
Overview

MINLP Short Course Overview

1. Introduction, Applications, and Formulations

2. Classical Solution Methods

3. Modern Developments in MINLP

4. Implementation and Software

Today you will be “treated” to a draft of Part III.
(Maybe a little bit of II.)
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Part I

Introduction, Applications, and Formulations
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What
How
Why?

The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)
minimize

x,y
f(x, y)

subject to c(x, y) ≤ 0
x ∈ X, y ∈ Y integer

• f, c smooth (convex) functions

• X,Y polyhedral sets, e.g. Y = {y ∈ [0, 1]p | Ay ≤ b}
• y ∈ Y integer ⇒ hard problem

• f, c not convex ⇒ very hard problem
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Why the N?

An anecdote: July, 1948. A young and
frightened George Dantzig, presents his
newfangled “linear programming” to a
meeting of the Econometric Society of
Wisconsin, attended by distinguished
scientists like Hotelling, Koopmans, and
Von Neumann. Following the lecture,
Hotellinga pronounced to the audience:

But we all know the world is
nonlinear!

ain Dantzig’s words “a huge whale of a
man”

The world is indeed
nonlinear

• Physical Processes
and Properties

• Equilibrium
• Enthalpy

• Abstract Measures
• Economies of

Scale
• Covariance
• Utility of decisions
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Why the MI?

• We can use 0-1 (binary) variables for a variety of purposes
• Modeling yes/no decisions
• Enforcing disjunctions
• Enforcing logical conditions
• Modeling fixed costs
• Modeling piecewise linear functions

• If the variable is associated with a physical entity that is
indivisible, then it must be integer

1. Number of aircraft carriers to to produce. Gomory’s Initial
Motivation

2. Yearly number of trees to harvest in Norrland
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A Popular MINLP Method

Dantzig’s Two-Phase Method for MINLP Adapted by Leyffer and Linderoth

1. Convince the user that he or she does not wish to solve a
mixed integer nonlinear programming problem at all!

2. Otherwise, solve the continuous relaxation (NLP ) and round
off the minimizer to the nearest integer.

• Sometimes a continuous approximation to the discrete
(integer) decision is accurate enough for practical purposes.

• Yearly tree harvest in Norrland

• For 0− 1 problems, or those in which the |y| is “small”, the
continuous approximation to the discrete decision is not
accurate enough for practical purposes.

• Conclusion: MINLP methods must be studied!
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Example: Core Reload Operation (Quist, A.J., 2000)

• max. reactor efficiency after reload
subject to diffusion PDE & safety

• diffusion PDE ' nonlinear equation
⇒ integer & nonlinear model

• avoid reactor becoming
sub-criticaloverheated
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Example: Core Reload Operation (Quist, A.J., 2000)

• look for cycles for moving bundles:
e.g. 4 → 6 → 8 → 10
i.e. bundle moved from 4 to 6 ...

• model with binary xilm ∈ {0, 1}
xilm = 1
⇔ node i has bundle l of cycle m
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AMPL Model of Core Reload Operation

Exactly one bundle per node:

L∑
l=1

M∑
m=1

xilm = 1 ∀i ∈ I

AMPL model:
var x {I,L,M} binary ;
Bundle {i in I}: sum{l in L, m in M} x[i,l,m] = 1 ;

• Multiple Choice: One of the most common uses of IP

• Full AMPL model c-reload.mod at
www.mcs.anl.gov/∼leyffer/MacMINLP/
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Gas Transmission Problem (De Wolf and Smeers, 2000)

• Belgium has no gas!

• All natural gas is
imported from Norway,
Holland, or Algeria.

• Supply gas to all demand
points in a network in a
minimum cost fashion.

• Gas is pumped through
the network with a series
of compressors

• There are constraints on
the pressure of the gas
within the pipe
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Pressure Loss is Nonlinear

• Assume horizontal pipes and
steady state flows

• Pressure loss p across a pipe
is related to the flow rate f
as

p2
in − p2

out =
1

Ψ
sign(f)f2

• Ψ: “Friction Factor”
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Gas Transmission: Problem Input

• Network (N,A). A = Ap ∪Aa

• Aa: active arcs have compressor. Flow rate can increase on arc
• Ap: passive arcs simply conserve flow rate

• Ns ⊆ N : set of supply nodes

• ci, i ∈ Ns: Purchase cost of gas

• si, si: Lower and upper bounds on gas “supply” at node i

• p
i
, pi: Lower and upper bounds on gas pressure at node i

• si, i ∈ N : supply at node i.
• si > 0⇒ gas added to the network at node i
• si < 0⇒ gas removed from the network at node i to meet

demand

• fij , (i, j) ∈ A: flow along arc (i, j)
• f(i, j) > 0⇒ gas flows i→ j
• f(i, j) < 0⇒ gas flows j → i
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Gas Transmission Model

min
∑
j∈Ns

cjsj

subject to ∑
j|(i,j)∈A

fij −
∑

j|(j,i)∈A

fji = si ∀i ∈ N

sign(fij)f
2
ij −Ψij(p

2
i − p2

j ) = 0 ∀(i, j) ∈ Ap

sign(fij)f
2
ij −Ψij(p

2
i − p2

j ) ≥ 0 ∀(i, j) ∈ Aa

si ∈ [si, si] ∀i ∈ N
pi ∈ [p

i
, pi] ∀i ∈ N

fij ≥ 0 ∀(i, j) ∈ Aa
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Your First Modeling Trick

• Don’t include nonlinearities or nonconvexities unless necessary!

• Replace p2
i ← ρi

sign(fij)f
2
ij −Ψij(ρi − ρj) = 0 ∀(i, j) ∈ Ap

f2
ij −Ψij(ρi − ρj) ≥ 0 ∀(i, j) ∈ Aa

ρi ∈ [
√
p

i
,
√
pi] ∀i ∈ N

• This trick only works because

1. p2
i terms appear only in the bound constraints

2. Also fij ≥ 0 ∀(i, j) ∈ Aa

• This model is nonconvex: sign(fij)f
2
ij is a nonconvex function
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Dealing with sign(·): The NLP Way

• Use auxiliary binary variables to indicate direction of flow

• Let |fij | ≤ F ∀(i, j) ∈ Ap

zij =

{
1 fij ≥ 0 fij ≥ −F (1− zij)
0 fij ≤ 0 fij ≤ Fzij

• Note that
sign(fij) = 2zij − 1

• Write constraint as

(2zij − 1)f2
ij −Ψij(ρi − ρj) = 0.
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Dealing with sign(·): The MIP Way

Model

fij > 0⇒
{
f2

ij ≤ Ψij(ρi − ρj)

f2
ij ≥ Ψij(ρi − ρj)

fij < 0⇒
{
f2

ij ≤ Ψij(ρj − ρi)

f2
ij ≥ Ψij(ρj − ρi)

m ≤ f2
ij −Ψ(ρi − ρj) ≤M l ≤ f2

ij −Ψ(ρj − ρi) ≤ L

Example

fij > 0 ⇒ zij = 1 ⇒ f2
ij ≤ Ψ(ρi − ρj)

fij > 0 ⇒ zij = 1 ⇒ f2
ij ≤ Ψ(ρi − ρj)

fij > 0 ⇒ zij = 1 ⇒ f2
ij ≤ Ψ(ρi − ρj)

• fij ≤ Fzij
• f2

ij +Mzij ≤M + Ψij(ρi − ρj)

Leyffer & Linderoth MINLP



Motivation
Examples

Tricks

Gas Transmission
Portfolio Management
Batch Processing

Dealing with sign(·): The MIP Way

• Wonderful MIP Modeling reference is Williams (1993)

• If you put it all together you get...

