
Subgradient and Sampling Algorithms for `1 Regression

Kenneth L. Clarkson∗

Abstract

Given an n×d matrix A and an n-vector b, the `1 regression

problem is to find the vector x minimizing the objective

function ‖Ax − b‖1, where ‖y‖1 ≡
∑

i |yi| for vector y.

This paper gives an algorithm needing O(n log n)dO(1) time

in the worst case to obtain an approximate solution, with

objective function value within a fixed ratio of optimum.

Given ε > 0, a solution whose value is within 1 + ε of

optimum can be obtained either by a deterministic algorithm

using an additional O(n)(d/ε)O(1) time, or by a Monte

Carlo algorithm using an additional O((d/ε)O(1)) time. The

analysis of the randomized algorithm shows that weighted

coresets exist for `1 regression. The algorithms use the

ellipsoid method, gradient descent, and random sampling.

1 Introduction

Given a set S of n points, the `1 regression problem is to
fit a hyperplane to the points, minimizing the sum of the
vertical distances of the points to the hyperplane. More
formally, given an n×d matrix A and an n-vector b, the
problem is to find the d-vector x̂ such that the sum of
the absolute values of the entries of Ax− b is minimum.
The entries of Ax − b are called residuals. That is, x̂
minimizes the objective function ‖Ax − b‖1, yielding
the minimum residual vector b̂ ≡ Ax̂ − b. Another
description of x̂ is that it gives the linear combination
of the columns of A that is closest in `1 distance to b.

This problem arises in statistics, as a more robust
alternative to least squares regression, for which the
sum of the squares of the residuals is minimized. We
can also regard the residual as the difference between bi

and its prediction ai·x, where ai· is the i’th row of A.
(The points of S are of the form [ai·bi], where ai· is the
i’th row of A, so “vertical” here would refer to the last
coordinate.)

Related work. While `1 regression is an instance
of linear programming, and so has good algorithms in
theory and practice, it is still of interest to further
understand its computational properties. Moreover,
there is the usual gap between theory and practice:
the best provably-good algorithms take O(n) time,
and are exact,[YKII88, MT93] but are complicated,

∗Bell Labs; 600 Mountain Avenue; Murray Hill, New Jersey
07974; clarkson@research.bell-labs.com

and take time at least exponential in d. (The stated
dependence is 3d2

,[MT93] but a dependence that is
single-exponential is likely to be achievable with current
methods.) In contrast, the algorithms here, while
approximate and O(n log n), are polynomial in d and
1/ε.

While interior point or simplex methods can be
applied, and may be satisfactory in practice, their worst-
case dependence on n may be substantial, since the
linear programming formulation has 2n constraints and
n + d unknowns.[Sch86] (While the dual formulation
allows an interior point iteration in ndO(1) time, the
number of such iterations can be large in the worst case.
Also, the ellipsoid method could be applied using the
subgradient, as used here for rounding.)

Subgradient descent. A key algorithmic element
used here is a version of gradient descent: starting at an
estimate of the optimum, move in the direction of the
negative gradient of the objective function

F (x) ≡ ‖Ax− b‖1,

to obtain a new estimate. Each such step has a certain
step length, chosen judiciously (but easily). The descent
direction at d-vector x used here is

gx ≡ −AT sgn(Ax− b),

where sgn(y), for a vector y, is the vector of equal dimen-
sion whose coordinates are the signs of the correspond-
ing coordinates of y. (Note that the corresponding di-
rection for the least squares objective function ‖Ax−b‖2
is −AT (Ax− b); setting that function to zero yields the
normal equations.)

Of course, the function ‖Ax− b‖1 is only piece-wise
linear, and so does not have a gradient everywhere; how-
ever, the value gx is a subgradient (as stated below in
Lemma 3.1), and the iteration just described is an in-
stance of an unconstrained “subgradient method.” Such
methods have a long history and rich theory (see, e.g.,
[Sho85, NB01, Ber01]). However, their analyses seem to
typically focus on limiting convergence behavior: as the
number of iterations goes to infinity, does the estimate
converge to the optimum? Also, most analyses of sub-
gradient methods focus on a fixed sequence of stepsizes,
where here the stepsize is computed using the current
function value.



Conditioning. Here the results can be stated with
bounds in terms of n, d, and ε, as in Theorem 3.1, by
taking advantage a particular kind of “conditioning” of
A for `1 regression, related to polytope rounding.[Lov86]
Elementary column operations and scaling on A amount
to a change of variable for x. Since such changes of
variable can be tracked readily, this paper will freely
use column operations and scaling. As discussed in
Section 2, such operations can be done so as to obtain
a new version of the matrix A with the property that,
for any x,

‖x‖1 ≥ ‖Ax‖1 ≥ ‖x‖1/d
√

d.

A matrix A will this property will be called `1 condi-
tioned. This relation is similar to, but weaker than, the
strict equality ‖Ax‖2 = ‖x‖2 that would hold if Gram-
Schmidt orthogonalization were done on the columns of
A. The conditioning is done by applying the ellipsoid
algorithm, as used to find “weak Loewner-John ellip-
soids.” The subgradient is used as a separation oracle.
To obtain a good time bound for the conditioning, with-
out a dependence on the bit-complexity of the input, we
first apply elementary column operations to make the
columns of A orthogonal, and make b orthogonal to A.
That is, a bit of “folklore” advice for getting an initial
estimate for `1 regression, which is to begin with the
optimum for `2 regression, is used here.

