leq H &
\end{array}
$$

Bound Constraints on $V_{j}, C_{i}, B_{i}, N_{j}$

$$
N_{j} \in \mathbb{Z} \quad \forall j \in M
$$

Modeling Trick \#2

- Horizon Time and Objective Function Nonconvex. :-(
- Sometimes variable transformations work!

$$
\begin{aligned}
& \qquad \begin{aligned}
& v_{j}=\ln \left(V_{j}\right), n_{j}=\ln \left(N_{j}\right), b_{i}=\ln \left(B_{i}\right), c_{i}=\ln C_{i} \\
& \min \sum_{j \in M} \alpha_{j} e^{N_{j}+\beta_{j} V_{j}} \\
& \text { s.t. } v_{j}-\ln \left(S_{i j}\right) b_{i} \geq 0 \quad \forall i \in N, \forall j \in M \\
& c_{i}+n_{j} \geq \ln \left(\tau_{i j}\right) \quad \forall i \in N, \forall j \in M \\
& \sum_{i \in N} Q_{i} e^{C_{i}-B_{i}} \leq H \\
& \text { (Transformed) Bound Constraints on } V_{j}, C_{i}, B_{i}
\end{aligned}
\end{aligned}
$$

How to Handle the Integrality?

- But what to do about the integrality?

$$
1 \leq N_{j} \leq \bar{N}_{j} \quad \forall j \in M, N_{j} \in \mathbb{Z} \quad \forall j \in M
$$

- $n_{j} \in\{0, \ln (2), \ln (3), \ldots \ldots\}$

$$
Y_{k j}= \begin{cases}1 & n_{j} \text { takes value } \ln (k) \\ 0 & \text { Otherwise }\end{cases}
$$

$$
n_{j}-\sum_{k=1}^{K} \ln (k) Y_{k j}=0 \quad \forall j \in M
$$

$$
\sum_{k=1}^{K} Y_{k j}=1 \quad \forall j \in M
$$

- This model is available at http://www-unix.mcs.anl.gov/ ~leyffer/macminlp/problems/batch.mod

Leyffer \& Linderoth
 Motivation
 Motivation Examples Tricks

A Small Smattering of Other Applications

- Chemical Engineering Applications:
- process synthesis (Kocis and Grossmann, 1988)
- batch plant design (Grossmann and Sargent, 1979)
- cyclic scheduling (Jain, V. and Grossmann, I.E., 1998)
- design of distillation columns (Viswanathan and Grossmann, 1993)
- pump configuration optimization (Westerlund, T., Pettersson, F. and Grossmann, I.E., 1994)
- Forestry/Paper
- production (Westerlund, T., Isaksson, J. and Harjunkoski, I., 1995)
- trimloss minimization (Harjunkoski, I., Westerlund, T., Pörn, R. and Skrifvars, H., 1998)
- Topology Optimization (Sigmund, 2001)

Part II

Classical Solution Methods

1. Classical Branch-and-Bound
2. Outer Approximation, Benders Decomposition et al.
3. Hybrid Methods

- LP/NLP Based Branch-and-Bound
- Integrating SQP with Branch-and-Bound
Leyffer \& Linderoth
Branch-and-Bound
Outer Approximation
Hybrid Methods

Branch-and-Bound

Solve relaxed NLP ($0 \leq y \leq 1$ continuous relaxation) ...solution value provides lower bound

- Branch on y_{i} non-integral
- Solve NLPs \& branch until

1. Node infeasible .
2. Node integer feasible \Rightarrow get upper bound (U)
3. Lower bound $\geq U \ldots \otimes$

Search until no unexplored nodes on tree

Leyffer \& Linderoth Branch-and-Bound Outer Approximation Hybrid Methods

Convergence of Branch-and-Bound

All NLP problems solved globally \& finite number of NLPs on tree \Rightarrow Branch-and-Bound converges

Variable Selection for Branch-and-Bound

Assume $y_{i} \in\{0,1\}$ for simplicity ..
(\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f}=f(\hat{x}, \hat{y})$

1. user defined priorities

... branch on most important variable first
2. maximal fractional branching

$$
\max _{i}\left\{\min \left(1-\hat{y}_{i}, \hat{y}_{i}\right)\right\}
$$

... find \hat{y}_{i} closest to $\frac{1}{2} \Rightarrow$ largest change in problem

Variable Selection for Branch-and-Bound

Assume $y_{i} \in\{0,1\}$ for simplicity ..
(\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f}=f(\hat{x}, \hat{y})$
3. pseudo-cost branching
estimates e_{i}^{+}, e_{i}^{-}of change in $f(x, y)$ after branching

$$
\max _{i}\left\{\min \left(\hat{f}+e_{i}^{+}\left(1-\hat{y}_{i}\right), \hat{f}+e_{i}^{-} \hat{y}_{i}\right)\right\}
$$

... find y_{i}, whose expected change of objective is largest \ldots estimate e_{i}^{+}, e_{i}^{-}by keeping track of

$$
e_{i}^{+}=\frac{f_{i}^{+}-\hat{f}}{1-\hat{y}_{i}} \text { and } e_{i}^{-}=\frac{f_{i}^{-}-\hat{f}}{\hat{y}_{i}}
$$

where $f_{i}^{+/-}$solution value after branching

Leyffer \& Linderoth Branch-and-Bound uter Approximation

Leyffer \& Linderoth
Branch-and-Bound Outer Approximation

MINLP

Variable Selection for Branch-and-Bound

Assume $y_{i} \in\{0,1\}$ for simplicity ...
(\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f}=f(\hat{x}, \hat{y})$
5. MIQP strong branching: (Fletcher and Leyffer, 1998) parametric solution of QPs ... much cheaper than re-solve

- step of dual active set method
- factorization of KKT matrix
- \simeq multiple KKT solves
- generalizes old MILP ideas

Node Selection for Branch-and-Bound

Which node n on tree \mathcal{T} should be solved next?

1. depth-first search
select deepest node in tree

- minimizes number of NLP nodes stored
- exploit warm-starts (MILP/MIQP only)

2. best lower bound
choose node with least value of parent node $f_{p(n)}$

- minimizes number of NLPs solved

Node Selection for Branch-and-Bound

Which node n on tree \mathcal{T} should be solved next?

3. best estimate

choose node leading to best expected integer solution

$$
\max _{n \in \mathcal{T}}\left\{f_{p(n)}+\sum_{i: y_{i} f \text { fractional }} \min \left\{e_{i}^{+}\left(1-y_{i}\right), e_{i}^{-} y_{i}\right\}\right\}
$$

summing pseudo-cost estimates for all integers in subtree

Outer Approximation (Duran and Grossmann, 1986)

Motivation: avoid solving huge number of NLPs

- Exploit MILP/NLP solvers: decompose integer/nonlinear part

Key idea: reformulate MINLP as MILP (implicit)

- Solve alternating sequence of MILP \& NLP

NLP subproblem y_{j} fixed:
$\operatorname{NLP}\left(y_{j}\right) \begin{cases}\underset{x}{\operatorname{minimize}} & f\left(x, y_{j}\right) \\ \text { subject to } & c\left(x, y_{j}\right) \leq 0 \\ & x \in X\end{cases}$
Main Assumption: f, c are convex

Leyffer \& Linderoth
Branch-and-Bound
Outer Approximation
Hybrid Methods

MINLP

Definition
Definition
Convergenc

Outer Approximation (Duran and Grossmann, 1986)

- let $\left(x_{j}, y_{j}\right)$ solve $\operatorname{NLP}\left(y_{j}\right)$
- linearize f, c about $\left(x_{j}, y_{j}\right)=: z_{j}$
- new objective variable $\eta \geq f(x, y)$
- $\operatorname{MINLP}(P) \equiv \operatorname{MILP}(M)$

$$
(M)\left\{\begin{array}{lll}
\underset{z=(x, y), \eta}{\operatorname{minimize}} & \eta & \\
\text { subject to } & \eta \geq f_{j}+\nabla f_{j}^{T}\left(z-z_{j}\right) & \forall y_{j} \in Y \\
& 0 \geq c_{j}+\nabla c_{j}^{T}\left(z-z_{j}\right) & \forall y_{j} \in Y \\
& x \in X, y \in Y \text { integer } &
\end{array}\right.
$$

SNAG: need all $y_{j} \in Y$ linearizations

Outer Approximation (Duran and Grossmann, 1986)

$\left(M_{k}\right)$: lower bound (underestimate convex f, c)
$\operatorname{NLP}\left(y_{j}\right)$: upper bound U (fixed $\left.y_{j}\right)$

\Rightarrow stop, if lower bound \geq upper bound

Convergence of Outer Approximation

Lemma: Each $y_{i} \in Y$ generated at most once.