• zij ∈ {0, 1}: Indicator if flow
is positive

• yij ∈ {0, 1}: Indicator if
flow is negative

fij ≤ Fzij
fij ≥ −Fyij

zij + yij = 1
f2

ij +Mzij ≤ M + Ψij(ρi − ρj)

f2
ij +mzij ≥ m+ Ψij(ρi − ρj)

f2
ij + Lyij ≤ L+ Ψij(ρj − ρi)

f2
ij + lyij ≥ l + Ψij(ρj − ρi)
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Special Ordered Sets

• Sven thinks the NLP way is better

• Jeff thinks the MIP way is better

• Neither way is how it is done in De Wolf and Smeers (2000).

• Heuristic for finding a good starting solution, then a local
optimization approach based on a piecewise-linear simplex
method

• Another (similar) approach involves approximating the
nonlinear function by piecewise linear segments, but searching
for the globally optimal solution: Special Ordered Sets of
Type 2

• If the “multidimensional” nonlinearity cannot be removed,
resort to Special Ordered Sets of Type 3
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Portfolio Management

• N : Universe of asset to purchase

• xi: Amount of asset i to hold

• B: Budget

min
x∈R|N|

+

{
u(x) |

∑
i∈N

xi = B

}

• Markowitz: u(x)
def
= −αTx+ λxTQx

• α: Expected returns
• Q: Variance-covariance matrix of expected returns
• λ: Risk aversion parameter
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More Realistic Models

• b ∈ R|N | of “benchmark” holdings

• Benchmark Tracking: u(x)
def
= (x− b)TQ(x− b)

• Constraint on E[Return]: αTx ≥ r
• Limit Names: |i ∈ N : xi > 0| ≤ K

• Use binary indicator variables to model the implication
xi > 0⇒ yi = 1

• Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N

•
∑

i∈N yi ≤ K
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Even More Models

• Min Holdings: (xi = 0) ∨ (xi ≥ m)
• Model implication: xi > 0⇒ xi ≥ m
• xi > 0⇒ yi = 1⇒ xi ≥ m
• xi ≤ Byi, xi ≥ myi ∀i ∈ N

• Round Lots: xi ∈ {kLi, k = 1, 2, . . .}
• xi − ziLi = 0, zi ∈ Z+ ∀i ∈ N

• Vector h of initial holdings

• Transactions: ti = |xi − hi|
• Turnover:

∑
i∈N ti ≤ ∆

• Transaction Costs:
∑

i∈N citi in objective

• Market Impact:
∑

i∈N γit
2
i in objective
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Making “Plays”

• Suppose that the stocks are partitioned into sectors
S1 ⊆ N,S2 ⊆ N, . . . SK ⊆ N

• The Fund Manager wants to invest all money into one sector
“play”

•
∑

i∈Sk
xi > 0⇒

∑
j∈N\Sk

xj = 0

• Modeling Choices:

• Aggregated:∑
i∈Sk

xi ≤ Bzk
∑

j∈N\Sk

xj +Bzk ≤ B

• Disaggregated:

xi ≤ uizi ∀i ∈ N xj + ujzi ≤ uj ∀j | i ∈ Sk, j 6∈ Sk

Which is better?: Part III has the answer
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Multiproduct Batch Plants (Kocis and

Grossmann, 1988)

• M : Batch Processing Stages

• N : Different Products

• H: Horizon Time

• Qi: Required quantity of product i

• tij : Processing time product i stage j

• Sij : “Size Factor” product i stage j

• Bi: Batch size of product i ∈ N
• Vj : Stage j size: Vj ≥ SijBi∀i, j
• Ci: Longest stage time for product i: Ci ≥ tij/Nj∀i, j
• Nj : Number of machines at stage j
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Multiproduct Batch Plants

min
∑
j∈M

αjNjV
βj

j

s.t.

Vj − SijBi ≥ 0 ∀i ∈ N,∀j ∈M
CiNj ≥ tij ∀i ∈ N,∀j ∈M∑

i∈N

Qi

Bi
Ci ≤ H

Bound Constraints on Vj , Ci, Bi, Nj

Nj ∈ Z ∀j ∈M
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Modeling Trick #2

• Horizon Time and Objective Function Nonconvex. :-(

• Sometimes variable transformations work!

vj = ln(Vj), nj = ln(Nj), bi = ln(Bi), ci = lnCi

min
∑
j∈M

αje
Nj+βjVj

s.t. vj − ln(Sij)bi ≥ 0 ∀i ∈ N,∀j ∈M
ci + nj ≥ ln(τij) ∀i ∈ N,∀j ∈M∑

i∈N

Qie
Ci−Bi ≤ H

(Transformed) Bound Constraints on Vj , Ci, Bi
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How to Handle the Integrality?

• But what to do about the integrality?

1 ≤ Nj ≤ N j ∀j ∈M,Nj ∈ Z ∀j ∈M

• nj ∈ {0, ln(2), ln(3), . . . ...}

Ykj =

{
1 nj takes value ln(k)
0 Otherwise

nj −
K∑

k=1

ln(k)Ykj = 0 ∀j ∈M

K∑
k=1

Ykj = 1 ∀j ∈M

• This model is available at http://www-unix.mcs.anl.gov/
∼leyffer/macminlp/problems/batch.mod
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MIQP: Modeling Tricks

• In 0-1 quadratic programming, we can always make quadratic
forms convex.

• Key: If y ∈ {0, 1}, then y = y2, so add a “large enough”
constant to the diagonal, and subtract it from the linear term:

• y ∈ {0, 1}n consider any quadratic

q(y) = yTQy + gT y
= yTWy + cT y

where W = Q+ λI and c = g − λe (e = (1, . . . , 1))

• If λ ≥(smallest eigenvalue of Q), then W � 0.
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A Small Smattering of Other Applications

• Chemical Engineering Applications:
• process synthesis (Kocis and Grossmann, 1988)
• batch plant design (Grossmann and Sargent, 1979)
• cyclic scheduling (Jain, V. and Grossmann, I.E., 1998)
• design of distillation columns (Viswanathan and Grossmann,

1993)
• pump configuration optimization (Westerlund, T., Pettersson,

F. and Grossmann, I.E., 1994)

• Forestry/Paper
• production (Westerlund, T., Isaksson, J. and Harjunkoski, I.,

1995)
• trimloss minimization (Harjunkoski, I., Westerlund, T., Pörn,

R. and Skrifvars, H., 1998)

• Topology Optimization (Sigmund, 2001)
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Part II

Classical Solution Methods
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Classical Solution Methods for MINLP

1. Classical Branch-and-Bound

2. Outer Approximation, Benders Decomposition et al.

3. Hybrid Methods
• LP/NLP Based Branch-and-Bound
• Integrating SQP with Branch-and-Bound
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Branch-and-Bound

Solve relaxed NLP (0 ≤ y ≤ 1 continuous relaxation)
. . . solution value provides lower bound

• Branch on yi non-integral

• Solve NLPs & branch until

1. Node infeasible ... •
2. Node integer feasible ... �
⇒ get upper bound (U)

3. Lower bound ≥ U ...
⊗

y  = 1

y  = 0
i

i

dominated 
by upper bound

infeasible

integer feasible
etc.

etc.