The conditioning of A is helpful both for the `1
subgradient method of Section 3, and for the sampling
procedure discussed in Section 4. For the subgradient
method, the conditioning assures that each iteration
makes good progress. For the randomized sampling
procedure, the conditioning allows a bound on the norm
of the optimum vector x̂, which allows a bound on
the variance of the objective function random variable
considered in the analysis.

Sampling. The sampling algorithm is not much
more than picking a random sample of S, and solving
the `1 regression problem for the resulting sample prob-
lem. (This again is not far from folklore for how to get
an initial estimate for `1 regression.) The sampling is
done after some preprocessing, including the condition-
ing procedure, and the samples are chosen with proba-
bilities that depend on the point coordinates. Moreover,
the resulting sample problem has each point weighted.
The sample problem has the provable property that the
optimum x̂ of the original problem yields the expected
F (x̂) value as in the original problem, and any point
yielding a bad objective function value in the original
problem also yields a bad value in the sample. (This is
the outline of the proof of Theorem 4.2.) So the solu-
tion to the sample problem will be a good solution to
the original.

The approximate hardness of the weighted sample
problem is a property analogous to that of “coresets”
for other fitting problems.[BHPI02, HPV02, AHPVar,
BC02] A novelty here is that while most of the known
coreset constructions are for problems where the fit in-
volves minimizing a maximum of distances, here the fit
is the sum of residuals. However, the “coreset” here
is not apparently as useful, but may be one step to-
ward coreset-based algorithms for problems related to
`1 regression. The size of the sample is only polynomi-
ally dependent on the dimension, as opposed to some
coreset constructions with exponential dependence on
the dimension. As shown in Theorem 4.2, the bound is
O(d3

√
d/ε2) log(d/γε), where γ is a failure probability;

this is similar in form to bounds for ε-approximations.
The probabilities used in the sampling technique

is similar in flavor to that used in some recent ran-
domized approximation algorithms for numerical linear
algebra.[DK01, DKM] One difference from those algo-
rithms is that the sampling is done independently for
each input point, rather than picking each point of the
sample independently from among the input points.

Detailed time bounds. The time bounds for the
algorithms are, in more detail,

O(nd5(log n log d + log(d/ε)/ε2))

in the worst case, for the deterministic algorithm, and

O(nd5 log n log d) + O(
d8
√

d

ε4
(log d)3 ln(1/ε)2 ln(1/γ))

for the Monte Carlo algorithm, where the failure prob-
ability is γ. (Note the lack of dependence on n in the
second term of the latter bound.) These bounds are
from Theorem 3.1 and Theorem 4.3, respectively. Al-
though these dependencies are polynomial, they are rel-
atively large, but it is likely that faster performance
is possible in practice. This is true particularly if the
rounding/conditioning step is skipped; then the main
algorithm comprises only the subgradient descent pro-
cedure. In that case O(nd2) time is needed, iterated a
data-dependent number of times.

Relation to small-d LP. The form of the time
bound for the sampling algorithm is roughly similar
to those long known for randomized algorithms for LP
(linear programming) in small dimension.[Cla95] Such
LP problems arise in, for example, `∞ regression. The
previous algorithms rely on the existence of a “coreset”
of size d for the exact problem; that existence follows
by basic arguments. Here the coreset existence is
much harder to prove, and uses weights, and is only
approximate.

Statistical view. Another motivation for studying
this problem is that we might regard the regression



hyperplane as a statistic, interpreting S itself as a
random sample from an underlying population. We
might hope that the expected value of the statistic for
the sample is equal to the value of the statistic for
the whole set, and indeed, an unweighted (unbiased)
sample has the appropriate expectation. However,
an unweighted sample doesn’t have the same provable
properties, for clear reasons: while a single outlying
point can change the regression plane by an arbitrarily
large amount, that outlier may well not be in the
sample. That is, the `1 estimator is not that robust, and
so unweighted samples can do poorly. Here the sampling
method makes outliers more likely to be picked; this
reduces the variance due to their presence.

Outline. Before describing the approximation
algorithm in Section 3 and the sampling algorithm
in Section 4, the conditioning procedure is described.
There are some concluding remarks.

2 Rounding and Conditioning

We will apply a standard rounding procedure, using the
ellipsoid method[Lov86], to the polytope P ≡ P (A) ≡
{x | ‖Ax‖1 ≤ 1}, which will have the effect of making
A well-behaved with respect to the `1 norm.

This procedure requires a separation oracle, that
for a given point x /∈ P , returns a hyperplane H that
separates x and P . Here the subgradient provides such
an oracle, since

‖Ay‖1 ≥ ‖Ax‖1 + (y − x)T AT sgn(Ax),

as shown in Lemma 3.1 below, so that the hyperplane

{y | (y − x)T AT sgn(Ax) = ((‖Ax‖1) + 1)/2}

separates x and P when ‖Ax‖1 > 1.
The rounding procedure maintains a series of ellip-

soids Em, m = 0, . . ., where E0 is a Euclidean ball B
containing P . The procedure uses the separation ora-
cle to maintain the condition that each Em contains P
and has provably smaller volume than Em−1. A critical
quantity is the ratio of the volume of B to the volume
of P ; the running time is proportional to the logarithm
of this ratio.

We can construct an instance of the rounding
problem where the ratio is a function only of n and d, as
follows. Use Gram-Schmidt, or an equivalent procedure,
to make the columns of A orthogonal to each other.
Also, scale the columns of A to have `1 norm equal to
one. This needs only elementary column operations,
and as noted above, amounts to a change of variable.
The following lemma applies.

