Approximation Algorithms

Kumar Abhishek

Department of Industrial and Systems Engineering Lehigh University

COR@L Seminar Series, Spring 2005

イロン 不得 とくほ とくほう 一度

Outline

- Motivation
 - Why Approximation Algorithms?
- 2 Introduction
 - Constant factor Approximations
 - Set Cover Example
 - TSP Example
- 3 Approximation schemes
 - PTAS, FPTAS...
 - LP based approximation schemes
 - Semidefinite Programming
- 4 Hardness of Approximations
 - Some Results
 - MAX-SNP

(過) (ヨ) (ヨ) (ヨ)

Why Approximation Algorithms?

Why study Approximation Algorithms?

• Why not ??

Although this may seem a paradox, all exact science is dominated by the idea of approximation. Bertrand Russel.(1872-1970)

Why Approximation Algorithms?

Why study Approximation Algorithms?

• Why not ??

Although this may seem a paradox, all exact science is dominated by the idea of approximation. Bertrand Russel.(1872-1970)

Why Approximation Algorithms?

Why study Approximation Algorithms?

• Why not ??

Although this may seem a paradox, all exact science is dominated by the idea of approximation. Bertrand Russel.(1872-1970)

<ロ> <同> <同> < 回> < 回> < 回> < 回>

Why Approximation Algorithms?

Why study Approximation Algorithms?

• Why not ??

Although this may seem a paradox, all exact science is dominated by the idea of approximation. Bertrand Russel.(1872-1970)

<ロ> <同> <同> < 回> < 回> < 回> < 回>

Constant factor Approximations Set Cover Example TSP Example

Introduction and some definitions

• A lot of optimization problems are NP-Hard.

- The widely believed assumption is that $P \neq NP$.
- Approaches include polynomial-time algorithms, heuristics etc.
- Need to get 'footholds' by understanding the combinatorial structure of the problem.

ヘロト 人間 とくき とくきとう

Constant factor Approximations Set Cover Example TSP Example

Introduction and some definitions

- A lot of optimization problems are NP-Hard.
- The widely believed assumption is that $P \neq NP$.
- Approaches include polynomial-time algorithms, heuristics etc.
- Need to get 'footholds' by understanding the combinatorial structure of the problem.

ヘロト 人間 とくほとう ほとう

Constant factor Approximations Set Cover Example TSP Example

Introduction and some definitions

- A lot of optimization problems are NP-Hard.
- The widely believed assumption is that $P \neq NP$.
- Approaches include polynomial-time algorithms, heuristics etc.
- Need to get 'footholds' by understanding the combinatorial structure of the problem.

イロン イロン イヨン イヨン 三臣

Constant factor Approximations Set Cover Example TSP Example

Introduction and some definitions

- A lot of optimization problems are NP-Hard.
- The widely believed assumption is that $P \neq NP$.
- Approaches include polynomial-time algorithms, heuristics etc.
- Need to get 'footholds' by understanding the combinatorial structure of the problem.

Constant factor Approximations Set Cover Example TSP Example

Introduction and some definitions

- An α-approximation algorithm is an algorithm that runs in polynomial time and always produces a solution within a factor of α of the value of the optimal solution.
- Do we know the optimal solution ??
- Lower Bounding OPT...
- Cardinality Vertex Cover (Find a maximal matching in G and output the set of matched vertices.)

• $|M| \leq OPT$.

Constant factor Approximations Set Cover Example TSP Example

Introduction and some definitions

- An α -approximation algorithm is an algorithm that runs in polynomial time and always produces a solution within a factor of α of the value of the optimal solution.
- Do we know the optimal solution ??
- Lower Bounding OPT...
- Cardinality Vertex Cover (Find a maximal matching in G and output the set of matched vertices.)

• $|M| \leq OPT$.

Constant factor Approximations Set Cover Example TSP Example

Introduction and some definitions

- An α -approximation algorithm is an algorithm that runs in polynomial time and always produces a solution within a factor of α of the value of the optimal solution.
- Do we know the optimal solution ??
- Lower Bounding OPT...
- Cardinality Vertex Cover (Find a maximal matching in G and output the set of matched vertices.)

• $|M| \leq OPT$.