Proof: Assume $y_{i} \in Y$ generated again at iteration $j>i$ $\Rightarrow \exists \hat{x}$ such that $\left(\hat{x}, y_{i}\right)$ feasible in $\left(M_{j}\right)$:

$$
\begin{aligned}
& \eta \geq f_{i}+\nabla_{x} f_{i}^{T}\left(\hat{x}-x_{i}\right) \\
& 0 \geq c_{i}+\nabla_{x} c_{i}^{T}\left(\hat{x}-x_{i}\right)
\end{aligned}
$$

... because $y_{i}-y_{i}=0$
Now sum with ($1, \lambda_{i}$) multipliers of $\operatorname{NLP}\left(y_{i}\right)$
$\Rightarrow \eta \geq f_{i}+\left(\nabla_{x} f_{i}+\nabla_{x} c_{i} \lambda_{i}\right)^{T}\left(\hat{x}-x_{i}\right) \ldots$ KKT conditions
$\Rightarrow \eta \geq f_{i}$ contradicts $\eta<U \leq f_{i}$ upper bound
\Rightarrow each $y_{i} \in Y$ generated at most once
Refs: (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)
Leyffer \& Linderoth
Branch-and-Bound
Outer Approximation
Hybrid Methods

MINLP

Detinition
Convergence
Convergence of Outer Approximation

1. each $y_{i} \in Y$ generated at most once $\&|Y|<\infty \Rightarrow$ finite termination
2. convexity \Rightarrow outer approximation
\Rightarrow convergence to global min

Convexity important!!!

Leyffer \& Linderoth

Branch-and-Bound
Outer Approximation
Hybrid Metho

MINLP

Benders Decomposition

Outer Approximation \& Benders Decomposition

Take OA master $\ldots z:=(x, y) \ldots$ wlog $X=\mathbb{R}^{n}$

$$
(M)\left\{\begin{array}{lll}
\underset{\substack{\operatorname{minimize}(x, y), \eta \\
z}}{ } \eta & \\
\text { subject to } & \eta \geq f_{j}+\nabla f_{j}^{T}\left(z-z_{j}\right) & \forall y_{j} \in Y \\
& 0 \geq c_{j}+\nabla c_{j}^{T}\left(z-z_{j}\right) & \forall y_{j} \in Y \\
& y \in Y \text { integer } &
\end{array}\right.
$$

sum constraints $0 \geq c_{j} \ldots$ weighted with multipliers $\lambda_{j} \forall j$

$$
\Rightarrow \quad \eta \geq f_{j}+\lambda_{j}^{T} c_{j}+\left(\nabla f_{j}+\nabla c_{j} \lambda_{j}\right)^{T}\left(z-z_{j}\right) \quad \forall y_{j} \in Y
$$

... is a valid inequality.
References: (Geoffrion, 1972)

Outer Approximation \& Benders Decomposition

Valid inequality from OA master; $z=(x, y)$:

$$
\eta \geq f_{j}+\lambda_{j}^{T} c_{j}+\left(\nabla f_{j}+\nabla c_{j} \lambda_{j}\right)^{T}\left(z-z_{j}\right)
$$

use first order conditions of $\operatorname{NLP}\left(y_{j}\right) \ldots$

$$
\nabla_{x} f_{j}+\nabla_{x} c_{j} \lambda_{j}=0
$$

... to eliminate x components from valid inequality in y

$$
\begin{aligned}
& \Rightarrow \quad \eta \geq f_{j}+\lambda_{j}^{T} c_{j}+\left(\nabla_{y} f_{j}+\nabla_{y} c_{j} \lambda_{j}\right)^{T}\left(y-y_{j}\right) \\
& \Leftrightarrow \quad \eta \geq \mathcal{L}_{j}+\left(\mu_{j}\right)^{T}\left(y-y_{j}\right)
\end{aligned}
$$

where $\mathcal{L}_{j}=f\left(z_{j}\right)+\lambda_{j}^{T} c\left(z_{j}\right)$ Lagrangian \ldots
$\ldots \mu_{j}=\nabla_{y} f_{j}+\nabla_{y} c_{j} \lambda_{j}$ multiplier of $y=y_{j}$ in $\operatorname{NLP}\left(y_{j}\right)$

Outer Approximation \& Benders Decomposition
\Rightarrow remove x from master problem ... Benders master problem

$$
\left(M_{B}\right) \begin{cases}\underset{y, \eta}{\operatorname{minimize}} & \eta \\ \text { subject to } & \eta \geq \mathcal{L}_{j}+\left(\mu_{j}\right)^{T}\left(y-y_{j}\right) \quad \forall y_{j} \in Y \\ & y \in Y \text { integer }\end{cases}
$$

where \mathcal{L}_{j} Lagrangian $\& \mu_{j}$ multiplier of $y=y_{j}$ in $\operatorname{NLP}\left(y_{j}\right)$

- $\left(M_{B}\right)$ has less constraints \& variables (no $x!$)
- $\left(M_{B}\right)$ almost ILP (except for η)
- $\left(M_{B}\right)$ weaker than OA (from derivation)
Leyffer \& Linderoth
Branch-and-Bound
Outer Approximation
Hybrid Methods

Extended Cutting Plane Method

Replace NLP $\left(y_{i}\right)$ solve in OA by linearization about solution of $\left(M_{j}\right)$ get cutting plane for violated constraint \Rightarrow no NLP $\left(y_{j}\right)$ solves ...
... Kelley's cutting plane method instead \Rightarrow slow nonlinear convergence:
>1 evaluation per y

References: (Westerlund, T. and Pettersson, F., 1995)

MINLP

$$
\begin{aligned}
& \text { Branch-and-Bound } \\
& \text { Outer Approximation } \\
& \text { Hybrid Methods }
\end{aligned}
$$

Disadvantages of Outer Approximation

- MILP tree-search can be bottle-neck
- potentially large number of iterations

$$
\begin{array}{ll}
\operatorname{minimize} & \left(y-\frac{1}{2^{n}}\right)^{2} \\
\text { subject to } & y \in\left\{0, \frac{1}{2^{n}}, \ldots 1\right\}
\end{array}
$$

Second order master (MIQP): (Fletcher and Leyffer, 1994):

- add Hessian term to MILP $\left(M_{i}\right)$ becomes MIQP:

$$
\text { minimize } \quad \eta+\frac{1}{2}\left(z-z_{i}\right)^{T} W\left(z-z_{i}\right) \quad \text { subject to... }
$$

LP/NLP Based Branch-and-Bound

AIM: avoid re-solving MILP master (M)

- Consider MILP branch-and-bound
- interrupt MILP, when y_{j} found \Rightarrow solve NLP $\left(y_{j}\right)$ get x_{j}
- linearize f, c about $\left(x_{j}, y_{j}\right)$ \Rightarrow add linearization to tree
- continue MILP tree-search
... until lower bound \geq upper bound

LP/NLP Based Branch-and-Bound

- need access to MILP solver ... call back
- exploit good MILP (branch-cut-price) solver
- (Akrotirianakis et al., 2001) use Gomory cuts in tree-search
- no commercial implementation of this idea
- preliminary results: order of magnitude faster than OA - same number of NLPs, but only one MILP
- similar ideas for Benders \& Extended Cutting Plane methods