Lemma 2.1. Given an n × d matrix A where the
columns of A are orthogonal and scaled to have unit

`1 norm,
B1/

√
d ⊂ P (A) ⊂ B√

n,

where Br denotes the Euclidean ball centered at the
origin, with radius r.

Proof. If ‖x‖2 ≤ 1/
√

d, then ‖x‖1 ≤ 1, which implies
‖Ax‖1 ≤ 1 by the column scaling, giving the first
inclusion.

For the second inclusion, for x with ‖Ax‖1 ≤ 1 we
have

‖x‖22 =
∑

k

x2
k‖a·k‖21

≤ n
∑

k

x2
k‖a·k‖22

= n‖Ax‖22 ≤ n‖Ax‖21 ≤ n,

which implies x ∈ B√
n.

Lemma 2.2. As applied to the preprocessed n×d matrix
A, the rounding procedure takes

O(nd5 log n)

time, and returns a pair of concentric ellipsoids E and
E′ with E′ ⊂ P (A) ⊂ E, and E′ arises from E by
shrinking by a factor of 1/d.

Proof. From the previous lemma, the ratio of the vol-
umes of the initial ellipsoid to the final ellipsoid is at
most (dn)d/2, and the ellipsoids shrink by a factor of
e−3/2(d+1)(2d+1) at each step,[Lov86] so the number of
steps is O(d3 log(nd)). A factor d2n accounts for the
work at each step of checking inclusions, generating sep-
arating hyperplanes, and linear algebra to maintain the
ellipsoids. Since P is centrally symmetric, the tighter
shrinkage term 1/d can be used, instead of the general
1/d

√
d for such ellipsoids.

The result of this rounding procedure can be more
conveniently used here by applying another change
of variables to yield the condition that A is “µ-
conditioned” for µ = d

√
d, where this means that for

any x,

(2.1) ‖x‖1 ≥ ‖Ax‖1 ≥ ‖x‖1/µ.

Theorem 2.1. Given an n× d matrix A, the rounding
procedure and elementary column operations on A yield
a new version of A that is d

√
d-conditioned, in time

O(nd5 log n).

Proof. Having applied the rounding procedure, there is
an affine transformation with matrix τ that maps the



containing ellipsoid E to Bd, and the contained ellipsoid
E′ to B1. That is, if y = τ(x) for some x, and ‖y‖1 ≤ 1,
then ‖y‖2 ≤ 1, and so y ∈ B1 ⊂ τP . Moreover, if
y ∈ τP , then y ∈ Bd and ‖y‖2 ≤ d, so ‖y‖1 ≤ d

√
d.

Since τP = P (Aτ−1), renaming Aτ−1 to be A yields
the conditions that ‖y‖1 ≤ 1 implies ‖Ay‖1 ≤ 1, and
‖Ay‖1 ≤ 1 implies ‖y‖1 ≤ d

√
d. These facts imply the

inequalities (2.1) with µ = d
√

d.

3 An Approximation Algorithm

As shown below in Lemma 3.2, the rounding procedure
has the useful effect that it results in an optimization
problem for which the negative gradient of the objective
function points from the current location toward an
optimal vector. This and other properties will be stated
and proven in the analysis of the subgradient iteration
scheme.

This property of the gradient immediately suggests
a descent scheme: take a step along the negative
gradient toward an optimal vector, re-evaluate the
gradient, and repeat. A complication here is that
the although the negative gradient points toward an
optimum vector, it is difficult to tell how far to go in
that direction without overshooting the best possible
improvement. It’s also difficult to know just how much
an improvement will occur.

One approach might be to do a search along the line
of the gradient, approximately finding the minimum of
the objective function when confined to the given line.
This is likely to work well in practice, but seems difficult
to analyze.

Here we adopt an approach similar to, but more
elaborate than, the smallest ball algorithm of Badiou
et al.[BC02]. The step length is calculated using the
current function value and other inputs, with a scheme
that allows lower and upper bounds on the approxima-
tion ratio ‖Ax− b‖1/‖Ax̂− b‖1 to be maintained, where
again x̂ is an optimal vector.

3.1 The subgradient iteration The approximation
algorithm is simply the subgradient iteration procedure
described below, under the assumption that A has
already been µ-conditioned with µ = d

√
d, as discussed

in the last section, and that b is orthogonal to the
subspace spanned by the column vectors of A. The
latter is easy to achieve by using the orthogonalization
of A produced while A was being conditioned.

The subgradient iteration procedure uses several
readily calculated values, which will be specified below.
The procedure is as follows: for each entry in a decreas-
ing sequence of values α̃i, for i = 0, 1, . . ., perform a
minor iteration with α̃i until α̃i ≤ 1 + ε, where 1 + ε is
the desired approximation ratio. As a special case for

i = 0, repeatedly perform minor iterations with α̃0 until
a minor iteration is unsuccessful, as described below.

Each minor iteration using some α̃ starts with
the current estimate x of the solution, and iteratively
attempts to improve on x as follows. Let x0 := x; for
k = 0, 1, . . . , B(α̃i), where B(α̃i) is given below, let

xk+1 := xk + ρ(xk, α̃)
gxk

‖gxk
‖2

,

where ρ(xk, α̃) is defined below, and

gxk
≡ −AT sgn(Axk − b),

as defined in the introduction.
A minor iteration can quit before k = B(α̃i), if

F (xk)/F (x0) = ‖Axk − b‖1/‖Ax0 − b‖1 ≤ (1 + 1/α̃)/2.