Constant factor Approximations Set Cover Example TSP Example

Introduction and some definitions

- An α -approximation algorithm is an algorithm that runs in polynomial time and always produces a solution within a factor of α of the value of the optimal solution.
- Do we know the optimal solution ??
- Lower Bounding OPT...
- Cardinality Vertex Cover (Find a maximal matching in G and output the set of matched vertices.)

• $|M| \leq OPT$.

Constant factor Approximations Set Cover Example TSP Example

Introduction and some definitions

- An α -approximation algorithm is an algorithm that runs in polynomial time and always produces a solution within a factor of α of the value of the optimal solution.
- Do we know the optimal solution ??
- Lower Bounding OPT...
- Cardinality Vertex Cover (Find a maximal matching in G and output the set of matched vertices.)

• $|M| \leq OPT$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ののの

Constant factor Approximations Set Cover Example TSP Example

Constant factor appproximations

- Algorithm mentioned above is a 2-factor algorithm for cardinality vertex matching.
- Cover picked has cardinality $2|M| \le 2.OPT$
- Can the approximation guarentee be improved by better analysis ?

イロン 不得 とくほ とくほう 一頭

Constant factor Approximations Set Cover Example TSP Example

Constant factor appproximations

- Algorithm mentioned above is a 2-factor algorithm for cardinality vertex matching.
- Cover picked has cardinality $2|M| \le 2.OPT$
- Can the approximation guarentee be improved by better analysis ?

Constant factor Approximations Set Cover Example TSP Example

Constant factor appproximations

- Algorithm mentioned above is a 2-factor algorithm for cardinality vertex matching.
- Cover picked has cardinality $2|M| \le 2.OPT$
- Can the approximation guarentee be improved by better analysis ?

Constant factor Approximations Set Cover Example TSP Example

Constant factor appproximations

- Algorithm mentioned above is a 2-factor algorithm for cardinality vertex matching.
- Cover picked has cardinality $2|M| \le 2.OPT$
- Can the approximation guarentee be improved by better analysis ?

Constant factor Approximations Set Cover Example TSP Example

Set Covering

- Given a universe U of n elements, a collection of subsets of U, S = {S₁, ..., S_k}, and a cost function c, find a minimum cost subcollection of S that covers all elements of S.
- Greedy Algorithm:
- *C* = 0
- While $C \neq U$ do
- Find the most cost effective set in the current iteration. say S.
- let $\alpha = \frac{cost(S)}{|S-C|}$.
- Pick S, and for each $e \in S C$, set $price(e) = \alpha$. $C = C \cup S$.
- Output the picked sets.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Constant factor Approximations Set Cover Example TSP Example

Set Covering

- Given a universe U of n elements, a collection of subsets of U, S = {S₁, ..., S_k}, and a cost function c, find a minimum cost subcollection of S that covers all elements of S.
- Greedy Algorithm:
- *C* = 0
- While $C \neq U$ do
- Find the most cost effective set in the current iteration. say S.
- let $\alpha = \frac{cost(S)}{|S-C|}$.
- Pick S, and for each $e \in S C$, set $price(e) = \alpha$. $C = C \cup S$.
- Output the picked sets.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Constant factor Approximations Set Cover Example TSP Example

Set Covering

- Given a universe U of n elements, a collection of subsets of U, S = {S₁, ..., S_k}, and a cost function c, find a minimum cost subcollection of S that covers all elements of S.
- Greedy Algorithm:
- C = 0
- While $C \neq U$ do
- Find the most cost effective set in the current iteration. say S.
- let $\alpha = \frac{cost(S)}{|S-C|}$.
- Pick S, and for each $e \in S C$, set $price(e) = \alpha$. $C = C \cup S$.
- Output the picked sets.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Constant factor Approximations Set Cover Example TSP Example