References: (Quesada and Grossmann, 1992)

Integrating SQP \& Branch-and-Bound

AIM: Avoid solving NLP node to convergence.
Sequential Quadratic Programming (SQP)
\rightarrow solve sequence $\left(Q P_{k}\right)$ at every node

$$
\left(Q P_{k}\right) \begin{cases}\underset{d}{\operatorname{minimize}} & f_{k}+\nabla f_{k}^{T} d+\frac{1}{2} d^{T} H_{k} d \\ \text { subject to } & c_{k}+\nabla c_{k}^{T} d \leq 0 \\ & x_{k}+d_{x} \in X \\ & y_{k}+d_{y} \in \hat{Y}\end{cases}
$$

Early branching:

After QP step choose non-integral y_{i}^{k+1}, branch \& continue SQP
References: (Borchers and Mitchell, 1994; Leyffer, 2001)

Integrating SQP \& Branch-and-Bound

SNAG: $\left(Q P_{k}\right)$ not lower bound \Rightarrow no fathoming from upper bound

$$
\begin{array}{cl}
\underset{d}{\operatorname{minimize}} & f_{k}+\nabla f_{k}^{T} d+\frac{1}{2} d^{T} H_{k} a \\
\text { subject to } & c_{k}+\nabla c_{k}^{T} d \leq 0 \\
& x_{k}+d_{x} \in X \\
& y_{k}+d_{y} \in \hat{Y} .
\end{array}
$$

Remedy: Exploit OA underestimating property (Leyffer, 2001):

- add objective cut $f_{k}+\nabla f_{k}^{T} d \leq U-\epsilon$ to $\left(Q P_{k}\right)$
- fathom node, if $\left(Q P_{k}\right)$ inconsistent
\Rightarrow converge for convex MINLP
NB: $\left(Q P_{k}\right)$ inconsistent and trust-region active \Rightarrow do not fathom

Comparison of Classical MINLP Techniques

Summary of numerical experience

1. Quadratic OA master: usually fewer iteration MIQP harder to solve
2. NLP branch-and-bound faster than OA ... depends on MIP solver
3. $L P /$ NLP-based- $B B$ order of magnitude faster than OA ... also faster than B\&B
4. Integrated SQP-B\&B up to $3 \times$ faster than $B \& B$ \simeq number of QPs per node
5. ECP works well, if function/gradient evals expensive

Modern Methods for MINLP

1. Formulations

- Relaxations
- Good formulations: big $M^{\prime} s$ and disaggregation

2. Cutting Planes

- Cuts from relaxations and special structures
- Cuts from integrality

3. Global methods

- Envelopes
- Methods

Relaxations

- $z(S) \stackrel{\text { def }}{=} \min _{x \in S} f(x)$
- $z(T) \stackrel{\text { def }}{=} \min _{x \in T} f(x)$
- Independent of f, S, T :
$z(T) \leq z(S)$
- If $x_{T}^{*}=\arg \min _{x \in T} f(x)$
- And $x_{T}^{*} \in S$, then
- $x_{T}^{*}=\arg \min _{x \in S} f(x)$

A Pure Integer Program

$$
z(S)=\min \left\{c^{T} x: x \in S\right\}, \quad S=\left\{x \in \mathbb{Z}_{+}^{n}: A x \leq b\right\}
$$

$$
\begin{aligned}
S= & \left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{+}^{2}: 6 x_{1}+x_{2} \leq 15,\right. \\
= & \left.5 x_{1}+8 x_{2} \leq 20, x_{2} \leq 2\right\} \\
= & \{(0,0),(0,1),(0,2),(1,0), \\
& (1,1),(1,2),(2,0)\}
\end{aligned}
$$

How to Solve Integer Programs?

- Relaxations!
- $T \supseteq S \Rightarrow z(T) \leq z(S)$
- People commonly use the linear programming relaxation:

$$
\begin{aligned}
z(L P(S)) & =\min \left\{c^{T} x: x \in L P(S)\right\} \\
L P(S) & =\left\{x \in \mathbb{R}_{+}^{n}: A x \leq b\right\}
\end{aligned}
$$

- If $L P(S)=\operatorname{conv}(S)$, we are done.
- Minimum of any linear function over any convex set occurs on the boundary
- We need only know $\operatorname{conv}(S)$ in the direction of c.
- The "closer" $L P(S)$ is to $\operatorname{conv}(S)$ the better.
- Sometimes, we can get a better relaxation (make $L P(S)$ a closer approximation to $\operatorname{conv}(S)$) through a different tighter formulation
- Let's look at the geometry

$$
\begin{gathered}
P=\left\{x \in \mathbb{R}_{+}, z \in\{0,1\}: x \leq M z, x \leq u\right\} \\
L P(P)=\left\{x \in \mathbb{R}_{+}, z \in[0,1]: x \leq M z, x \leq u\right\} \\
\operatorname{conv}(P)=\left\{x \in \mathbb{R}_{+}, z \in\{0,1\}: x \leq u z\right\}
\end{gathered}
$$

P

$$
P=\left\{x \in \mathbb{R}_{+}, z \in\{0,1\}: x \leq M z, x \leq u\right\}
$$

LP Versus Conv

$$
L P(P)=\left\{x \in \mathbb{R}_{+}, z \in[0,1]: x \leq M z, x \leq u\right\}
$$

- KEY: If $M=u, L P(P)=\operatorname{conv}(P)$
- Small M's good. Big M 's baaaaaaaad.

UFL: Uncapacitated Facility Location

- Facilities: I
- Customers: J

$$
\begin{align*}
& \min \sum_{j \in J} f_{j} x_{j}+\sum_{i \in I} \sum_{j \in J} f_{i j} y_{i j} \\
& \sum_{j \in N} y_{i j}=1 \quad \forall i \in I \\
& \sum_{i \in I} y_{i j} \leq|I| x_{j} \quad \forall j \in J \tag{1}\\
& \text { OR } y_{i j} \leq x_{j} \quad \forall i \in I, j \in J \tag{2}
\end{align*}
$$

- Which formulation is to be preferred?
- $I=J=40$. Costs random.
- Formulation 1. 53,121 seconds, optimal solution
- Formulation 2. 2 seconds, optimal solution.

Leyffer \& Linderoth ormulation
 Inequalities Dealing with Nonconverity

MINLP

Preliminaries

Valid Inequalities

- Sometimes we can get a better formulation by dynamically improving it.
- An inequality $\pi^{T} x \leq \pi_{0}$ is a valid inequality for S if $\pi^{T} x \leq \pi_{0} \forall x \in S$
- Alternatively: $\max _{x \in S}\left\{\pi^{T} x\right\} \leq \pi_{0}$
- Thm: (Hahn-Banach). Let $S \subset \mathbb{R}^{n}$ be a closed, convex set, and let $\hat{x} \notin S$. Then there exists $\pi \in \mathbb{R}^{n}$ such that

Leyffer \& Linderoch
ormulations Inequalities

Prelimin
Preliminaries
Dealing wit
P Ineq

Consider MINLP

$$
\begin{cases}\underset{x, y}{\operatorname{minimize}} & f_{x}^{T} x+f_{y}^{T} y \\ \text { subject to } & c(x, y) \leq 0 \\ & y \in\{0,1\}^{p}, 0 \leq x \leq U\end{cases}
$$

- Note the Linear objective
- This is WLOG:

$$
\min f(x, y) \quad \Leftrightarrow \quad \min \eta \text { s.t. } \eta \geq f(x, y)
$$

$$
\pi^{T} \hat{x}>\max _{x \in S}\left\{\pi^{T} x\right\}
$$

It's Actually Important!

