
university-logo

Motivation
Introduction

Approximation schemes
Hardness of Approximations

Approximation Algorithms

Kumar Abhishek

Department of Industrial and Systems Engineering
Lehigh University

COR@L Seminar Series, Spring 2005

Kumar Abhishek Approximation Algorithms



university-logo

Motivation
Introduction

Approximation schemes
Hardness of Approximations

Outline

1 Motivation
Why Approximation Algorithms?

2 Introduction
Constant factor Approximations
Set Cover Example
TSP Example

3 Approximation schemes
PTAS, FPTAS...
LP based approximation schemes
Semidefinite Programming

4 Hardness of Approximations
Some Results
MAX-SNP

Kumar Abhishek Approximation Algorithms



university-logo

Motivation
Introduction

Approximation schemes
Hardness of Approximations

Why Approximation Algorithms?

Why study Approximation Algorithms?

Why not ??

Although this may seem a paradox, all exact science is
dominated by the idea of approximation. Bertrand
Russel.(1872-1970)
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Introduction and some definitions

A lot of optimization problems are NP-Hard.

The widely believed assumption is that P 6= NP.

Approaches include polynomial-time algorithms,heuristics
etc.

Need to get ’footholds’ by understanding the combinatorial
structure of the problem.
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Introduction and some definitions

An α-approximation algorithm is an algorithm that runs in
polynomial time and always produces a solution within a
factor of α of the value of the optimal solution.

Do we know the optimal solution ??

Lower Bounding OPT...

Cardinality Vertex Cover (Find a maximal matching in G
and output the set of matched vertices.)

|M| ≤ OPT .
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Constant factor appproximations

Algorithm mentioned above is a 2-factor algorithm for
cardinality vertex matching.

Cover picked has cardinality 2|M| ≤ 2.OPT

Can the approximation guarentee be improved by better
analysis ?
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Set Covering

Given a universe U of n elements, a collection of subsets of
U, S = {S1, ..., Sk}, and a cost function c, find a minimum
cost subcollection of S that covers all elements of S.
Greedy Algorithm:
C = 0
While C 6= U do
Find the most cost effective set in the current iteration. say
S.
let α = cost(S)

|S−C| .

Pick S, and for each e ∈ S − C , set price(e) = α.
C = C ∪ S.
Output the picked sets.
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Set Covering continued...

price(ek ) ≤ OPT
|C̄|

≤ OPT
n−k+1 .

The greedy algorithm is an Hn factor algorithm for the
minimum set cover problem, where Hn = 1 + 1

2 + . . . + 1
n .

Tight example for showing that this is the tightest
approximation one can hope for the problem.
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Metric TSP

Problem Definition: Given a complete graph with
nonnegative edge costs, find the minimum cost cycle
visiting every vertex exactly once.

Theorem: For any polynomial time computable function
α(n), TSP cannot be approximated within a factor of α(n),
unless P = NP.

Key: Reduction from Hamiltonian Cycle Problem...

Had to assign edge costs that violate traingle inequality.
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Metric TSP continued: A 2-factor algorithm.

Find an MST T of G.

Double every edge of MST to get an Eulerian graph.

Find an Eulerian tour, T1, on this graph.

Output the tour that visits vertices of G in the order if their
first appearance in T1. Let C be that tour.

This is a 2-factor approximation algorithm for metric TSP.

Cost(T ) ≤ OPT , cost(T1) = 2cost(T ), cost(C) ≤
cost(T1)...
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Improving the approximation to factor 3/2...

Find an MST T of G.

Compute a minimum cost perfect matching, M, on the set
of odd-degree vertices of T. Add M to T to obtain an
Eulerian graph.

Find an Eulerian tour, T1, on this graph.

Output the tour that visits vertices of G in the order if their
first appearance in T1. Let C be that tour.

Note that Cost(M) ≤ OPT/2.

This is a 3/2 factor approximation guarentee for metric TSP.

Conjecture: An approximation factor of 4/3 may be
achievable.
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Some definitions

Some NP-Hard problems may allow approximability to any
required degree.