Set Covering

- Given a universe U of n elements, a collection of subsets of U, S = {S₁, ..., S_k}, and a cost function c, find a minimum cost subcollection of S that covers all elements of S.
- Greedy Algorithm:
- C = 0
- While $C \neq U$ do
- Find the most cost effective set in the current iteration. say S.
- let $\alpha = \frac{cost(S)}{|S-C|}$.
- Pick S, and for each $e \in S C$, set $price(e) = \alpha$. $C = C \cup S$.
- Output the picked sets.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- Given a universe U of n elements, a collection of subsets of U, S = {S₁, ..., S_k}, and a cost function c, find a minimum cost subcollection of S that covers all elements of S.
- Greedy Algorithm:
- C = 0
- While $C \neq U$ do
- Find the most cost effective set in the current iteration. say S.
- let $\alpha = \frac{cost(S)}{|S-C|}$.
- Pick S, and for each $e \in S C$, set $price(e) = \alpha$. $C = C \cup S$.
- Output the picked sets.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- Given a universe U of n elements, a collection of subsets of U, S = {S₁, ..., S_k}, and a cost function c, find a minimum cost subcollection of S that covers all elements of S.
- Greedy Algorithm:
- C = 0
- While $C \neq U$ do
- Find the most cost effective set in the current iteration. say S.
- let $\alpha = \frac{cost(S)}{|S-C|}$.
- Pick S, and for each $e \in S C$, set $price(e) = \alpha$. $C = C \cup S$.
- Output the picked sets.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- Given a universe U of n elements, a collection of subsets of U, S = {S₁, ..., S_k}, and a cost function c, find a minimum cost subcollection of S that covers all elements of S.
- Greedy Algorithm:
- C = 0
- While $C \neq U$ do
- Find the most cost effective set in the current iteration. say S.
- let $\alpha = \frac{cost(S)}{|S-C|}$.
- Pick S, and for each $e \in S C$, set $price(e) = \alpha$. $C = C \cup S$.
- Output the picked sets.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

- Given a universe U of n elements, a collection of subsets of U, S = {S₁, ..., S_k}, and a cost function c, find a minimum cost subcollection of S that covers all elements of S.
- Greedy Algorithm:
- C = 0
- While $C \neq U$ do
- Find the most cost effective set in the current iteration. say S.
- let $\alpha = \frac{cost(S)}{|S-C|}$.
- Pick S, and for each $e \in S C$, set $price(e) = \alpha$. $C = C \cup S$.
- Output the picked sets.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Constant factor Approximations Set Cover Example TSP Example

Set Covering continued...

• price $(e_k) \leq \frac{OPT}{|\bar{C}|} \leq \frac{OPT}{n-k+1}$.

- The greedy algorithm is an H_n factor algorithm for the minimum set cover problem, where $H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$.
- Tight example for showing that this is the tightest approximation one can hope for the problem.

ヘロト 人間 とくほとく ほとう

Constant factor Approximations Set Cover Example TSP Example

Set Covering continued...

- price(e_k) $\leq \frac{OPT}{|\bar{C}|} \leq \frac{OPT}{n-k+1}$.
- The greedy algorithm is an H_n factor algorithm for the minimum set cover problem, where $H_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$.
- Tight example for showing that this is the tightest approximation one can hope for the problem.

<ロ> (四) (四) (三) (三) (三)

Constant factor Approximations Set Cover Example TSP Example

Set Covering continued...

- price(e_k) $\leq \frac{OPT}{|\bar{C}|} \leq \frac{OPT}{n-k+1}$.
- The greedy algorithm is an H_n factor algorithm for the minimum set cover problem, where $H_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$.
- Tight example for showing that this is the tightest approximation one can hope for the problem.

<ロ> (四) (四) (三) (三) (三)

Constant factor Approximations Set Cover Example TSP Example

- Problem Definition: Given a complete graph with nonnegative edge costs, find the minimum cost cycle visiting every vertex exactly once.
- Theorem: For any polynomial time computable function $\alpha(n)$, TSP cannot be approximated within a factor of $\alpha(n)$, unless P = NP.
- Key: Reduction from Hamiltonian Cycle Problem...
- Had to assign edge costs that violate traingle inequality.

Constant factor Approximations Set Cover Example TSP Example

- Problem Definition: Given a complete graph with nonnegative edge costs, find the minimum cost cycle visiting every vertex exactly once.
- Theorem: For any polynomial time computable function *α*(*n*), TSP cannot be approximated within a factor of *α*(*n*), unless *P* = *NP*.
- Key: Reduction from Hamiltonian Cycle Problem...
- Had to assign edge costs that violate traingle inequality.