- We want to approximate the convex hull of integer solutions, but without a linear objective function, the solution to the relaxation might occur in the interior.
- No Separating Hyperplane! :-(
$\min \left(y_{1}-1 / 2\right)^{2}+\left(y_{2}-1 / 2\right)^{2}$
s.t. $y_{1} \in\{0,1\}, y_{2} \in\{0,1\}$
$\eta \geq\left(y_{1}-1 / 2\right)^{2}+\left(y_{2}-1 / 2\right)^{2}$

Valid Inequalities From Relaxations

- Idea: Inequalities valid for a relaxation are valid for original
- Generating valid inequalities for a relaxation is often easier.

- Separation Problem over T: Given \hat{x}, T find $\left(\pi, \pi_{0}\right)$ such that $\pi^{T} \hat{x}>\pi_{0}$ $\pi^{T} x \leq \pi_{0} \forall x \in T$

Leyffer \& Linderoth nequalities

MINLP

MIIP Inequalities Applied to MINLP

- Idea: Consider one row relaxations
- If $P=\left\{x \in\{0,1\}^{n} \mid A x \leq b\right\}$, then for any row i, $P_{i}=\left\{x \in\{0,1\}^{n} \mid a_{i}^{T} x \leq b_{i}\right\}$ is a relaxation of P
- If the intersection of the relaxations is a good approximation to the true problem, then the inequalities will be quite useful. - Crowder et al. (1983) is the seminal paper that shows this to be true for IP.
- MINLP: Single (linear) row relaxations are also valid \Rightarrow same inequalities can also be used $P_{i}=\left\{x \in\{0,1\}^{n} \mid a_{i}^{T} x \leq b_{i}\right\}$ is a relaxation of P.

Simple Relaxations

Knapsack Covers

$$
K=\left\{x \in\{0,1\}^{n} \mid a^{T} x \leq b\right\}
$$

- A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_{j}>b$
- A cover C is a minimal cover if $C \backslash j$ is not a cover $\forall j \in C$
- If $C \subseteq N$ is a cover, then the cover inequality

$$
\sum_{j \in C} x_{j} \leq|C|-1
$$

is a valid inequality for S

- Sometimes (minimal) cover inequalities are facets of $\operatorname{conv}(K)$

Example

$K=\left\{x \in\{0,1\}^{7} \mid 11 x_{1}+6 x_{2}+6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6}+x_{7} \leq 19\right\}$
$L P(K)=\left\{x \in[0,1]^{7} \mid 11 x_{1}+6 x_{2}+6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6}+x_{7} \leq 19\right\}$

- $(1,1,1 / 3,0,0,0,0) \in L P(K)$
- CHOPPED OFF BY $x_{1}+x_{2}+x_{3} \leq 2$
- $(0,0,1,1,1,3 / 4,0) \in L P(K)$
- CHOPPED OFF BY $x_{3}+x_{4}+x_{5}+x_{6} \leq 3$

Other Substructures

- Single node flow: (Padberg et al., 1985)

$$
S=\left\{x \in \mathbb{R}_{+}^{|N|}, y \in\{0,1\}^{|N|} \mid \sum_{j \in N} x_{j} \leq b, x_{j} \leq u_{j} y_{j} \forall j \in N\right\}
$$

- Knapsack with single continuous variable: (Marchand and Wolsey, 1999)

$$
S=\left\{x \in \mathbb{R}_{+}, y \in\{0,1\}^{|N|} \mid \sum_{j \in N} a_{j} y_{j} \leq b+x\right\}
$$

- Set Packing: (Borndörfer and Weismantel, 2000)

$$
S=\left\{y \in\{0,1\}^{|N|} \mid A y \leq e\right\}
$$

$$
A \in\{0,1\}^{|M| \times|N|}, e=(1,1, \ldots, 1)^{T}
$$

Leyffer \& Linderoth ormulations Inequalities

MINLP
MILP Inequalities Applied to MINLP

Leyffer \& Linderoth Formulations
Inequalities Inequalities

MINLP
Preliminaries

Extension to MINLP (Çezik and lyengar, 2005)

- This simple idea also extends to mixed 0-1 conic programming

$$
\begin{cases}\underset{\operatorname{minimize}}{\operatorname{def}(x, y)} & f^{T} z \\ \text { subject to } & A z \succeq \mathcal{K} b \\ & y \in\{0,1\}^{p}, 0 \leq x \leq U\end{cases}
$$

- $\mathcal{K}:$ Homogeneous, self-dual, proper, convex cone
- $x \succeq_{\mathcal{K}} y \Leftrightarrow(x-y) \in \mathcal{K}$

Gomory On Cones (Çezik and lyengar, 2005)

- LP: $\mathcal{K}_{l}=\mathbb{R}_{+}^{n}$
- SOCP: $\mathcal{K}_{q}=\left\{\left(x_{0}, \bar{x}\right) \mid x_{0} \geq\|\bar{x}\|\right\}$
- SDP: $\mathcal{K}_{s}=\left\{x=\operatorname{vec}(X) \mid X=X^{T}, X\right.$ p.s.d $\}$
- Dual Cone: $\mathcal{K}^{*} \stackrel{\text { def }}{=}\left\{u \mid u^{T} z \geq 0 \forall z \in \mathcal{K}\right\}$
- Extension is clear from the following equivalence:

$$
A z \succeq \mathcal{K} b \Leftrightarrow u^{T} A z \geq u^{T} b \forall u \succeq_{\mathcal{K}^{*}} 0
$$

- Many classes of nonlinear inequalities can be represented as
$A x \succeq \mathcal{K}_{q} b$ or $A x \succeq \mathcal{K}_{s} b$
- Go to other SIAM Short Course to find out about Semidefinite Programming

Leyffer \& Linderoth
Formulations
Inequalities

MINLP

MILP Inequalities Applied to MINLP

Leyffer \& Linderoth
Formulations
Inequalities

It's So Easy, Even I Can Do It

Proof:

- $N_{1}=\left\{j \in N \mid f_{j} \leq f\right\}$
- $N_{2}=N \backslash N_{1}$
- Let

$$
\begin{aligned}
& P=\left\{(x, y) \in \mathbb{R}_{+}^{2} \times \mathbb{Z}^{|N|} \mid\right. \\
& \left.\sum_{j \in N_{1}}\left\lfloor a_{j}\right\rfloor y_{j}+\sum_{j \in N_{2}}\left\lceil a_{j}\right\rceil y_{y} \leq b+x^{-}+\sum_{j \in N_{2}}\left(1-f_{j}\right) y_{j}\right\}
\end{aligned}
$$

1. Show $X \subseteq P$
2. Show simple (2-variable) MIR inequality is valid for P (with an appropriate variable substitution).
3. Collect the terms

MINLP

Preliminaries
MILP Inequalities Apolied to MINLP
is valid for X_{2}

- $f_{j} \stackrel{\text { def }}{=} a_{j}-\left\lfloor a_{j}\right\rfloor,(t) \stackrel{\text { def }}{=} \max (t, 0)$
- X is a one-row relaxation of a general mixed integer program
- Continuous variables aggregated into two: x^{+}, x^{-}

Mixed Integer Rounding-MIR

Almost everything comes from considering the following very simple set, and observation.