Say that a minor iteration that quits early for this
reason is successful, and let the current estimate x :=
xk. Otherwise the minor iteration is unsuccessful, and
the final value of xk is not used.

This completes the description of the algorithm,
except for the definitions of α̃i, B(α̃) and ρ(xk, α̃).
These are

α̃i ≡

{
2 i = 0
α̃i−1

4 (1 +
√

1 + 8/α̃i−1) i > 0.

and

B(α̃) ≡ ln[2µ
√

d(α̃ + 1)/(α̃− 1)]
κ((α̃ + 1)/2)2/2

,

where
κ(α̃) ≡ α̃− 1

µ
√

d(α̃ + 1)
.

Finally,
ρ(x, α̃) ≡ F (x)(1− 1/α̃)/

√
d.

The motivations for these definitions should be clearer
from the following analysis. The general idea is that
gx has positive dot product with x̂ − x, and the
stepsize ρ is chosen so that progress toward x̂ is made,
but the step doesn’t overshoot. The values α̃i are
intended as lower bounds on the approximation ratio
F (x)/F (x̂). If indeed α̃i ≤ F (x)/F (x̂) then, as will
be shown, the minor iteration will be successful, and
the approximation ratio will be reduced. The failure
of a minor iteration amounts to a proof that α̃i >
F (x)/F (x̂), and so the lower bound α̃i can be reduced.

The algorithm and analysis are less elegant than
they might be, because for a given step, it hasn’t been
proven that the objective function value is reduced, only
that the `2 distance to an optimum vector is reduced,
and that reduction in distance is not directly known.
Hence certain conditions must be inferred from the
success or failure of a sufficient number of steps, that
is, a minor iteration.



3.2 Analysis of the subgradient iteration First,
a theorem regarding the gradient of the `1 regression
objective function. Some notation will be needed: for
vector c, again, let sgn c denote a vector with the same
dimensions as c, but with a +1 entry when where c has
a positive entry, a −1 when c has a negative entry, and
zero where c has a negative entry. With this definition,
we can write ‖Ax− b‖1 as sgn(Ax− b)T (Ax− b).

When the gradient of ‖Ax − b‖1 exists, it is
AT sgn(Ax− b): suppose x is such that for any d-vector
δ that is short enough, sgn(Ax− b) = sgn(A(x+ δ)− b).
Then

‖A(x + δ)− b‖1
= sgn(A(x + δ)− b)T (A(x + δ)− b)

= sgn(Ax− b)T (A(x + δ)− b)

= sgn(Ax− b)T (Ax− b) + sgn(Ax− b)T Aδ

= ‖Ax− b‖1 + δT AT sgn(Ax− b),

so the Taylor expansion of

‖A(x + δ)− b‖1

is the above expression, and AT sgn(Ax − b) is the
gradient at x.

Indeed, AT sgn(Ax−b) is a subgradient of ‖Ax−b‖1,
as shown in the next lemma.

Lemma 3.1. For any d-vectors x and y,

‖Ax− b‖1 − ‖Ay − b‖1 ≤ (x− y)T AT sgn(Ax− b).

That is, AT sgn(Ax− b) is a subgradient.

Proof. We have

‖Ax− b‖1 − ‖Ay − b‖1
= sgn(Ax− b)T (Ax− b)− sgn(Ay − b)T (Ay − b)

≤ sgn(Ax− b)T (Ax− b)− sgn(Ax− b)T (Ay − b)

= sgn(Ax− b)T A[x− y]

= (x− y)T AT sgn(Ax− b),

Next we show that the gradient points toward an
optimum vector x̂. As before, we will use the notation
F (x) ≡ ‖Ax− b‖1, and gx ≡ −AT sgn(Ax− b).

Lemma 3.2. Given an `1 µ-conditioned matrix A and
d-vector x, let

(3.2) α(x, µ) ≡ F (x)/F (x̂),

and writing simply α when x and µ are understood. Let
θ be the angle between gx and x̂− x, so

(3.3) cos θ ≡ gT
x (x̂− x)

‖gx‖2‖x̂− x‖2
.

Then

(3.4) ‖x̂− x‖2 cos θ ≥ ρ(x, α) ≡ F (x)(1− 1/α)/
√

d

and

(3.5) cos θ ≥ κ(α) ≡ α− 1
µ
√

d(α + 1)
.

Proof. At x, we have

gT (x̂− x) ≥ F (x)− F (x̂) = F (x)(1− 1/α),

by the previous lemma and definition of α, and omitting
the subscript from g. Also ‖g‖2 ≤

√
d since the column

sums of A have been set to 1. From these considerations,

‖x̂− x‖2 cos θ =
gT

x (x̂− x)
‖gx‖2

≥ (F (x)− F (x̂))/
√

d

= F (x)(1− 1/α)/
√

d,

the first conclusion of the lemma.
From the triangle inequality, we have

‖Ax̂−Ax‖1 ≤ ‖Ax− b‖1 + ‖Ax̂− b‖1 = F (x) + F (x̂),

and so, from the µ-conditioning of A,

‖x̂− x‖2 ≤ ‖x̂− x‖1
≤ µ‖Ax̂−Ax‖1
≤ µ(F (x) + F (x̂))
≤ µ(F (x) + F (x)/α)
= µF (x)(1 + 1/α),

(3.6)

and so

cos θ ≥ F (x)(1− 1/α)/
√

d

‖x̂− x‖2

≥ F (x)(1− 1/α)/
√

d

µF (x)(1 + 1/α)

=
α− 1

µ
√

d(α + 1)

the other conclusion of the lemma.