Search until no unexplored nodes on tree
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Convergence of Branch-and-Bound

y*=2.4

y

x
c(x)=0

y*
y<2 y>3

All NLP problems solved globally & finite number of NLPs on tree
⇒ Branch-and-Bound converges
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Variable Selection for Branch-and-Bound

Assume yi ∈ {0, 1} for simplicity ...
(x̂, ŷ) fractional solution to parent node; f̂ = f(x̂, ŷ)

1. user defined priorities
... branch on most important variable first

2. maximal fractional branching

max
i
{min(1− ŷi, ŷi)}

... find ŷi closest to 1
2 ⇒ largest change in problem
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Variable Selection for Branch-and-Bound

Assume yi ∈ {0, 1} for simplicity ...
(x̂, ŷ) fractional solution to parent node; f̂ = f(x̂, ŷ)

3. pseudo-cost branching
estimates e+i , e−i of change in f(x, y) after branching

max
i

{
min(f̂ + e+i (1− ŷi), f̂ + e−i ŷi)

}
... find yi, whose expected change of objective is largest
... estimate e+i , e−i by keeping track of

e+i =
f+

i − f̂
1− ŷi

and e−i =
f−i − f̂
ŷi

where f
+/−
i solution value after branching
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Variable Selection for Branch-and-Bound

Assume yi ∈ {0, 1} for simplicity ...
(x̂, ŷ) fractional solution to parent node; f̂ = f(x̂, ŷ)

4. strong branching: solve all NLP child nodes:

f
+/−
i ←


minimize

x,y
f(x, y)

subject to c(x, y) ≤ 0
x ∈ X, y ∈ Y, yi = 1/0

choose branching variable as

max
i

{
min(f+

i , f
−
i )

}
... find yi that changes objective the most
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Variable Selection for Branch-and-Bound

Assume yi ∈ {0, 1} for simplicity ...
(x̂, ŷ) fractional solution to parent node; f̂ = f(x̂, ŷ)

5. MIQP strong branching: (Fletcher and Leyffer, 1998)
parametric solution of QPs ... much cheaper than re-solve

• step of dual active set method

• factorization of KKT matrix

• ' multiple KKT solves

• generalizes old MILP ideas

x*

x−

step of the dual ASM

x’ solution of QP relaxation

x’

f = −2.75

f = −2.5556

21

1

2

x

x

1

2

f = −2.25
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Node Selection for Branch-and-Bound

Which node n on tree T should be solved next?

1. depth-first search
select deepest node in tree

• minimizes number of NLP nodes stored
• exploit warm-starts (MILP/MIQP only)

2. best lower bound
choose node with least value of parent node fp(n)

• minimizes number of NLPs solved
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Node Selection for Branch-and-Bound

Which node n on tree T should be solved next?

3. best estimate
choose node leading to best expected integer solution

max
n∈T

fp(n) +
∑

i:yifractional

min
{
e+i (1− yi), e

−
i yi

}
summing pseudo-cost estimates for all integers in subtree
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Outer Approximation (Duran and Grossmann, 1986)

Motivation: avoid solving huge number of NLPs
• Exploit MILP/NLP solvers: decompose integer/nonlinear part

Key idea: reformulate MINLP as MILP (implicit)
• Solve alternating sequence of MILP & NLP

NLP subproblem yj fixed:

NLP(yj)


minimize

x
f(x, yj)

subject to c(x, yj) ≤ 0
x ∈ X

Main Assumption: f , c are convex

(y )jNLP

MILP

Leyffer & Linderoth MINLP

Branch-and-Bound
Outer Approximation

Hybrid Methods

Definition
Convergence
Benders Decomposition

Outer Approximation (Duran and Grossmann, 1986)

• let (xj , yj) solve NLP(yj)
• linearize f , c about (xj , yj) =: zj
• new objective variable η ≥ f(x, y)
• MINLP (P ) ≡ MILP (M)

f(x)

η

(M)


minimize
z=(x,y),η

η

subject to η ≥ fj +∇fT
j (z − zj) ∀yj ∈ Y

0 ≥ cj +∇cTj (z − zj) ∀yj ∈ Y
x ∈ X, y ∈ Y integer

SNAG: need all yj ∈ Y linearizations
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Outer Approximation (Duran and Grossmann, 1986)

(Mk): lower bound (underestimate convex f , c)
NLP(yj): upper bound U (fixed yj)

NLP(   ) subproblemy
linearization
NLP gives

MILP finds
new y

MILP infeasible?

Yes

STOP

No

MILP master program

⇒ stop, if lower bound ≥ upper bound
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Convergence of Outer Approximation

Lemma: Each yi ∈ Y generated at most once.

Proof: Assume yi ∈ Y generated again at iteration j > i
⇒ ∃ x̂ such that (x̂, yi) feasible in (Mj):

η ≥ fi +∇xf
T
i (x̂− xi)

0 ≥ ci +∇xc
T
i (x̂− xi)

... because yi − yi = 0
Now sum with (1, λi) multipliers of NLP(yi)
⇒ η ≥ fi + (∇xfi +∇xciλi)

T (x̂− xi) ... KKT conditions
⇒ η ≥ fi contradicts η < U ≤ fi upper bound
⇒ each yi ∈ Y generated at most once �
Refs: (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)
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Convergence of Outer Approximation

1. each yi ∈ Y generated at most once
& |Y | <∞ ⇒ finite termination

2. convexity ⇒ outer approximation

⇒ convergence to global min

f(x)

η

Convexity important!!!
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Outer Approximation & Benders Decomposition

Take OA master ... z := (x, y) ... wlog X = Rn

(M)


minimize
z=(x,y),η

η

subject to η ≥ fj +∇fT
j (z − zj) ∀yj ∈ Y

0 ≥ cj +∇cTj (z − zj) ∀yj ∈ Y
y ∈ Y integer

sum constraints 0 ≥ cj ... weighted with multipliers λj ∀j

⇒ η ≥ fj + λT
j cj + (∇fj +∇cjλj)

T (z − zj) ∀yj ∈ Y

... is a valid inequality.
References: (Geoffrion, 1972)
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Outer Approximation & Benders Decomposition

Valid inequality from OA master; z = (x, y):

η ≥ fj + λT
j cj + (∇fj +∇cjλj)

T (z − zj)

use first order conditions of NLP(yj) ...