- $X=\{(x, y) \in \mathbb{R} \times \mathbb{Z} \mid y \leq b+x\}$
- $f=b-\lfloor b\rfloor$: fractional
- NLP People are silly and use f for the objective function
- $L P(X)$
- $\operatorname{conv}(X)$
- $y \leq\lfloor b\rfloor+\frac{1}{1-f} x$ is a valid

Extension of MIR

$$
X_{2}=\left\{\left(x^{+}, x^{-}, y\right) \in \mathbb{R}_{+}^{2} \times \mathbb{Z}^{|N|} \mid \sum_{j \in N} a_{j} y_{j}+x^{+} \leq b+x^{-}\right\}
$$

- The inequality

$$
\sum_{j \in N}\left(\left\lfloor\left(a_{j}\right)\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f}\right) y_{j} \leq\lfloor b\rfloor+\frac{x^{-}}{1-f}
$$

Gomory Mixed Integer Cut is a MIR Inequality

- Consider the set

$$
X^{=}=\left\{\left(x^{+}, x^{-}, y_{0}, y\right) \in \mathbb{R}_{+}^{2} \times \mathbb{Z} \times \mathbb{Z}_{+}^{|N|} \mid y_{0}+\sum_{j \in N} a_{j} y_{j}+x^{+}-x^{-}\right.
$$

which is essentially the row of an LP tableau

- Relax the equality to an inequality and apply MIR
- Gomory Mixed Integer Cut:

$$
\sum_{j \in N_{1}} f_{j} y_{j}+x^{+}+\frac{f}{1-f} x^{-}+\sum_{j \in N_{2}}\left(f_{j}-\frac{f_{j}-f}{1-f}\right) y_{j} \geq f
$$

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

- LP/NLP Based Branch-and-Bound solves MILP instances:

$$
\begin{array}{cll}
\underset{\substack{\text { dinimize } \\
z \xlongequal{\text { def }}(x, y), \eta}}{\operatorname{subject~to~}} & \eta & \\
& \eta \geq f_{j}+\nabla f_{j}^{T}\left(z-z_{j}\right) \quad \forall y_{j} \in Y^{k} \\
& 0 \geq c_{j}+\nabla c_{j}^{T}\left(z-z_{j}\right) & \forall y_{j} \in Y^{k} \\
& x \in X, y \in Y \text { integer } &
\end{array}
$$

- Create Gomory mixed integer cuts from

$$
\begin{aligned}
& \eta \geq f_{j}+\nabla f_{j}^{T} z-z_{j} \\
& 0 \geq c_{j}+\nabla c_{j}^{T}\left(z-z_{j}\right)
\end{aligned}
$$

- Akrotirianakis et al. (2001) shows modest improvements
- Research Question: Other cut classes?
- Research Question: Exploit "outer approximation" property?

Leyffer \& Linderoth Ormulations Inequalities

MINLP

LP Inequalities App

Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)
Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993)

Continuous relaxation ($z \stackrel{\text { def }}{=}(x, y)$)

- $C \stackrel{\text { def }}{=}\{z \mid c(z) \leq 0,0 \leq y \leq 1,0 \leq x \leq U\}$
- $\mathcal{C} \xlongequal{\text { def }} \operatorname{conv}\left(\left\{x \in C \mid y \in\{0,1\}^{p}\right\}\right)$
- $C_{j}^{0 / 1} \stackrel{\text { def }}{=}\left\{z \in C \mid y_{j}=0 / 1\right\}$

$$
\text { let } \mathcal{M}_{j}(C) \stackrel{\text { def }}{=}\left\{\begin{array}{l}
z=\lambda_{0} u_{0}+\lambda_{1} u_{1} \\
\lambda_{0}+\lambda_{1}=1, \lambda_{0}, \lambda_{1} \geq 0 \\
u_{0} \in C_{j}^{0}, u_{1} \in C_{j}^{1}
\end{array}\right\}
$$

$\Rightarrow \mathcal{P}_{j}(C):=$ projection of $\mathcal{M}_{j}(C)$ onto z
$\Rightarrow \mathcal{P}_{j}(C)=\operatorname{conv}\left(C \cap y_{j} \in\{0,1\}\right)$ and $\mathcal{P}_{1 \ldots p}(C)=\mathcal{C}$

Leyfier \& Linderoth
Formulations
Inequalities

Disjunctive Cuts: Example

$$
\underset{x, y}{\operatorname{minimize}}\left\{x \mid(x-1 / 2)^{2}+(y-3 / 4)^{2} \leq 1,-2 \leq x \leq 2, y \in\{0,1\}\right\}
$$

$$
z^{*} \stackrel{\text { def }}{=} \arg \min \|z-\hat{z}\|
$$

$$
\hat{z}=(\hat{x}, \hat{y})
$$

$$
\text { s.t. } \lambda_{0} u_{0}+\lambda_{1} u_{1}=z
$$

$$
\begin{aligned}
\lambda_{0}+\lambda_{1} & =1 \\
\binom{-0.16}{0} \leq u_{0} & \leq\binom{ 0.66}{1} \\
\binom{-0.47}{0} \leq u_{1} & \leq\binom{ 1.47}{1} \\
\lambda_{0}, \lambda_{1} & \geq 0
\end{aligned}
$$

NONCONVEX

- Look at the perspective of $c(z)$, which gives a convex reformulation of $\mathcal{M}_{j}(C)$: $\mathcal{M}_{j}(\tilde{C})$, where

$$
\tilde{C}:=\left\{\begin{array}{l|l}
(z, \mu) & \begin{array}{l}
\mu c_{i}(z / \mu) \leq 0 \\
0 \leq \mu \leq 1 \\
0 \leq x \leq \mu U, 0 \leq y \leq \mu
\end{array}
\end{array}\right\}
$$

- $c(0 / 0)=0 \Rightarrow$ convex representation

Leyffer \& Linderoth

 FormulationsInequalities

MINLP

Disjunctive Inequalities

MINLP

Example, cont.

$\tilde{C}=\left\{\left(\begin{array}{l}x \\ y \\ \mu\end{array}\right) \left\lvert\, \begin{array}{c}\mu\left[(x / \mu-1 / 2)^{2}+(y / \mu-3 / 4)^{2}-1\right] \leq 0 \\ -2 \mu \leq x \leq 2 \mu \\ 0 \leq y \leq \mu \\ x\end{array}\right.\right\}$

Disjunctive Cuts Example

$$
\tilde{C}_{j}^{0}=\left\{(z, \lambda) \mid y_{j}=0\right\} \quad \tilde{C}_{j}^{1}=\left\{(z, \lambda) \mid y_{j}=\lambda\right\}
$$

$$
\min \|z-\hat{z}\|
$$

Solution to example:
s.t. $v_{0}+v_{1}=z$

$$
\begin{aligned}
\lambda_{0}+\lambda_{1} & =1 \\
\left(v_{0}, \lambda_{0}\right) & \in \tilde{C}_{j}^{0} \\
\left(v_{0}, \lambda_{1}\right) & \in \tilde{C}_{j}^{1} \\
\lambda_{0}, \lambda_{1} & \geq 1
\end{aligned}
$$

$$
\binom{x^{*}}{y^{*}}=\binom{-0.401}{0.780}
$$

- separating hyperplane: $\psi^{T}(z-\hat{z})$, where $\psi \in \partial\|z-\hat{z}\|$

- Can do this at all nodes of the branch-and-bound tree
- Generalize disjunctive approach from MILP
- solve one convex NLP per cut
- Generalizes Sherali and Adams (1990) and Lovász and Schrijver (1991)
- tighten cuts by adding semi-definite constraint
- Stubbs and Mehrohtra (2002) also show how to generate convex quadratic inequalities, but computational results are not that promising

Leyffer \& Linderoth
Formulations
Inequalities

Inequalities

MINLP

$$
\begin{aligned}
& x=v_{i 1}+v_{i 0}, \quad \lambda_{i 1}+\lambda_{i 0}=1 \\
& \lambda_{i 1} c_{i}\left(v_{i 1} / \lambda_{i 1}\right) \leq 0, \quad \quad B_{i} v_{i 0}=0 \\
& 0 \leq v_{i j} \leq \lambda_{i j} U, \quad 0 \leq \lambda_{i j} \leq 1, \quad f_{i}=\lambda_{i 1} \gamma_{i}
\end{aligned}
$$

Disjunctive Programming [Grossmann]