We need a quantitative statement about how far to
go in the direction gx.

Lemma 3.3. With conditions as in the previous lemma,

‖x + ρ(x, α)
gx

‖gx‖2
− x̂‖2 ≤ (1− κ(α)2/2)‖x− x̂‖2,

where ρ(x, α) and κ are defined above (3.4,3.5).



Proof. For convenience in this proof, put x̂ at the origin.
We have

‖x + ρ
gx

‖gx‖2
‖2 = ‖x‖22 + ρ2 − 2‖x‖ρ cos θ

and so, writing κ for κ(α) ≡ ρ/‖x‖2,

‖x + ρ
gx

‖gx‖2
‖2/‖x‖22 = 1 +

ρ2

‖x‖22
− 2

ρ

‖x‖2
cos θ

= 1 + κ2 − 2κ cos θ

≤ 1− κ2

using (3.4) and (3.5) of the last lemma. The lemma
follows, taking square roots of both sides and using√

1− w ≤ 1− w/2.

A difficulty in using this result is that generally,
F (x̂) is unknown, which implies α is unknown. How-
ever, the following lemma implies that we can tell when
an estimate α̃ of α is too big.

Lemma 3.4. With the conditions of the previous
lemma, suppose α̃ ≤ α ≡ α(x). Let x0 ≡ x, and let

xk+1 ≡ xk + ρ(xk, α̃)
gxk

‖gxk
‖2

,

for k ≥ 0. There is a value

(3.7) B(α̃) ≡ ln[2µ
√

d(α̃ + 1)/(α̃− 1)]
κ((α̃ + 1)/2)2/2

such that for some k ≤ B(α̃),

F (xk) ≤ F (x)(1 + 1/α̃)/2.

That is, if α̃ ≤ α ≡ α(x0), a minor iteration succeeds.

Proof. Suppose the claim is false, so that during the
B(α̃) iterations, F (xk) remains above the given bound,
implying

F (xk) > F (x0)(1 + 1/α̃)/2(3.8)
= F (x̂)α(x0)(1 + 1/α̃)/2
≥ F (x̂)(α(x0) + 1)/2(3.9)

and so α(xk) ≥ (α + 1)/2 for k = 1 . . . B(α̃), where
we abbreviate α(x0) as α. We will show that this
assumption implies a contradiction.

Based on this condition, the previous lemma implies
that after B(α̃) iterations,

‖xk − x̂‖2
≤ ‖x0 − x̂‖2

∏
1≤k≤B(α̃)

(1− κ(α(xk))2/2)

≤ (1− κ((α + 1)/2)2/2)B(α̃)‖x0 − x̂‖2,(3.10)

using the fact that κ() is increasing. Using the triangle
inequality and the `1 conditioning of A,

F (xk) = ‖Axk − b‖1
≤ ‖Ax̂− b‖1 + ‖Axk −Ax̂‖1
≤ F (x̂) + ‖xk − x̂‖1
≤ F (x̂) + ‖xk − x̂‖2

√
d.

That is, using (3.10) and (3.6), and the facts that
(α − 1)/(α + 1) and so κ(α) are increasing functions
of α,

F (xk)− F (x̂)

≤ ‖xk − x̂‖2
√

d

≤ (1− κ((α + 1)/2)2/2)B(α̃)‖x0 − x̂‖2
√

d

≤ exp(−B(α̃)κ((α + 1)/2)2/2)µF (x)(1 + 1/α)
√

d

≤ µF (x̂)α(1 + 1/α)
√

d

2µ
√

d(α̃ + 1)/(α̃− 1)
≤ F (x̂)(α− 1)/2,

which implies F (xk) ≤ F (x̂)(α + 1)/2, contradicting
assumption (3.9).

The following lemma gives the properties of the
sequence of α̃i that will be used in the analysis of the
subgradient iteration algorithm.

Lemma 3.5. With α̃i as defined,

α̃i+1 = α̃i(1 + 1/α̃i+1)/2,

and α̃i ≤ 1 + (3/4)i.

Proof. The first claim requires only the quadratic for-
mula. The second can be proven with induction: it
holds for i = 0, and for i > 0, let β denote (3/4)i.
Then, using β ≤ 1 and

√
1 + w ≤ 1 + w/2,

4α̃i+1

= (1 + β)(1 +
√

1 + 8/(1 + β))

= 1 + β +
√

(1 + β)2 + 8(1 + β)

= 1 + β + 3
√

1 + 10β/9 + β2/9

≤ 1 + β + 3
√

1 + 11β/9
≤ 1 + β + 3(1 + 11β/18)
= 4 + 17β/6
≤ 4 + 3β,

and so α̃i+1 ≤ 1 + 3β/4 = 1 + (3/4)i+1, and the claim
follows inductively.



Lemma 3.6. For µ ≤ d
√

d and α̃ = 1 + ε,

B(α̃) = B(1 + ε) = O(d4 log(d/ε))/ε2

as ε → 0.

Proof. From (3.7) and the definition (3.5) of κ(), we
have

B(α̃) ≡ ln[2µ
√

d(α̃ + 1)/(α̃− 1)]
κ((α̃ + 1)/2)2/2

≤ 2µ2d(α̃ + 3)2 ln[µd
√

d(α̃ + 1)/(α̃− 1)]
(α̃− 1)2

,

from which the lemma follows.

Theorem 3.1. A d-vector x with `1 regression value
within ε of optimal can be found within

O(nd5(log n log d + log(d/ε)/ε2))

time.