∇xfj +∇xcjλj = 0

... to eliminate x components from valid inequality in y

⇒ η ≥ fj + λT
j cj + (∇yfj +∇ycjλj)

T (y − yj)

⇔ η ≥ Lj + (µj)
T (y − yj)

where Lj = f(zj) + λT
j c(zj) Lagrangian ...

... µj = ∇yfj +∇ycjλj multiplier of y = yj in NLP(yj)
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Outer Approximation & Benders Decomposition

⇒ remove x from master problem ... Benders master problem

(MB)


minimize

y,η
η

subject to η ≥ Lj + (µj)
T (y − yj) ∀yj ∈ Y

y ∈ Y integer

where Lj Lagrangian & µj multiplier of y = yj in NLP(yj)

• (MB) has less constraints & variables (no x!)
• (MB) almost ILP (except for η)
• (MB) weaker than OA (from derivation)
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Extended Cutting Plane Method

Replace NLP(yi) solve in OA by
linearization about solution of (Mj)
get cutting plane for violated constraint
⇒ no NLP(yj) solves ...
... Kelley’s cutting plane method instead
⇒ slow nonlinear convergence:
> 1 evaluation per y

f(x)

η

References: (Westerlund, T. and Pettersson, F., 1995)
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Disadvantages of Outer Approximation

• MILP tree-search can be bottle-neck

• potentially large number of iterations

minimize (y − 1
2n )2

subject to y ∈ {0, 1
2n , . . . 1}

1/21/8
1/4

1

f(y) = ( y - 1/8 ) 2

Second order master (MIQP): (Fletcher and Leyffer, 1994):
• add Hessian term to MILP (Mi) becomes MIQP:

minimize η +
1

2
(z − zi)TW (z − zi) subject to . . .
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LP/NLP Based Branch-and-Bound

AIM: avoid re-solving MILP master (M)

• Consider MILP branch-and-bound

• interrupt MILP, when yj found
⇒ solve NLP(yj) get xj

• linearize f , c about (xj , yj)
⇒ add linearization to tree

• continue MILP tree-search

... until lower bound ≥ upper bound
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LP/NLP Based Branch-and-Bound

• need access to MILP solver ... call back
◦ exploit good MILP (branch-cut-price) solver
◦ (Akrotirianakis et al., 2001) use Gomory cuts in tree-search

• no commercial implementation of this idea

• preliminary results: order of magnitude faster than OA
◦ same number of NLPs, but only one MILP

• similar ideas for Benders & Extended Cutting Plane methods

References: (Quesada and Grossmann, 1992)
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Integrating SQP & Branch-and-Bound

AIM: Avoid solving NLP node to convergence.

Sequential Quadratic Programming (SQP)
→ solve sequence (QPk) at every node

(QPk)


minimize

d
fk +∇fT

k d+ 1
2d

THkd

subject to ck +∇cTk d ≤ 0
xk + dx ∈ X
yk + dy ∈ Ŷ .

Early branching:
After QP step choose non-integral yk+1

i , branch & continue SQP
References: (Borchers and Mitchell, 1994; Leyffer, 2001)
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Integrating SQP & Branch-and-Bound

SNAG: (QPk) not lower bound
⇒ no fathoming from upper bound

minimize
d

fk +∇fT
k d+ 1

2d
THkd

subject to ck +∇cTk d ≤ 0
xk + dx ∈ X
yk + dy ∈ Ŷ .

Remedy: Exploit OA underestimating property (Leyffer, 2001):

• add objective cut fk +∇fT
k d ≤ U − ε to (QPk)

• fathom node, if (QPk) inconsistent
⇒ converge for convex MINLP

NB: (QPk) inconsistent and trust-region active ⇒ do not fathom
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Comparison of Classical MINLP Techniques

Summary of numerical experience

1. Quadratic OA master: usually fewer iteration
MIQP harder to solve

2. NLP branch-and-bound faster than OA
... depends on MIP solver

3. LP/NLP-based-BB order of magnitude faster than OA
. . . also faster than B&B

4. Integrated SQP-B&B up to 3× faster than B&B
' number of QPs per node

5. ECP works well, if function/gradient evals expensive
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Modern Developments in MINLP
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Modern Methods for MINLP

1. Formulations
• Relaxations
• Good formulations: big M ′s and disaggregation

2. Cutting Planes
• Cuts from relaxations and special structures
• Cuts from integrality

3. Global methods
• Envelopes
• Methods
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Relaxations

• z(S)
def
= minx∈S f(x)

• z(T )
def
= minx∈T f(x)

S

T

• Independent of f, S, T :
z(T ) ≤ z(S)

• If x∗T = arg minx∈T f(x)

• And x∗T ∈ S, then

• x∗T = arg minx∈S f(x)
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A Pure Integer Program

z(S) = min{cTx : x ∈ S}, S = {x ∈ Zn
+ : Ax ≤ b}

S = {(x1, x2) ∈ Z2
+ : 6x1 + x2 ≤ 15,

5x1 + 8x2 ≤ 20, x2 ≤ 2}
= {(0, 0), (0, 1), (0, 2), (1, 0),

(1, 1), (1, 2), (2, 0)}
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How to Solve Integer Programs?

• Relaxations!
• T ⊇ S ⇒ z(T ) ≤ z(S)
• People commonly use the linear programming relaxation:

z(LP (S)) = min{cTx : x ∈ LP (S)}

LP (S) = {x ∈ Rn
+ : Ax ≤ b}

• If LP (S) = conv(S), we are done.

• Minimum of any linear function over any
convex set occurs on the boundary

• We need only know conv(S) in the direction of c.

• The “closer” LP (S) is to conv(S) the better.
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Small M’s Good. Big M’s Baaaaaaaaaaaaaaaaaad!

• Sometimes, we can get a better relaxation (make LP (S) a
closer approximation to conv(S)) through a different tighter
formulation

• Let’s look at the geometry

P = {x ∈ R+, z ∈ {0, 1} : x ≤Mz, x ≤ u}

LP (P ) = {x ∈ R+, z ∈ [0, 1] : x ≤Mz, x ≤ u}

conv(P ) = {x ∈ R+, z ∈ {0, 1} : x ≤ uz}
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P

z

M

u

x

0 1

P = {x ∈ R+, z ∈ {0, 1} : x ≤Mz, x ≤ u}
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LP Versus Conv

z

M

u

x

0 1

LP (P ) = {x ∈ R+, z ∈ [0, 1] : x ≤Mz, x ≤ u}

z

M

u

x

0 1

conv(P ) = {x ∈ R+, z ∈ [0, 1] : x ≤ uz}

• KEY: If M = u, LP (P ) = conv(P )

• Small M ’s good. Big M ’s baaaaaaaad.
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UFL: Uncapacitated Facility Location
• Facilities: I

• Customers: J min
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

fijyij

∑
j∈N

yij = 1 ∀i ∈ I∑
i∈I

yij ≤ |I|xj ∀j ∈ J (1)

OR yij ≤ xj ∀i ∈ I, j ∈ J (2)

• Which formulation is to be preferred?

• I = J = 40. Costs random.
• Formulation 1. 53,121 seconds, optimal solution.
• Formulation 2. 2 seconds, optimal solution.
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Valid Inequalities

• Sometimes we can get a better formulation by dynamically
improving it.