Consider disjunctive NLP

$$
\begin{cases}\underset{x, Y}{\operatorname{minimize}} & \sum f_{i}+f(x) \\
\text { subject to } & {\left[\begin{array}{c}
Y_{i} \\
c_{i}(x) \leq 0 \\
f_{i}=\gamma_{i}
\end{array}\right] \vee\left[\begin{array}{c}
\neg Y_{i} \\
B_{i} x=0 \\
f_{i}=0
\end{array}\right] \forall i \in I} \\
& 0 \leq x \leq U, \Omega(Y)=\text { true, } Y \in\{\text { true, false }\}^{p}\end{cases}
$$

convex hull representation ...
$\left[\begin{array}{c}Y_{1} \\ x_{1}^{2}+x_{2}^{2} \leq 1\end{array}\right]$
$\vee\left[\begin{array}{c}Y_{2} \\ \left(x_{1}-4\right)^{2}+\left(x_{2}-1\right)^{2} \leq 1\end{array}\right]$
$\vee\left[\begin{array}{c}Y_{3} \\ \left(x_{1}-2\right)^{2}+\left(x_{2}-4\right)^{2} \leq 1\end{array}\right]$

\Rightarrow

- Functional nonconvexity causes serious problems.
- Branch and bound must have true lower bound (global solution)
- Underestimate nonconvex functions. Solve relaxation. Provides lower bound.
- If relaxation is not exact, then branch

- If nonconvexity in constraints, may need to overestimate and underestimate the function to get a convex region

Leyffer \& Linderoth Formulations Inequalities

Dealing with Nonconvexity

MINLP Difficulties
 Envelopes Using Enve

$$
f: \Omega \rightarrow \mathbb{R}
$$

- Convex Envelope ($\operatorname{vex}_{\Omega}(f)$): Pointwise supremum of Pointwise supremum of
convex underestimators of f over Ω.
- Concave Envelope ($\operatorname{cav}_{\Omega}(f)$): Pointwise infimum of concave overestimators of f over Ω.
Envelopes

Leyffer \& Linderoth
Formulations
Inequalities

MINLP

Envelopes

Bilinear Terms

The convex and concave envelopes of the bilinear function $x y$ over a rectangular region

$$
R \stackrel{\text { def }}{=}\left\{(x, y) \in \mathbb{R}^{2} \mid l_{x} \leq x \leq u_{x}, l_{y} \leq y \leq u_{y}\right\}
$$

are given by the expressions

$$
\begin{aligned}
& \operatorname{vexxy}_{R}(x, y)=\max \left\{l_{y} x+l_{x} y-l_{x} l_{y}, u_{y} x+u_{x} y-u_{x} u_{y}\right\} \\
& \operatorname{cavxy}_{R}(x, y)=\min \left\{u_{y} x+l_{x} y-l_{x} u_{y}, l_{y} x+u_{x} y-u_{x} l_{y}\right\}
\end{aligned}
$$

Worth 1000 Words?

Branch-and-Bound Global Optimization Methods

- Under/Overestimate "simple" parts of (Factorable) Functions individually
- Bilinear Terms
- Trilinear Terms
- Fractional Terms
- Univariate convex/concave terms
- General nonconvex functions $f(x)$ can be underestimated over a region $[l, u]$ "overpowering" the function with a quadratic function that is ≤ 0 on the region of interest

$$
\mathcal{L}(x)=f(x)+\sum_{i=1}^{n} \alpha_{i}\left(l_{i}-x_{i}\right)\left(u_{i}-x_{i}\right)
$$

Refs: (McCormick, 1976; Adjiman et al., 1998; Tawarmalani and Sahinidis, 2002)

Leyffer \& Linderoth
Formulations
Inequalities
Inequalities

Summary

- MINLP: Good relaxations are important
- Relaxations can be improved
- Statically: Better formulation/preprocessing
- Dynamically: Cutting planes
- Nonconvex MINLP:
- Methods exist, again based on relaxations
- Tight relaxations is an active area of research
- Lots of empirical questions remain

$$
\begin{array}{rlrl}
\min z & & \\
\text { s.t. }(w, x) & \in P & \min \sum_{i=1}^{n} z_{i} & \\
0 & \leq z & \text { s.t. }(w, x) & \in P \\
\left(\sum_{i=1}^{n} c_{i} u_{i}\right) w+v\left(\sum_{i=1}^{n} c_{i} x_{i}\right) & & \leq z_{i} \quad \forall i \\
-v\left(\sum_{i=1}^{n} c_{i} u_{i}\right) & \leq 0 & c_{i} u_{i} w+v c_{i} x_{i} & \\
-v c_{i} u_{i} & \leq 0 \quad \forall i
\end{array}
$$

1. Special Ordered Sets
2. Parallel BB and Grid Computing
3. Implementation \& Software Issues

Special Ordered Sets of Type 1

SOS1: $\sum \lambda_{i}=1 \&$ at most one λ_{i} is nonzero

Example 1: $d \in\left\{d_{1}, \ldots, d_{p}\right\}$ discrete diameters
$\Leftrightarrow d=\sum \lambda_{i} d_{i}$ and $\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ is SOS1
$\Leftrightarrow d=\sum \lambda_{i} d_{i}$ and $\sum \lambda_{i}=1$ and $\lambda_{i} \in\{0,1\}$
$\ldots d$ is convex combination with coefficients λ_{i}
Example 2: nonlinear function $c(y)$ of single integer
$\Leftrightarrow y=\sum i \lambda_{i}$ and $c=\sum c(i) \lambda_{i}$ and $\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ is SOS1
References: (Beale, 1979; Nemhauser, G.L. and Wolsey, L.A., 1988; Williams, 1993) ...

Leyffer \& Linderoth
Special Ordered Sets
Parallel BB and Grid Computit
Parallel BB and Grid Computing
Implementation \& Software Issues

Special Ordered Sets of Type 1

SOS1: $\sum \lambda_{i}=1 \&$ at most one λ_{i} is nonzero

Branching on SOS1

1. reference row $a_{1}<\ldots<a_{p}$ e.g. diameters
2. fractionality: $a:=\sum a_{i} \lambda_{i}$
3. find $t: a_{t}<a \leq a_{t+1}$
4. branch: $\left\{\lambda_{t+1}, \ldots, \lambda_{p}\right\}=0$ or $\left\{\lambda_{1}, \ldots, \lambda_{t}\right\}=0$

$a \leqslant a_{t}$

$$
a \geqslant a_{t+1}
$$

Special Ordered Sets of Type 2

SOS2: $\sum \lambda_{i}=1 \&$ at most two adjacent λ_{i} nonzero

Example: Approximation of nonlinear function $z=z(x)$

... convex combination of two breakpoints ..

Special Ordered Sets of Type 2

SOS2: $\sum \lambda_{i}=1 \&$ at most two adjacent λ_{i} nonzero

Branching on SOS2

1. reference row $a_{1}<\ldots<a_{p}$ e.g. $a_{i}=x_{i}$
2. fractionality: $a:=\sum a_{i} \lambda_{i}$
3. find t : $a_{t}<a \leq a_{t+1}$
4. branch: $\left\{\lambda_{t+1}, \ldots, \lambda_{p}\right\}=0$ or $\left\{\lambda_{1}, \ldots, \lambda_{t-1}\right\}$

$x<a_{t}$

Leyffer \& Linderoth
 Special Ordered Sets
 Parallel BB and Grid Computits Implementation \& Software lssues

Special Ordered Sets of Type 2 Special Ordered Sets of Type 3

Leyffer \& Linderoth

Special Ordered Sets
 Parallel BB and Grid Computing Implementation \& Software Issues