Approximation Scheme: Let Π be an NP-Hard problem
with objective function fΠ. An algorithm A is an
approximation scheme for Π if on input (I, ε), where I is an
instance of Π, and ε > 0 is an error parameter, it outputs a
solution s such that:
fΠ(I, s) ≤ (1 + ε)OPT if Π is a minimization problem.
fΠ(I, s) ≥ (1 − ε)OPT if Π is a maximization problem.
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PTAS and FPTAS

A is said to be a polynomial time approximation
scheme(PTAS), if for each fixed ε > 0, its running time is
bounded by a polynomial in the size of the instance I.

A is said to be a fully polynomial time approximation
scheme(FPTAS), if for each fixed ε > 0, its running time is
bounded by a polynomial in the size of the instance I and
1/ε.

Kumar Abhishek Approximation Algorithms
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AS continued...

Knapsack being NP-Hard does not admit a polynomial
time algorithm.

But it does admit a pseudo-polynomial time algorithm.

This fact is critically used to obtain a FPTAS for Knapsack.

All known pseudo-polynomial time algorithms for NP-Hard
problems are based on dynamic programming.
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Knapsack Problem

Definition: Given a set S = {a1, . . . , an} of objects, with
sizes size(ai) ∈ Z

+, and profits p(ai) ∈ Z
+, and a

knapsack capacity B ∈ Z
+, find a maximum profit subset of

objects having total size ≤ B.

Dynamic Programming:

Let Si,p denote a subset of {a1, . . . , ai with total profit
exactly p.

A(i + 1, p) = min{A(i , p), size(ai+1) + A(i , p −
profit(ai+1) if p(ai+1) < p.

A(i + 1, p) = A(i , p) otherwise.

max{p|A(n, p) ≤ B}.
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Knapsack Problem Continued...

Given ε > 0, let K = εP
n .

For each object ai , define p′(ai) = bp(ai )
K c .

With these as profits for objects, use dynamic
programming to get the most profitable set, S’.

p(S′) ≥ (1 − ε)OPT .

Uses P ≤ OPT . and Kp′(ai) ≤ p(ai) ≤ K (p′(ai + 1)).

Running time is O(n2bP
K c) = O(n2bn

ε
c)
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LP based schemes

The linear relaxation of an LP provides a lower bound to
the optimal solution.

Integrality gap/ratio supI
OPT (I)
OPTf (I)

. If the relaxation is not
exact, then the best approximation ratio an algorithm may
hope for is the integrality ratio.

Rounding of fractional values(including randomized
rounding)

Dual LP. Dual of the linear programming relaxation.
(zDP ≤ zLP ≤ OPT )
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LP based schemes

Primal-Dual schema. Suitable relaxations to the
complementary slackness conditions.

α ≥ 1, β ≥ 1. Then

xj = 0 or cj/α ≤
∑

aijyi ≤ cj (1)

yi = 0 or bi ≤
∑

aijxj ≤ βbi (2)
∑

cjxj ≤ αβ
∑

biyi (3)
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SemiDefinite Programming

Another class of relaxations.
Many NP-Hard problems can be expressed as strict
quadratic programs(MAX-CUT).
maximize C.Y

Di .Y = di (4)

Y positive semidefinite (5)

A matrix is semidefinite if ∀x ∈ R
n, xT Ax ≥ 0.

A.B = tr(AT B)

There is a theorem on finding seperating hyperplane for Y
in polynomial time.
As a result, semidefinite programs can be solved in time
polynomial in n and log(1/ε) using ellipsoid algorithm.
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Some results

Strongly NP-Hard: A problem is strongly NP-Hard if the
problem is NP-Hard even when all the numbers in the input
are encoded in unary.

A strongly NP-Hard problem cannot have a FPTAS
assuming P 6= NP.

KNAPSACK is not strongly NP-hard.
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Inapproximability Results

Sometimes, achieving certain reasonable approximation
ratios is no easier than computing optimal solutions.

Approximability preserving reductions. If two problems are
interreducble as such, then they have the same
approximability.