• An inequality πTx ≤ π0 is a valid inequality for S if
πTx ≤ π0 ∀x ∈ S

• Alternatively: maxx∈S{πTx} ≤ π0

• Thm: (Hahn-Banach). Let
S ⊂ Rn be a closed, convex set,
and let x̂ 6∈ S. Then there exists
π ∈ Rn such that

πT x̂ > max
x∈S
{πTx}

S

x̂πTx = π0
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Nonlinear Branch-and-Cut

Consider MINLP
minimize

x,y
fT

x x+ fT
y y

subject to c(x, y) ≤ 0
y ∈ {0, 1}p, 0 ≤ x ≤ U

• Note the Linear objective

• This is WLOG:

min f(x, y) ⇔ min η s.t. η ≥ f(x, y)
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It’s Actually Important!

• We want to approximate the convex hull of integer solutions,
but without a linear objective function, the solution to the
relaxation might occur in the interior.

• No Separating Hyperplane! :-(

min(y1 − 1/2)2 + (y2 − 1/2)2

s.t. y1 ∈ {0, 1}, y2 ∈ {0, 1}

η ≥ (y1 − 1/2)2 + (y2 − 1/2)2
y1

y2

(ŷ1, ŷ2)

η
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Valid Inequalities From Relaxations

• Idea: Inequalities valid for a relaxation are valid for original
• Generating valid inequalities for a relaxation is often easier.

T

S
x̂

π
T
x

=
π

0

• Separation Problem over T:
Given x̂, T find (π, π0) such
that πT x̂ > π0,
πTx ≤ π0∀x ∈ T

Leyffer & Linderoth MINLP

Formulations
Inequalities

Dealing with Nonconvexity

Preliminaries
MILP Inequalities Applied to MINLP
Disjunctive Inequalities

Simple Relaxations

• Idea: Consider one row relaxations

• If P = {x ∈ {0, 1}n | Ax ≤ b}, then for any row i,
Pi = {x ∈ {0, 1}n | aT

i x ≤ bi} is a relaxation of P .

• If the intersection of the relaxations is a good approximation
to the true problem, then the inequalities will be quite useful.

• Crowder et al. (1983) is the seminal paper that shows this to
be true for IP.

• MINLP: Single (linear) row relaxations are also valid ⇒ same
inequalities can also be used
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Knapsack Covers

K = {x ∈ {0, 1}n | aTx ≤ b}

• A set C ⊆ N is a cover if
∑

j∈C aj > b

• A cover C is a minimal cover if C \ j is not a cover ∀j ∈ C

• If C ⊆ N is a cover, then the cover inequality∑
j∈C

xj ≤ |C| − 1

is a valid inequality for S

• Sometimes (minimal) cover inequalities are facets of conv(K)

Leyffer & Linderoth MINLP



Formulations
Inequalities

Dealing with Nonconvexity

Preliminaries
MILP Inequalities Applied to MINLP
Disjunctive Inequalities

Example

K = {x ∈ {0, 1}7 | 11x1 +6x2 +6x3 +5x4 +5x5 +4x6 +x7 ≤ 19}

LP (K) = {x ∈ [0, 1]7 | 11x1+6x2+6x3+5x4+5x5+4x6+x7 ≤ 19}

• (1, 1, 1/3, 0, 0, 0, 0) ∈ LP (K)
• CHOPPED OFF BY x1 + x2 + x3 ≤ 2

• (0, 0, 1, 1, 1, 3/4, 0) ∈ LP (K)
• CHOPPED OFF BY x3 + x4 + x5 + x6 ≤ 3
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Other Substructures

• Single node flow: (Padberg et al., 1985)

S =

x ∈ R|N |+ , y ∈ {0, 1}|N | |
∑
j∈N

xj ≤ b, xj ≤ ujyj ∀ j ∈ N


• Knapsack with single continuous variable: (Marchand and

Wolsey, 1999)

S =

x ∈ R+, y ∈ {0, 1}|N | |
∑
j∈N

ajyj ≤ b+ x


• Set Packing: (Borndörfer and Weismantel, 2000)

S =
{
y ∈ {0, 1}|N | | Ay ≤ e

}
A ∈ {0, 1}|M |×|N |, e = (1, 1, . . . , 1)T
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The Chvátal-Gomory Procedure

• A general procedure for generating valid inequalities for
integer programs

• Let the columns of A ∈ Rm×n be denoted by {a1, a2, . . . an}
• S = {x ∈ Zn

+ | Ax ≤ b}.
1. Choose nonnegative multipliers u ∈ Rm

+

2. uTAx ≤ uT b is a valid inequality (
∑

j∈N uTajxj ≤ uT b).

3.
∑

j∈NbuTajcxj ≤ uT b (Since x ≥ 0).

4.
∑

j∈NbuTajcxj ≤ buT bc is valid for X since buTajcxj is an
integer

• Simply Amazing: This simple procedure suffices to generate
every valid inequality for an integer program
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Extension to MINLP (Çezik and Iyengar, 2005)

• This simple idea also extends to mixed 0-1 conic programming
minimize
z

def
=(x,y)

fT z

subject to Az �K b
y ∈ {0, 1}p, 0 ≤ x ≤ U

• K: Homogeneous, self-dual, proper, convex cone

• x �K y ⇔ (x− y) ∈ K
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Gomory On Cones (Çezik and Iyengar, 2005)

• LP: Kl = Rn
+

• SOCP: Kq = {(x0, x̄) | x0 ≥ ‖x̄‖}
• SDP: Ks = {x = vec(X) | X = XT , X p.s.d}

• Dual Cone: K∗ def
= {u | uT z ≥ 0 ∀z ∈ K}

• Extension is clear from the following equivalence:

Az �K b ⇔ uTAz ≥ uT b ∀u �K∗ 0

• Many classes of nonlinear
inequalities can be
represented as

Ax �Kq b or Ax �Ks b

• Go to other SIAM Short
Course to find out about
Semidefinite Programming
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Mixed Integer Rounding—MIR

Almost everything comes from considering the following very
simple set, and observation.