MINLP

Special Ordered Sets of Type 2
Special Ordered Sets of Type 3

Special Ordered Sets of Type 3

SOS3: $\sum \lambda_{i j}=1 \&$ set condition holds

1. $v=\sum \lambda_{i j} v_{i} \ldots$ convex combinations
2. $w=\sum \lambda_{i j} w_{j}$
3. $u=\sum \lambda_{i j} u_{i j}$
$\left\{\lambda_{11}, \ldots, \lambda_{k l}\right\}$ satisfies set condition
$\Leftrightarrow \exists$ trangle $\Delta:\left\{(i, j): \lambda_{i j}>0\right\} \subset \Delta$

i.e. nonzeros in single triangle Δ

Branching on SOS3

λ violates set condition

- compute centers:
$\hat{v}=\sum \lambda_{i j} v_{i} \&$
$\hat{w}=\sum \lambda_{i j} w_{i}$
- find s, t such that $v_{s} \leq \hat{v}<v_{s+1} \&$

$$
w_{s} \leq \hat{w}<w_{s+1}
$$

= center of gravity
vertical branching: $\quad \sum_{L} \lambda_{i j}=0 \quad \sum_{R} \lambda_{i j}=0$ horizontal branching: $\quad \sum_{T} \lambda_{i j}=0 \quad \sum_{B} \lambda_{i j}=0$

Branching on SOS3

Example: gas network from first lecture

- pressure loss p across pipe is related to flow rate f as

$$
p_{\text {in }}^{2}-p_{o u t}^{2}=\Psi^{-1} \operatorname{sign}(f) f \Leftrightarrow p_{\text {in }}=\sqrt{p_{o u t}^{2}+\Psi^{-1} \operatorname{sign}(f) f}
$$

where Ψ : "Friction Factor"

- nonconvex equation $u=g(v, w)$
....assume pressures needed elsewhere
- (Martin et al., 2005) use SOS3 model
...study polyhedral properties
...solve medium sized problem

Parallel Branch-and-Bound

First Strategy: 1 worker $\equiv 1$ NLP \Rightarrow grain-size too small ... NLPs solve in seconds

New Strategy:

1 worker $\equiv 1$ subtree (MINLP)
... "streamers" running down tree

Parallel Branch-and-Bound

Trimloss optimization with 56 general integers
\Rightarrow solve 96,408 MINLPs on 62.7 workers
$\Rightarrow 600,518,018$ NLPs

Wall clock time $=15.5$ hours
Cumulative worker CPU time $=752.7$ hours $\simeq 31$ days

$$
\text { efficiency }:=\frac{\text { work-time }}{\text { work } \times \text { job-time }}=\frac{752.7}{62.7 \times 15.5}=80.5
$$

... proportion of time workers were busy

Parallel Branch-and-Bound: Results

Detecting Infeasibility

NLP node inconsistent (BB, OA, GBD)
\Rightarrow NLP solver must prove infeasibility
\Rightarrow solve feasibility problem: restoration

$$
(F) \begin{cases}\underset{x, y}{\operatorname{minimize}} & \left\|c^{+}(x, y)\right\| \\ \text { subject to } & x \in X, y \in \hat{Y}\end{cases}
$$

where $c^{+}(x, y)=\max (c(x, y), 0)$ and $\|\|$ any norm
If \exists solution (\hat{x}, \hat{y}) such that $\left\|c^{+}(\hat{x}, \hat{y})\right\|>0$
\Rightarrow no feasible point (if convex) in neighborhood (if nonconvex)

Feasibility Cuts for OA et al.

Geometry of Feasibility Cuts

$\hat{Y}=\{\hat{y}\}$ singleton $\& c(c, y)$ convex
(\hat{x}, \hat{y}) solves $F(\hat{y})$ with $\left\|c^{+}(\hat{x}, \hat{y})\right\|>0$
\Rightarrow valid cut to eliminate \hat{y} given by

$$
0 \geq c^{+}(\hat{x}, \hat{y})+\hat{\gamma}^{T}\binom{x-\hat{x}}{y-\hat{y}}
$$

where $\hat{\gamma} \in \partial\left\|c^{+}(\hat{x}, \hat{y})\right\|$ subdifferential
Polyhedral norms: $\hat{\gamma}=\nabla \hat{c} \lambda$ where

1. ℓ_{∞} norm: $\sum \lambda_{i}=1$, and $0 \leq \lambda_{i} \perp \hat{c}_{i} \leq\left\|\hat{c}^{+}\right\|$
2. ℓ_{1} norm: $0 \leq \lambda_{i} \leq 1 \perp \hat{c}_{i}$
$\ldots \lambda$ multipliers of equivalent smooth NLP ... easy exercise

$y=3$ infeasible
solution to feasibility problem feasibility cuts for OA

Infeasibility in Branch-and-Bound

FilterSQP restoration phase

- satisfiable constraints: $J:=\left\{j: c_{j}(\hat{x}, \hat{y}) \leq 0\right.$
- violated constraints J^{\perp} (complement of J)

$$
\left\{\begin{array}{ll}
\underset{x, y}{\operatorname{minimize}} & \sum_{j \in J^{\perp}} c_{j}(x, y) \\
\text { subject to } & c_{j}(x, y) \leq 0 \\
& x \in X, y \in \hat{Y}
\end{array} \quad \forall j \in J\right.
$$

- filter SQP algorithm on $\left\|c_{J}^{+}\right\|$and $\left\|c_{J \perp}^{+}\right\|$ \Rightarrow 2nd order convergence
- adaptively change J
- similar to ℓ_{1}-norm, but $\lambda_{i} \not \subset 1$

Leyffer \& Linderoth
Paralle Special Ordered Set
Parallel BB and Grid Computing
Implementation \& Software Issues
MINLP
Detecting Infeasibility
Choice of NLP Solver

Choice of NLP Solver

MILP/MIQP branch-and-bound

- (\hat{x}, \hat{y}) solution to parent node
- new bound: $y_{i} \geq\left\lfloor\hat{y}_{i}\right\rfloor$ added to parent LP/QP
\Rightarrow dual active set method; (\hat{x}, \hat{y}) dual feasible
\Rightarrow fast re-optimization (MIQP 2-3 pivots!)
MILP exploit factorization of constraint basis
\Rightarrow no re-factorization, just updates
....also works for MIQP (KKT matrix factorization)
\Rightarrow interior-point methods not competitive
... how to check $\lambda_{i}>0$ for SOS branching ???

Choice of NLP Solver

MINLP branch-and-bound

- (\hat{x}, \hat{y}) solution to parent node
- new bound: $y_{i} \geq\left\lfloor\hat{y}_{i}\right\rfloor$ added to parent NLP

Snag: $\nabla c(x, y), \nabla^{2} \mathcal{L}$ etc. change...

- factorized KKT system at $\left(x^{k}, y^{k}\right)$ to find step $\left(d_{x}, d_{y}\right)$
- NLP solution:
$(\hat{x}, \hat{y})=\left(x^{k+1}, y^{k+1}\right)=\left(x^{k}+\alpha d_{x}, y^{k}+\alpha d_{y}\right)$
but KKT system at $\left(x^{k+1}, y^{k+1}\right)$ never factorized
. SQP methods take 2-3 iterations (good active set)

Outer Approximation et al.

no good warm start (y changes too much)
\Rightarrow interior-point methods or SQP can be used

Software for MINLP

- Outer Approximation: DICOPT++
- Branch-and-Bound Solvers: SBB \& MINLP
- Global MINLP: BARON \& MINOPT
- Online Tools: MINLP World, MacMINLP \& NEOS

Outer Approximation: DICOPT++

Outer approximation with equality relaxation \& penalty
Reference: (Kocis and Grossmann, 1989)

Features

- GAMS interface
- NLP solvers: CONOPT, MINOS, SNOPT
- MILP solvers: CPLEX, OSL2
- solve root NLP, or $\operatorname{NLP}\left(y^{0}\right)$ initially
- relax linearizations of nonlinear equalities:
λ_{i} multiplier of $c_{i}(z)=0 \ldots$

$$
c_{i}(\hat{z})+\nabla c_{i}(\hat{z})^{T}(z-\hat{z}) \begin{cases}\geq 0 & \text { if } \lambda_{i}>0 \\ \leq 0 & \text { if } \lambda_{i}<0\end{cases}
$$

- heuristic stopping rule: STOP if $\operatorname{NLP}\left(y^{j}\right)$ gets worse AIMMS has version of outer approximation