Proof. The preliminary orthogonalization can be done
with O(d2) vector operations on b and the column
vectors of A, each requiring O(n) time, for O(nd2) time
overall.

The rounding procedure, yielding the conditioned
version of A, needs O(nd5 log n), from Lemma 2.2.

The algorithm requires O(nd) time for each of at
most B(α̃i) steps of the i’th minor iteration. By the
previous lemma, B(2) = O(d4 log d). When the minor
iteration with α̃i = 2 is successful, the stopping con-
dition implies that the approximation ratio F (x)/F (x̂)
has decreased by a factor of (1 + 1/2)/2 = 3/4. A mi-
nor iteration is unsuccessful only when α̃i > α(x), by
Lemma 3.4, and so when a minor iteration with α̃i = 2
is unsuccessful, it must be that the approximation ra-
tio α(x) < 2. By beginning with b orthogonal to the
columns of A, the initial approximation ratio is at most√

n, since

‖b‖1 ≤ ‖b‖2
√

n ≤ ‖b̂‖2
√

n ≤ ‖b̂‖1
√

n,

where again, b̂ ≡ Ax̂− b. Therefore, the work for all the
minor iterations with α̃i = 2 is

O(nd)B(2) log n = O(nd5 log d log n).

For the minor iterations with i > 0 (and so α̃i < 2),
note that after the minor iteration is done using α̃i, it
holds inductively that α ≤ α̃i: either the iteration fails,
which can only happen if α ≤ α̃i, or it succeeds, which
implies that the final iterate xk satisfies

F (xk) ≤ F (x0)(1 + α̃i)/2
≤ F (x0)α̃i−1(1 + α̃i)/2
= F (x0)α̃i,

using the condition for success, the inductive assump-
tion, and Lemma 3.5.

Also from that lemma, α̃i ≤ 1 + (3/4)i, and
so O(log(1/ε)) minor iterations are needed. By the
previous lemma, O(d4 log(d/(α̃i−1))/(α̃i−1)2) steps are
needed for each minor iteration, and from that bound
the number of steps overall is within a constant factor
of the number of steps in the last minor iteration, so the
total work for the minor iterations with α̃i < 2 is

O(nd)d4 log(d/ε)/ε2.

Putting this bound together with the bound for α̃i = 2
yields the theorem.

4 A Sampling Algorithm

First, some probabilistic bounds, and then the sampling
construction.

4.1 Tail Estimates

Theorem 4.1. Let Xi, i = 1 . . . n, be independent
random variables, with bounded EX2

i and Xi ≥ 0 for
all i. For S ≡

∑
i Xi and t ≥ 0,

log Prob{S ≤ ES − t} ≤ −t2

2
∑

i EX2
i

.

If there is also some M with Xi ≤ EXi + M for all i,
then

log Prob{S ≥ ES + t} ≤ −t2

2tM/3 + 2
∑

i EX2
i − [EXi]2

Proof. The bound on the lower tail seems to be due
to Maurer[Mau03] and independently McAllester and
Ortiz[MO03]; the former gave a simple proof. The upper
tail bound is due to Bernstein.[Ber46]

4.2 The Sampling Algorithm The first step of the
overall algorithm is to apply the rounding algorithm
of Section 2 to d

√
d-condition A. It also is necessary

to apply the subgradient algorithm of Section 3 with
ε = 1 to b, so that ‖b‖1 ≤ 2‖Ax̂− b‖1. (That is, having
obtained an approximate solution x̃, replace b by b−Ax̃,
and make a change of variable in x to account for the
different b.) It will be convenient to then scale b so that
‖b‖1 = d.

Following these preprocessing steps, the sampling
algorithm is as follows: let

fi ≡ |bi|+ ‖ai·‖1,

and let
pi ≡ min{1, rfi/2d},



where r is an integer parameter, noting that
∑

i fi = 2d.
Let Y and Z be diagonal n× n matrices where

Yii =

{
1 with probability pi

0 with probability 1− pi,

and Zii ≡ Yii/pi. Now solve the sample problem

min
x
‖Z(Ax− b)‖1

approximately, and return its output as an approxima-
tion to the solution of the original problem. This is the
whole of the algorithm.

By construction, we have the expected number of
nonzero Yii to be no more than

E
∑

i

Yii =
∑

i

EYii =
∑

i

pi ≤
∑

i

rfi/2d = r,

and since EZii = EYii/pi = pi/pi = 1,

E‖Z(Ax− b)‖1 = E
∑

i

|Zii(bi − ai·x)|

=
∑

i

EZii|bi − ai·x|

= ‖Ax− b‖1.

So the sample problem gives an unbiased estimate of the
objective function value of x, for any x. Of course, this
does not show that the sample problem has an objective
function value near that of x̂, since we don’t know how
concentrated these values are around their expectations.
However, we can apply the tail bounds, Theorem 4.1, to
show that with high probability, ‖Z(Ax̂−b)‖1 is not too
large, and for any given x, ‖Z(Ax−b)‖1 is not too small.
This will require a bound on

∑
i E[(Zii|bi − ai·x|)2],

before which, a lemma.

Lemma 4.1. For d
√

d-conditioned n× d matrix A, and
d-vector b with ‖b‖1 ≤ 2 minx‖b−Ax‖1, we have

‖x‖1 ≤ d
√

d‖Ax− b‖1.

Proof. Using Lemma 2.1 and the hypothesis,

‖x‖1 ≤ d
√

d‖Ax‖1
≤ d

√
d (‖b‖1 + ‖Ax− b‖1)

≤ d
√

d (2‖Ax̂− b‖1 + ‖Ax− b‖1)

≤ 3d
√

d‖Ax− b‖1.