• X = {(x, y) ∈ R× Z | y ≤ b+ x}
• f = b− bbc: fractional

• NLP People are silly and use f
for the objective function

• LP (X)

• conv(X)

• y ≤ bbc+ 1
1−f x is a valid

inequality for X

b

f

1−f

1−f

floor(b)

y <= floor(b) + x/(1−f)

Leyffer & Linderoth MINLP

Formulations
Inequalities

Dealing with Nonconvexity

Preliminaries
MILP Inequalities Applied to MINLP
Disjunctive Inequalities

Extension of MIR

X2 =

(x+, x−, y) ∈ R2
+ × Z|N | |

∑
j∈N

ajyj + x+ ≤ b+ x−


• The inequality∑

j∈N

(
b(aj)c+

(fj − f)+

1− f

)
yj ≤ bbc+

x−

1− f

is valid for X2

• fj
def
= aj − bajc, (t)+

def
= max(t, 0)

• X is a one-row relaxation of a general mixed integer program
• Continuous variables aggregated into two: x+, x−
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It’s So Easy, Even I Can Do It

Proof:

• N1 = {j ∈ N | fj ≤ f}
• N2 = N \N1

• Let

P = {(x, y) ∈ R2
+ × Z|N | |∑

j∈N1

bajcyj +
∑
j∈N2

dajeyy ≤ b+ x− +
∑
j∈N2

(1− fj)yj}

1. Show X ⊆ P
2. Show simple (2-variable) MIR inequality is valid for P (with an

appropriate variable substitution).
3. Collect the terms
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Gomory Mixed Integer Cut is a MIR Inequality

• Consider the set

X= =

(x+, x−, y0, y) ∈ R2
+ × Z× Z|N |+ | y0 +

∑
j∈N

ajyj + x+ − x− = b


which is essentially the row of an LP tableau

• Relax the equality to an inequality and apply MIR

• Gomory Mixed Integer Cut:∑
j∈N1

fjyj + x+ +
f

1− f
x− +

∑
j∈N2

(fj −
fj − f
1− f

)yj ≥ f
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Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

• LP/NLP Based Branch-and-Bound solves MILP instances:
minimize
z

def
=(x,y),η

η

subject to η ≥ fj +∇fT
j (z − zj) ∀yj ∈ Y k

0 ≥ cj +∇cTj (z − zj) ∀yj ∈ Y k

x ∈ X, y ∈ Y integer

• Create Gomory mixed integer cuts from

η ≥ fj +∇fT
j z − zj

0 ≥ cj +∇cTj (z − zj)

• Akrotirianakis et al. (2001) shows modest improvements

• Research Question: Other cut classes?

• Research Question: Exploit “outer approximation” property?
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Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al.,
1993)

Continuous relaxation (z
def
= (x, y))

• C def
= {z|c(z) ≤ 0, 0 ≤ y ≤ 1, 0 ≤ x ≤ U}

• C def
= conv({x ∈ C | y ∈ {0, 1}p})

• C0/1
j

def
= {z ∈ C|yj = 0/1}

letMj(C)
def
=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C0

j , u1 ∈ C1
j


⇒ Pj(C) := projection ofMj(C) onto z

y

x

convex
hull

⇒ Pj(C) = conv (C ∩ yj ∈ {0, 1}) and P1...p(C) = C
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Disjunctive Cuts: Example

minimize
x,y

{
x | (x− 1/2)2 + (y − 3/4)2 ≤ 1,−2 ≤ x ≤ 2, y ∈ {0, 1}

}

C0
j C1

j

ẑ = (x̂, ŷ)

y

x
Given ẑ with ŷj 6∈ {0, 1} find separating
hyperplane

⇒

{
minimize

z
‖z − ẑ‖

subject to z ∈ Pj(C)
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Disjunctive Cuts Example
C0

j C1
j

ẑ = (x̂, ŷ)

z∗

z∗
def
= arg min ‖z − ẑ‖

s.t. λ0u0 + λ1u1 = z
λ0 + λ1 = 1(

−0.16
0

)
≤ u0 ≤

(
0.66
1

)
(
−0.47

0

)
≤ u1 ≤

(
1.47
1

)
λ0, λ1 ≥ 0

NONCONVEX
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What to do? (Stubbs and Mehrotra, 1999)

• Look at the perspective of c(z), which gives a convex
reformulation ofMj(C): Mj(C̃), where

C̃ :=

(z, µ)

∣∣∣∣∣∣
µci(z/µ) ≤ 0
0 ≤ µ ≤ 1
0 ≤ x ≤ µU, 0 ≤ y ≤ µ


• c(0/0) = 0 ⇒ convex representation
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Disjunctive Cuts Example

C̃ =


 x

y
µ


∣∣∣∣∣∣∣∣
µ

[
(x/µ− 1/2)2 + (y/µ− 3/4)2 − 1

]
≤ 0

−2µ ≤ x ≤ 2µ
0 ≤ y ≤ µ
0 ≤ µ ≤ 1



C0
j C1

j y

x

µ

C0
j

C1
jy

x

µ

C0
j

C1
j

y

x

µ
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Example, cont.

C̃0
j = {(z, λ) | yj = 0} C̃1

j = {(z, λ) | yj = λ}

min ‖z − ẑ‖

s.t. v0 + v1 = z
λ0 + λ1 = 1
(v0, λ0) ∈ C̃0

j

(v0, λ1) ∈ C̃1
j

λ0, λ1 ≥ 1

Solution to example:(
x∗

y∗

)
=

(
−0.401
0.780

)

• separating hyperplane: ψT (z − ẑ), where ψ ∈ ∂‖z − ẑ‖
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Example, Cont.C0
j C1

j

ẑ = (x̂, ŷ)

z∗

0.198x+ 0.061y = −0.032

ψ =

(
2x∗ + 0.5
2y∗ − 0.75

)
0.198x+ 0.061y ≥ −0.032

Leyffer & Linderoth MINLP

Formulations
Inequalities

Dealing with Nonconvexity

Preliminaries
MILP Inequalities Applied to MINLP
Disjunctive Inequalities

Nonlinear Branch-and-Cut (Stubbs and Mehrotra, 1999)

• Can do this at all nodes of the branch-and-bound tree

• Generalize disjunctive approach from MILP
• solve one convex NLP per cut

• Generalizes Sherali and Adams (1990) and Lovász and
Schrijver (1991)

• tighten cuts by adding semi-definite constraint

• Stubbs and Mehrohtra (2002) also show how to generate
convex quadratic inequalities, but computational results are
not that promising
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Disjunctive Programming [Grossmann]

Consider disjunctive NLP

minimize
x,Y

∑
fi + f(x)

subject to

 Yi

ci(x) ≤ 0
fi = γi

∨  ¬Yi

Bix = 0
fi = 0

∀i ∈ I
0 ≤ x ≤ U, Ω(Y ) = true, Y ∈ {true, false}p

convex hull representation ...

x = vi1 + vi0, λi1 + λi0 = 1
λi1ci(vi1/λi1) ≤ 0, Bivi0 = 0
0 ≤ vij ≤ λijU, 0 ≤ λij ≤ 1, fi = λi1γi
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Disjunctive Programming: Example

[
Y1

x2
1 + x2

2 ≤ 1

]

∨
[

Y2

(x1 − 4)2 + (x2 − 1)2 ≤ 1

]

∨
[

Y3

(x1 − 2)2 + (x2 − 4)2 ≤ 1

]
⇒

� �
� �
� �
� �� �

� �
� �
� �

convex hull

big−M
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Dealing with Nonconvexities

• Functional nonconvexity
causes serious problems.

• Branch and bound must
have true lower bound
(global solution)

• Underestimate nonconvex
functions. Solve relaxation.
Provides lower bound.

• If relaxation is not exact,
then branch
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Dealing with Nonconvex Constraints

• If nonconvexity in
constraints, may need to
overestimate and
underestimate the function
to get a convex region
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Envelopes

f : Ω→ R

• Convex Envelope (vexΩ(f)):
Pointwise supremum of
convex underestimators of f
over Ω.