SBB: (Bussieck and Drud, 2000)

Features:

- GAMS branch-and-bound solver
- variable types: integer, binary, SOS1, SOS2, semi-integer
- variable selection: integrality, pseudo-costs
- node selection: depth-first, best bound, best estimate
- multiple NLP solvers: CONOPT, MINOS, SNOPT \Rightarrow multiple solves if NLP fails

Comparison to DICOPT (OA):

- DICOPT better, if combinatorial part dominates
- SBB better, if difficult nonlinearities

MINLPBB: (Leyffer, 1998)

Features

- AMPL branch-and-bound solver
- variable types: integer, binary, SOS1
- variable selection: integrality, priorities
- node selection: depth-first \& best bound after infeasible node
- NLP solver: filterSQP \Rightarrow feasibility restoration
- CUTEr interface available

Global MINLP Solvers

α-BB \& MINOPT: (Schweiger and Floudas, 1998)

- problem classes: MINLP, DAE, optimal control, etc
- multiple solvers: OA, GBD, MINOS, CPLEX
- own modeling language

BARON: (Sahinidis, 2000)

- global optimization from underestimators \& branching
- range reduction important
- classes of underestimators \& factorable NLP exception: cannot handle $\sin (x), \cos (x)$
- CPLEX, MINOS, SNOPT, OSL
- mixed integer semi-definite optimization: SDPA

Leyffer \& Linderoth	MINLP	Leyffer \& Linderoth	MINLP
Special Ordered Sets Parallel BB and Grid Computing Implementation \& Software Issues	Detecting Infeasibility Choice of NLP Solver MINLP Software	Special Ordered Sets Parallel BB and Grid Computing Implementation \& Software Issues	Detecting Infeasibility Choice of NLP Solver MINLP Software

Online Tools

Model Libraries

- MINLP World www.gamsworld.org/minlp/ scalar GAMS models ... difficult to read
- GAMS library www.gams.com/modlib/modlib.htm
- MacMINLP www.mcs.anl.gov/~leyffer/macminlp/ AMPL models

NEOS Server

- MINLP solvers: SBB (GAMS), MINLPBB (AMPL)
- MIQP solvers: FORTMP, XPRESS

COIN-OR

- COmputational INfrastructure for Operations Research
- A library of (interoperable) software tools for optimization
- A development platform for open source projects in the OR community
- Possibly Relevant Modules:
- OSI: Open Solver Interface
- CGL: Cut Generation Library
- CLP: Coin Linear Programming Toolkit
- CBC: Coin Branch and Cut
- IPOPT: Interior Point OPTimizer for NLP
- NLPAPI: NonLinear Programming API

Conclusions

MINLP rich modeling paradigm

- most popular solver on NEOS

Algorithms for MINLP:

- Branch-and-bound (branch-and-cut)
- Outer approximation et al.
"MINLP solvers lag 15 years behind MIP solvers"

Part V

\Rightarrow many research opportunities!!!
C. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization method, aBB, for general twice-differentiable constrained NLPs - I. Theoretical advances. Computers and Chemical Engineering, 22:1137-1158, 1998.
I. Akrotirianakis, I. Maros, and B. Rustem. An outer approximation based branch-and-cut algorithm for convex 0-1 MINLP problems. Optimization Methods and Software, 16:21-47, 2001.
E. Balas. Disjunctive programming. In Annals of Discrete Mathematics 5: Discrete Optimization, pages 3-51. North Holland, 1979.
E. Balas, S. Ceria, and G. Corneujols. A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming, 58:295-324, 1993.
E. M. L. Beale. Branch-and-bound methods for mathematical programming systems. Annals of Discrete Mathematics, 5:201-219, 1979.
B. Borchers and J. E. Mitchell. An improved branch and bound algorithm for Mixed Integer Nonlinear Programming. Computers and Operations Research, 21(4): 359-367, 1994.
R. Borndörfer and R. Weismantel. Set packing relaxations of some integer programs. Mathematical Programming, 88:425-450, 2000
M. R. Bussieck and A. Drud. SBB: A new solver for mixed integer nonlinear programming. In Recent Advances in Nonlinear Mixed Integer Optimization INFORMS Fall, 2000. Invited talk.
M. T. Çezik and G. Iyengar. Cuts for mixed 0-1 conic programming. Mathematical Programming, 2005. to appear.
G. R. Kocis and I. E. Grossmann. Computational experience with DICOPT solving MINLP problems in process systems engineering. Computers and Chemical Engineering, 13(3):307-315, 1989.
S. Leyffer. User manual for MINLP_BB. University of Dundee, 1998.
S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Computational Optimization \& Applications, 18:295-309, 2001.
L. Lovász and A. Schrijver. Cones of matrices and setfunctions, and 0-1 optimization. SIAM Journal on Optimization, 1, 1991.
H. Marchand and L. Wolsey. The 0-1 knapsack problem with a single continuous variable. Mathematical Programming, 85:15-33, 1999.
A. Martin, M. Möller, and S. Moritz. Mixed integer models for the stationary case of gas network optimization. Technical report, Darmstadt University of Technology, 2005.
G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I-Convex underestimating problems. Mathematical Programming, 10:147-175, 1976.
Nemhauser, G.L. and Wolsey, L.A. Integer and Combinatorial Optimization. John Wiley, New York, 1988.
M. Padberg, T. J. Van Roy, and L. Wolsey. Valid linear inequalities for fixed charge problems. Operations Research, 33:842-861, 1985.
I. Quesada and I. E. Grossmann. An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Computers and Chemical Engineering, 16: 937-947, 1992.

Quist, A.J. Application of Mathematical Optimization Techniques to Nuclear Reactor Reload Pattern Design. PhD thesis, Technische Universiteit Delft, Thomas Stieltjes Institute for Mathematics, The Netherlands, 2000.
N. V. Sahinidis. BARON: Branch and reduce optimization navigator. Technical report, University of Illinois at Urbana-Champaign, Department of Chemical Engineering, 2000.
C. A. Schweiger and C. A. Floudas. MINOPT: A modeling language and algorithmic framework for linear, mixed-integer, nonlinear, dynamic, and mixed-integer nonlinear optimization. Technical report, Department of Chemical Engineering, Princeton University, 1998.
H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3:411-430, 1990.
O. Sigmund. A 99 line topology optimization code written in matlab. Structural Multidisciplinary Optimization, 21:120-127, 2001.
R. Stubbs and S. Mehrohtra. Generating convex polynomial inequalities for mixed 0-1 programs. Journal of Global Optimization, 24:311-332, 2002.
R. A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex programming. Mathematical Programming, 86:515-532, 1999.
M. Tawarmalani, S. Ahmed, and N. Sahinidis. Product disaggregation in global optimization and relaxations of rational programs. Optimization and Engineering, 3:281-303, 2002.

Leyffer \& Linderoth
 References

M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Boston MA, 2002.
J. Viswanathan and I. E. Grossmann. Optimal feed location and number of trays for distillation columns with multiple feeds. I\&EC Research, 32:2942-2949, 1993.
Westerlund, T. and Pettersson, F. An extended cutting plane method for solving convex MINLP problems. Computers and Chemical Engineering Supplement, 19: S131-S136, 1995. ESCAPE-95.
Westerlund, T., Isaksson, J. and Harjunkoski, I. Solving a production optimization problem in the paper industry. Report 95-146-A, Department of Chemical Engineering, Abo Akademi, Abo, Finland, 1995.
Westerlund, T., Pettersson, F. and Grossmann, I.E. Optimization of pump configurations as MINLP problem. Computers \& Chemical Engineering, 18(9): 845-858, 1994.
H. P. Williams. Model Solving in Mathematical Programming. John Wiley \& Sons Ltd., Chichester, 1993.

[^0]: ${ }^{\text {a }}$ in Dantzig's words "a huge whale of a