Lemma 4.2. Under the conditions of the sampling al-
gorithm,∑

i

E[(Zii|bi − ai·x|)2] ≤
6d2

√
d

r
‖Ax− b‖21.

Proof. Using the definitions, the previous lemma, stan-
dard facts, and ignoring those i for which pi = 1 <
rfi/2d,∑

i

E[(Zii|bi − ai·x|)2]

=
∑

i

|bi − ai·x|2

p2
i

E[Y 2
ii ]

=
∑

i

|bi − ai·x|2

pi

=
∑

i

|bi − ai·x|2

(|bi|+ ‖ai·‖1)r/2d

≤
∑

i

|bi − ai·x|(|bi|+ ‖ai·‖1‖x‖∞)
(|bi|+ ‖ai·‖1)r/2d

≤
∑

i

|bi − ai·x|(|bi|+ ‖ai·‖1) max{1, ‖x‖∞}
(|bi|+ ‖ai·‖1)r/2d

=
2d

r
‖Ax− b‖1 max{1, ‖x‖∞}

≤ 2d

r
‖Ax− b‖1(3d

√
d‖Ax− b‖1)

=
6d2

√
d

r
‖Ax− b‖21,

and the lemma follows.

Lemma 4.3. For ε ≤ 1/2 and a given d-vector x, the
probability is at most

exp(−ε2r/24d2
√

d)

that
‖Z(Ax− b)‖1 ≤ (1 + ε)‖b̂‖1

when ‖Ax− b‖1 ≥ (1 + 2ε)‖b̂‖1.

Proof. The lower tail bound of Theorem 4.1 can be
applied, with random variables Xi = Zii|ai·x− bi|, sum
S = ‖Z(Ax− b)‖1, and

t = ES − (1 + ε)‖b̂‖1 = ‖Ax− b‖1 − (1 + ε)‖b̂‖1.

Using also the previous lemma and ε ≤ 1/2, we have

log Prob{‖Z(Ax− b)‖1 ≤ (1 + ε)‖b̂‖1}

≤ −(‖Ax− b‖1 − ‖b̂‖1(1 + ε))2

6d2
√

d‖Ax− b‖21/r

≤ −r

6d2

(
1− (1 + ε)‖b̂‖1

(1 + 2ε)‖b̂‖1

)2

≤ −rε2

24d2
√

d
,

as claimed.



To apply the upper tail bound of Theorem 4.1, we
need an upper bound on each coordinate of b̂.

Lemma 4.4. For all i, Zii|b̂i| ≤ 6d2
√

d‖b̂‖1/r.

Proof. From Lemma 4.1, we have

‖x̂‖1 ≤ 3d
√

d‖b̂‖1/r.

Therefore

Zii|b̂i| = |b̂i|/pi = |b̂i|2d/fir

≤ 2d

r

|bi|+ ‖ai·‖1‖x̂‖∞
|bi|+ ‖ai·‖1

≤ 2d

r

|bi|+ ‖ai·‖13d
√

d‖b̂‖1
|bi|+ ‖ai·‖1

≤ 6d2
√

d‖b̂‖1
r

.

Lemma 4.5. For ε ≤ 1, the probability is at most
exp(−ε2r/16d2

√
d) that

‖Zb̂‖1 ≥ (1 + ε)‖b̂‖1.

Proof. The second part of Theorem 4.1 can be applied,
with Xi = Zii|b̂i|, S = ‖Zb̂‖1, t = ε‖b̂‖1, and from the
previous lemma, M = 6d2

√
d‖b̂‖1/r. Consequently,

log Prob{‖Zb̂‖1 > ‖b̂‖1 + t}

≤ −t2

2tM/3 + 2
∑

i EX2
i − [EXi]2

≤ −(ε‖b̂‖1)2

2(ε‖b̂‖1)(6d2
√

d‖b̂‖1/r)/3 + 2 6d2
√

d
r ‖b̂‖21

=
−ε2

4εd2
√

d/r + 12d2
√

d/r

≤ −ε2r

16d2
√

d

for ε ≤ 1.

These two lemmas can be combined to prove the
following theorem.

Theorem 4.2. For any n×d matrix A and n-vector b,
and given ε > 0 and γ > 0, there is a value R where

R ≡ 288d3
√

d

ε2
ln(d/εγ)

such that if r ≥ R, then with probability at least 1−γ, the
sample problem with parameter r has optimum solution
xZ with

‖AxZ − b‖1 ≤ (1 + ε)‖b̂‖1,

where ‖b̂‖1 = ‖Ax̂ − b‖1 is the minimum value of
‖Ax− b‖1.

Proof. We will show that with high probability, x̂ yields
an objective function value for the sample problem that
is not too big, and that for all vectors, their sample
problem objective function value is not too small. Here
“too big” means larger than (1 + ε/2)‖b̂‖1, and “too
small” means smaller than (1 + ε/2)‖b̂‖1, when the
vector x gives objective function value greater than 1+ε
times the optimum.

For the latter, it is enough to show that any possible
optimum vector xZ gives a value that is not too small.
Such optimum vectors come from a finite set of vectors:
since `1 regression is a linear programming problem,
its optima are at vertices of its feasible polytope; here
those vertices correspond to hyperplanes determined
by d points of the n input points S. There are(
n
d

)
such hyperplanes. For each such hyperplane, let

pi1 , pi2 , . . . , pid
denote the points in S that determine

it. Let T denote the corresponding set of indices, and
let xT denote the corresponding solution.