• Concave Envelope
(cavΩ(f)): Pointwise
infimum of concave
overestimators of f over Ω.
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Bilinear Terms

The convex and concave envelopes of the bilinear function xy over
a rectangular region

R
def
= {(x, y) ∈ R2 | lx ≤ x ≤ ux, ly ≤ y ≤ uy}

are given by the expressions

vexxyR(x, y) = max{lyx+ lxy − lxly, uyx+ uxy − uxuy}
cavxyR(x, y) = min{uyx+ lxy − lxuy, lyx+ uxy − uxly}
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Worth 1000 Words?
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Branch-and-Bound Global Optimization Methods

• Under/Overestimate “simple” parts of (Factorable) Functions
individually

• Bilinear Terms
• Trilinear Terms
• Fractional Terms
• Univariate convex/concave terms

• General nonconvex functions f(x) can be underestimated over
a region [l, u] “overpowering” the function with a quadratic
function that is ≤ 0 on the region of interest

L(x) = f(x) +
n∑

i=1

αi(li − xi)(ui − xi)

Refs: (McCormick, 1976; Adjiman et al., 1998; Tawarmalani and
Sahinidis, 2002)
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Disaggregation Tawarmalani et al. (2002)

Consider convex problem with bilinear objective
minimize
w,x1,...,xn

w
∑n

i=1 cixi

subject to (w, x) ∈ P Polyhedron
0 ≤ w ≤ v 0 ≤ x ≤ u

Formulation #1

min z
s.t. (w, x) ∈ P

0 ≤ z

(
n∑

i=1

ciui)w + v(
n∑

i=1

cixi)

−v(
n∑

i=1

ciui) ≤ 0

Formulation #2

min
n∑

i=1

zi

s.t. (w, x) ∈ P
0 ≤ zi ∀i

ciuiw + vcixi

−vciui ≤ 0 ∀i
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Summary

• MINLP: Good relaxations are important

• Relaxations can be improved
• Statically: Better formulation/preprocessing
• Dynamically: Cutting planes

• Nonconvex MINLP:
• Methods exist, again based on relaxations

• Tight relaxations is an active area of research

• Lots of empirical questions remain
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Implementation and Software
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Implementation and Software for MINLP

1. Special Ordered Sets

2. Parallel BB and Grid Computing

3. Implementation & Software Issues
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Special Ordered Sets of Type 1

SOS1:
∑
λi = 1 & at most one λi is nonzero

Example 1: d ∈ {d1, . . . , dp} discrete diameters

⇔ d =
∑
λidi and {λ1, . . . , λp} is SOS1

⇔ d =
∑
λidi and

∑
λi = 1 and λi ∈ {0, 1}

. . . d is convex combination with coefficients λi

Example 2: nonlinear function c(y) of single integer

⇔ y =
∑
iλi and c =

∑
c(i)λi and {λ1, . . . , λp} is SOS1

References: (Beale, 1979; Nemhauser, G.L. and Wolsey, L.A.,
1988; Williams, 1993) . . .
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Special Ordered Sets of Type 1

SOS1:
∑
λi = 1 & at most one λi is nonzero

Branching on SOS1

1. reference row a1 < . . . < ap

e.g. diameters

2. fractionality: a :=
∑
aiλi

3. find t : at < a ≤ at+1

4. branch: {λt+1, . . . , λp} = 0
or {λ1, . . . , λt} = 0 a < a

t
a > a

t+1
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Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Example: Approximation of nonlinear function z = z(x)

z(x)

x

• breakpoints x1 < . . . < xp

• function values zi = z(xi)

• piece-wise linear

• x =
∑
λixi

• z =
∑
λizi

• {λ1, . . . , λp} is SOS2

. . . convex combination of two breakpoints . . .
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Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Branching on SOS2

1. reference row a1 < . . . < ap

e.g. ai = xi

2. fractionality: a :=
∑
aiλi

3. find t : at < a ≤ at+1

4. branch: {λt+1, . . . , λp} = 0
or {λ1, . . . , λt−1} t

x > ax < a
t
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Special Ordered Sets of Type 3

Example: Approximation of 2D function u = g(v, w)

Triangularization of [vL, vU ]× [wL, wU ] domain

1. vL = v1 < . . . < vk = vU

2. wL = w1 < . . . < wl = wU

3. function uij := g(vi, wj)

4. λij weight of vertex (i, j)

• v =
∑
λijvi

• w =
∑
λijwj

• u =
∑
λijuij v

w

1 =
∑
λij is SOS3 . . .
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Special Ordered Sets of Type 3

SOS3:
∑
λij = 1 & set condition holds

1. v =
∑
λijvi ... convex combinations

2. w =
∑
λijwj

3. u =
∑
λijuij

{λ11, . . . , λkl} satisfies set condition

⇔ ∃ trangle ∆ : {(i, j) : λij > 0} ⊂ ∆ v

w

violates set condn

i.e. nonzeros in single triangle ∆
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Branching on SOS3

λ violates set condition

• compute centers:
v̂ =

∑
λijvi &

ŵ =
∑
λijwi

• find s, t such that
vs ≤ v̂ < vs+1 &
ws ≤ ŵ < ws+1

• branch on v or w

v

w

� �
� �
� �
� �

� �
� �
� �
� �

= center of gravity

B

T

vertical branching:
∑

L λij = 0
∑

R λij = 0 horizontal
branching:

∑
T λij = 0

∑
B λij = 0
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Branching on SOS3

Example: gas network from first lecture . . .

• pressure loss p across pipe is related to flow rate f as

p2
in − p2

out = Ψ−1sign(f)f ⇔ pin =
√
p2

out + Ψ−1sign(f)f

where Ψ: “Friction Factor”

• nonconvex equation u = g(v, w)
. . . assume pressures needed elsewhere

• (Martin et al., 2005) use SOS3 model
. . . study polyhedral properties
. . . solve medium sized problem
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Parallel Branch-and-Bound

meta-computing platforms:

• set of distributed heterogeneous computers, e.g.
◦ pool of workstations
◦ group of supercomputers or anything

• low quality with respect to bandwidth, latency, availability

• low cost: it’s free!!! ... huge amount of resources

... use Condor to “build” MetaComputer

... high-throughput computing
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Parallel Branch-and-Bound

Master Worker Paradigm (MWdriver)
Object oriented C++ library on top of Condor-PVM

T1 T3 T4T2 T5 T6

Wid

Wid Wid

Wid
1

2 3

4

W1

W2 W3

W4

DATA

GLOBAL

Master

Condor−Workers

comm

PVM

Condor−PVM

Universe

Task Pool

Fault tolerance via master check-pointing
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Parallel Branch-and-Bound

First Strategy: 1 worker ≡ 1 NLP
⇒ grain-size too small

... NLPs solve in seconds

New Strategy:
1 worker ≡ 1 subtree (MINLP)
... “streamers” running down tree Worker 1 Worker 2 Worker 3
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Parallel Branch-and-Bound

Trimloss optimization with 56 general integers
⇒ solve 96,408 MINLPs on 62.7 workers
⇒ 600,518,018 NLPs

Wall clock time = 15.5 hours
Cumulative worker CPU time = 752.7 hours ' 31 days

efficiency :=
work-time

work× job-time
=

752.7

62.7× 15.5
= 80.5

... proportion of time workers were busy
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Parallel Branch-and-Bound: Results
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Detecting Infeasibility

NLP node inconsistent (BB, OA, GBD)
⇒ NLP solver must prove infeasibility
⇒ solve feasibility problem: restoration

(F )

{
minimize

x,y
‖c+(x, y)‖

subject to x ∈ X, y ∈ Ŷ

where c+(x, y) = max (c(x, y), 0) and ‖ ‖ any norm

If ∃ solution (x̂, ŷ) such that ‖c+(x̂, ŷ)‖ > 0
⇒ no feasible point (if convex) in neighborhood (if nonconvex)

Leyffer & Linderoth MINLP



Special Ordered Sets
Parallel BB and Grid Computing

Implementation & Software Issues

Detecting Infeasibility
Choice of NLP Solver
MINLP Software

Feasibility Cuts for OA et al.