This can be used to categorize NP-Hard problems into a
small number of equivalence classes and get complete
problems for each class.
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PCP(Probabilistically checkable proofs) Theorem

Probabilistic characterizations of class NP yield a general
technique for obtaining gap-introducing reductions. The
PCP Theorem captures this characterization.

Class PCP(r(n), q(n)) : a complexity class consisting of
every language with an (r(n), q(n))-restricted verifier.
Verifier reads the input of size n and uses O(r(n)) random
bits to compute a sequence of O(q(n)) addresses in the
proof. if input ∈ L , then probability of acceptance is 1, else
it is less than half.

NP = PCP(logn, 1)

Kumar Abhishek Approximation Algorithms
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MAX-SNP

Class of Problems defined by Papadimitriou et al.for
studying which problems have a PTAS.

Max-SNP is defined as a class of problems having
constant factor approximation algorithms, but no
approximation schemes unless P = NP.

Result: There does not exist a PTAS for MAX-SNP hard
problems unless P = NP. (Proof uses PCP Theorem)

Using approximability preserving reductions, completeness
for MAX-SNP problems were defined.

Kumar Abhishek Approximation Algorithms



university-logo

Motivation
Introduction

Approximation schemes
Hardness of Approximations

Some Results
MAX-SNP

MAX-SNP

Class of Problems defined by Papadimitriou et al.for
studying which problems have a PTAS.

Max-SNP is defined as a class of problems having
constant factor approximation algorithms, but no
approximation schemes unless P = NP.

Result: There does not exist a PTAS for MAX-SNP hard
problems unless P = NP. (Proof uses PCP Theorem)

Using approximability preserving reductions, completeness
for MAX-SNP problems were defined.

Kumar Abhishek Approximation Algorithms



university-logo

Motivation
Introduction

Approximation schemes
Hardness of Approximations

Some Results
MAX-SNP

MAX-SNP

Class of Problems defined by Papadimitriou et al.for
studying which problems have a PTAS.

Max-SNP is defined as a class of problems having
constant factor approximation algorithms, but no
approximation schemes unless P = NP.

Result: There does not exist a PTAS for MAX-SNP hard
problems unless P = NP. (Proof uses PCP Theorem)

Using approximability preserving reductions, completeness
for MAX-SNP problems were defined.

Kumar Abhishek Approximation Algorithms



university-logo

Motivation
Introduction

Approximation schemes
Hardness of Approximations

Some Results
MAX-SNP

MAX-SNP

Class of Problems defined by Papadimitriou et al.for
studying which problems have a PTAS.

Max-SNP is defined as a class of problems having
constant factor approximation algorithms, but no
approximation schemes unless P = NP.

Result: There does not exist a PTAS for MAX-SNP hard
problems unless P = NP. (Proof uses PCP Theorem)

Using approximability preserving reductions, completeness
for MAX-SNP problems were defined.

Kumar Abhishek Approximation Algorithms



university-logo

Motivation
Introduction

Approximation schemes
Hardness of Approximations

Some Results
MAX-SNP

MAX-SNP

A reduction : A problem P is A-reducible if to problem T ,
implies if P is approximable to a factor a, then T is
approximable to a factor O(a).

AP reduction : A problem P is AP-reducible if to problem T
, implies if P is approximable to a factor 1 + a, then T is
approximable to a factor 1 + O(a).

L-Reductions: A L-reduction from A to B is a pair of
functions R and S, computable in logarithmic space, such
that if x is an instance of A with optimal cost OPT(x), then
R(x) is an instance of B with optimal cost that satisfies:
OPT (R(x)) ≤ αOPT (x)
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AP reduction : A problem P is AP-reducible if to problem T
, implies if P is approximable to a factor 1 + a, then T is
approximable to a factor 1 + O(a).
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MAX-SNP

Using L-reductions(), it was shown that every MAX-SNP
Hard problem is L-reducible to the MAX-3SAT, MAX-CUT,
Metric TSP problems.

MAX-3SAT, MAX-CUT, Metric TSP are MAX-SNP
complete.

MAX-CSP. (Constraint Satisfaction Problem)

Only two types of Max-CSP problems: either solvable to
optimality in polynomial time, or, MAX-SNP Hard.
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