The probability that xT is a bad solution to the
sample problem is bounded by the probability that
every index i ∈ T has Yii = 1, and that the resulting
objective function value is too small. The former
probability is the product of the probabilities

∏
i∈T pi.

The latter probability is no more than

exp(−ε2r/96d2
√

d)

by Lemma 4.3 (using ε/2 as the ε of the lemma). Let(
N
d

)
denote the set of all sets of size d of integers between

1 and n. Using these facts and the bound on r of the
theorem statement, the probability that some xT , for
T ∈

(
N
d

)
, has a value that is too small is no more than∑
T∈(N

d)
exp(−ε2R/96d2

√
d)
∏
i∈T

pi

≤ exp(−ε2R/96d2
√

d)

(∑
i

pi

)d

= exp(−ε2R/96d2
√

d)Rd

≤ γ/2.

Applying Lemma 4.5, the probability that x̂ yields
an objective function value for the sample problem that
is too large is at most

exp(−ε2R/64d2
√

d) ≤ γ/2,

and so the probability of failure is at most γ, as claimed.

Theorem 4.3. For any n×d matrix A and n-vector b,
and given ε > 0 and γ > 0, in

O(nd5 log n log d) + O(
d8
√

d

ε4
(log d)3 ln(1/ε)2 ln(1/γ))



time, a vector x∗ can be found such that, with probability
at least 1− γ, ‖b−Ax∗‖1 ≤ (1 + ε) minx‖b−Ax‖1.

Proof. Applying Theorem 3.1 with ε = 2, the time
needed for preprocessing of A and b is O(nd5 log n log d).

The sample size R needed to obtain a sampling
approximation less than ε/3 is given by the last result;
applying Theorem 3.1 again, the time to find a solution
with 1 + ε/3 of optimum for the sampling problem is

O(Rd5(log R log d + log(d/ε)/ε2))

= O(
d3
√

d

ε2
(log d) ln(d/εγ)(log(d/ε)/ε2))

= O(
d8
√

d

ε4
(log d)3 ln(1/ε)2 ln(1/γ)),

as claimed.

5 Concluding Remarks

The log n term in the runtime might be removable by
using a sampling approach to estimate the subgradient,
somewhat like the work of Nedić and Bertsekas.[NB01]

Given that the ellipsoid method was used, one might
ask why that method could not be simply applied to
solve the problem. Perhaps it can be, but it is not ob-
vious that a bit-complexity dependence can be avoided;
moreover, the subgradient descent scheme may be of in-
dependent interest. It seems likely that the conditioning
of A can be done using the regression procedure itself,
by making each column “`1 independent” of the others,
and then the ellipsoid method is not needed.

References

[AHPVar] P. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Approximating extent measures of points. J. ACM, to
appear.

[BC02] Mihai Bădoiu and K. L. Clarkson. Opti-
mal core-sets for balls. Manuscript, available via
http://cm.bell-labs.com/who/clarkson/, 2002.

[Ber46] S. Bernstein. The Theory of Probabilities. Gaste-
hizdat Publishing House, 1946.

[Ber01] D. Bertsekas. Convex Analysis and Optimization.
Athena Scientific, 2001.

[BHPI02] M. Bădoiu, S. Har-Peled, and P. Indyk. Approxi-
mate clustering via core-sets. In Proc. 34th Symp. The-
ory of Comp., 2002.

[Cla95] K. L. Clarkson. Las Vegas algorithms for linear
and integer programming when the dimension is small.
Journal of the ACM, 42(2):488–499, 1995.

[DK01] P. Drinneas and R. Kannan. Fast Monte-Carlo
algorithms for approximate matrix multiplication. In
EEE Symposium on Foundations of Computer Science,
2001.

[DKM] P. Drineas, R. Kannan, and M. W. Mahoney. Fast
monte carlo algorithms for matrices I: Approximat-
ing matrix multiplication. Manuscript. Available via
http://cs-www.cs.yale.edu/homes/mmahoney/.

[HPV02] S. Har-Peled and K. R. Varadarajan. Projective
clustering in high dimensions using core-sets. In Symp.
Comp. Geometry, 2002.

[Lov86] L. Lovász. Algorithmic Theory of Numbers, Graphs,
and Convexity. SIAM, 1986.

[Mau03] A. Maurer. A bound on the deviation probability
for sums of non-negative random variables. J. Inequal-
ities in Pure and Applied Mathematics, 4, 2003.

[MO03] D. McAllester and L. Ortiz. Concentration inequal-
ities for the missing mass and for histogram rule error.
J. Machine Learning Research, 4:895–911, 2003.

[MT93] N. Megiddo and A. Tamir. Linear time algorithms
for some separable quadratic programming problems.
Operations Research Letters, 13:203–211, March 1993.

[NB01] A. Nedić and D. Bertsekas. Incremental subgradient
methods for nondifferentiable optimization. SIAM J.
Opt., 12(1):109–138, 2001.

[Sch86] A. Schrijver. Theory of Linear and Integer Program-
ming. Wiley, New York, 1986.

[Sho85] N. Z. Shor. Minimization Methods for Non-
differentiable Functions. Springer, 1985.

[YKII88] P. Yamamoto, K. Kato, K. Imai, and H. Imai.
Algorithms for vertical and orthogonal L1 linear ap-
proximation of points. In Proceedings of the fourth
annual symposium on Computational geometry, pages
352–361. ACM Press, 1988.