Ŷ = {ŷ} singleton & c(c, y) convex

(x̂, ŷ) solves F (ŷ) with ‖c+(x̂, ŷ)‖ > 0
⇒ valid cut to eliminate ŷ given by

0 ≥ c+(x̂, ŷ) + γ̂T

(
x− x̂
y − ŷ

)
where γ̂ ∈ ∂‖c+(x̂, ŷ)‖ subdifferential

Polyhedral norms: γ̂ = ∇ĉλ where

1. `∞ norm:
∑
λi = 1, and 0 ≤ λi ⊥ ĉi ≤ ‖ĉ+‖

2. `1 norm: 0 ≤ λi ≤ 1 ⊥ ĉi

. . .λ multipliers of equivalent smooth NLP . . . easy exercise
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Geometry of Feasibility Cuts

x

y

feasibility cuts

feasible

y=3

y=1

y = 3 infeasible
solution to feasibility problem

feasibility cuts for OA
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Infeasibility in Branch-and-Bound

FilterSQP restoration phase

• satisfiable constraints: J := {j : cj(x̂, ŷ) ≤ 0

• violated constraints J⊥ (complement of J)
minimize

x,y

∑
j∈J⊥

cj(x, y)

subject to cj(x, y) ≤ 0 ∀j ∈ J
x ∈ X, y ∈ Ŷ

• filter SQP algorithm on ‖c+J ‖ and ‖c+
J⊥
‖

⇒ 2nd order convergence

• adaptively change J

• similar to `1-norm, but λi 6≤ 1
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Choice of NLP Solver

MILP/MIQP branch-and-bound

• (x̂, ŷ) solution to parent node

• new bound: yi ≥ bŷic added to parent LP/QP

⇒ dual active set method; (x̂, ŷ) dual feasible
⇒ fast re-optimization (MIQP 2-3 pivots!)

MILP exploit factorization of constraint basis
⇒ no re-factorization, just updates
. . . also works for MIQP (KKT matrix factorization)

⇒ interior-point methods not competitive
... how to check λi > 0 for SOS branching ???
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Choice of NLP Solver

MINLP branch-and-bound

• (x̂, ŷ) solution to parent node

• new bound: yi ≥ bŷic added to parent NLP

Snag: ∇c(x, y), ∇2L etc. change ...

• factorized KKT system at (xk, yk) to find step (dx, dy)

• NLP solution:
(x̂, ŷ) = (xk+1, yk+1) = (xk + αdx, y

k + αdy)
but KKT system at (xk+1, yk+1) never factorized

. . . SQP methods take 2-3 iterations (good active set)
Outer Approximation et al.
no good warm start (y changes too much)
⇒ interior-point methods or SQP can be used
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Software for MINLP

• Outer Approximation: DICOPT++

• Branch-and-Bound Solvers: SBB & MINLP

• Global MINLP: BARON & MINOPT

• Online Tools: MINLP World, MacMINLP & NEOS
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Outer Approximation: DICOPT++

Outer approximation with equality relaxation & penalty
Reference: (Kocis and Grossmann, 1989)
Features:

• GAMS interface

• NLP solvers: CONOPT, MINOS, SNOPT

• MILP solvers: CPLEX, OSL2

• solve root NLP, or NLP(y0) initially

• relax linearizations of nonlinear equalities:
λi multiplier of ci(z) = 0 . . .

ci(ẑ) +∇ci(ẑ)T (z − ẑ)
{
≥ 0 if λi > 0
≤ 0 if λi < 0

• heuristic stopping rule: STOP if NLP(yj) gets worse

AIMMS has version of outer approximation
Leyffer & Linderoth MINLP
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SBB: (Bussieck and Drud, 2000)

Features:

• GAMS branch-and-bound solver

• variable types: integer, binary, SOS1, SOS2, semi-integer

• variable selection: integrality, pseudo-costs

• node selection: depth-first, best bound, best estimate

• multiple NLP solvers: CONOPT, MINOS, SNOPT
⇒ multiple solves if NLP fails

Comparison to DICOPT (OA):

• DICOPT better, if combinatorial part dominates

• SBB better, if difficult nonlinearities
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MINLPBB: (Leyffer, 1998)

Features:

• AMPL branch-and-bound solver

• variable types: integer, binary, SOS1

• variable selection: integrality, priorities

• node selection: depth-first & best bound after infeasible node

• NLP solver: filterSQP ⇒ feasibility restoration

• CUTEr interface available
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Global MINLP Solvers

α-BB & MINOPT: (Schweiger and Floudas, 1998)

• problem classes: MINLP, DAE, optimal control, etc

• multiple solvers: OA, GBD, MINOS, CPLEX

• own modeling language

BARON: (Sahinidis, 2000)

• global optimization from underestimators & branching

• range reduction important

• classes of underestimators & factorable NLP
exception: cannot handle sin(x), cos(x)

• CPLEX, MINOS, SNOPT, OSL

• mixed integer semi-definite optimization: SDPA
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Online Tools

Model Libraries

• MINLP World www.gamsworld.org/minlp/
scalar GAMS models ... difficult to read

• GAMS library www.gams.com/modlib/modlib.htm

• MacMINLP www.mcs.anl.gov/∼leyffer/macminlp/
AMPL models

NEOS Server

• MINLP solvers: SBB (GAMS), MINLPBB (AMPL)

• MIQP solvers: FORTMP, XPRESS
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COIN-OR

http://www.coin-or.org

• COmputational INfrastructure for Operations Research

• A library of (interoperable) software tools for optimization

• A development platform for open source projects in the OR
community

• Possibly Relevant Modules:
• OSI: Open Solver Interface
• CGL: Cut Generation Library
• CLP: Coin Linear Programming Toolkit
• CBC: Coin Branch and Cut
• IPOPT: Interior Point OPTimizer for NLP
• NLPAPI: NonLinear Programming API
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Conclusions

MINLP rich modeling paradigm
◦ most popular solver on NEOS

Algorithms for MINLP:
◦ Branch-and-bound (branch-and-cut)
◦ Outer approximation et al.

“MINLP solvers lag 15 years behind MIP solvers”

⇒ many research opportunities!!!
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