<ロ> <同> <同> < 回> < 回> < 回> < 回>

Constant factor Approximations Set Cover Example TSP Example

- Problem Definition: Given a complete graph with nonnegative edge costs, find the minimum cost cycle visiting every vertex exactly once.
- Theorem: For any polynomial time computable function *α*(*n*), TSP cannot be approximated within a factor of *α*(*n*), unless *P* = *NP*.
- Key: Reduction from Hamiltonian Cycle Problem...
- Had to assign edge costs that violate traingle inequality.

<ロ> (四) (四) (三) (三) (三)

Constant factor Approximations Set Cover Example TSP Example

- Problem Definition: Given a complete graph with nonnegative edge costs, find the minimum cost cycle visiting every vertex exactly once.
- Theorem: For any polynomial time computable function *α*(*n*), TSP cannot be approximated within a factor of *α*(*n*), unless *P* = *NP*.
- Key: Reduction from Hamiltonian Cycle Problem...
- Had to assign edge costs that violate traingle inequality.

<ロ> <同> <同> < 回> < 回> < 回> < 回>

Constant factor Approximations Set Cover Example TSP Example

Metric TSP continued: A 2-factor algorithm.

• Find an MST T of G.

- Double every edge of MST to get an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T_1 . Let C be that tour.
- This is a 2-factor approximation algorithm for metric TSP.
- Cost(T) ≤ OPT, cost(T₁) = 2cost(T), cost(C) ≤ cost(T₁)...

Constant factor Approximations Set Cover Example TSP Example

Metric TSP continued: A 2-factor algorithm.

- Find an MST T of G.
- Double every edge of MST to get an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T_1 . Let C be that tour.
- This is a 2-factor approximation algorithm for metric TSP.
- Cost(T) ≤ OPT, cost(T₁) = 2cost(T), cost(C) ≤ cost(T₁)...

<ロ> (四) (四) (三) (三) (三)
Constant factor Approximations Set Cover Example TSP Example

Metric TSP continued: A 2-factor algorithm.

- Find an MST T of G.
- Double every edge of MST to get an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T_1 . Let C be that tour.
- This is a 2-factor approximation algorithm for metric TSP.
- Cost(T) ≤ OPT, cost(T₁) = 2cost(T), cost(C) ≤ cost(T₁)...

<ロ> <同> <ヨ> <ヨ> 三ヨー

Constant factor Approximations Set Cover Example TSP Example

Metric TSP continued: A 2-factor algorithm.

- Find an MST T of G.
- Double every edge of MST to get an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T₁. Let C be that tour.
- This is a 2-factor approximation algorithm for metric TSP.
- Cost(T) ≤ OPT, cost(T₁) = 2cost(T), cost(C) ≤ cost(T₁)...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Constant factor Approximations Set Cover Example TSP Example

Metric TSP continued: A 2-factor algorithm.

- Find an MST T of G.
- Double every edge of MST to get an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T₁. Let C be that tour.
- This is a 2-factor approximation algorithm for metric TSP.
- Cost(T) ≤ OPT, cost(T₁) = 2cost(T), cost(C) ≤ cost(T₁)...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Constant factor Approximations Set Cover Example TSP Example

Metric TSP continued: A 2-factor algorithm.

- Find an MST T of G.
- Double every edge of MST to get an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T₁. Let C be that tour.
- This is a 2-factor approximation algorithm for metric TSP.
- $Cost(T) \le OPT, cost(T_1) = 2cost(T), cost(C) \le cost(T_1)...$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constant factor Approximations Set Cover Example TSP Example

Improving the approximation to factor 3/2...

• Find an MST T of G.

- Compute a minimum cost perfect matching, M, on the set of odd-degree vertices of T. Add M to T to obtain an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T_1 . Let C be that tour.
- Note that $Cost(M) \leq OPT/2$.
- This is a 3/2 factor approximation guarentee for metric TSP.
- Conjecture: An approximation factor of 4/3 may be achievable.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Constant factor Approximations Set Cover Example TSP Example

Improving the approximation to factor 3/2...

- Find an MST T of G.
- Compute a minimum cost perfect matching, M, on the set of odd-degree vertices of T. Add M to T to obtain an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T_1 . Let C be that tour.
- Note that $Cost(M) \leq OPT/2$.
- This is a 3/2 factor approximation guarentee for metric TSP.
- Conjecture: An approximation factor of 4/3 may be achievable.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Constant factor Approximations Set Cover Example TSP Example

Improving the approximation to factor 3/2...

- Find an MST T of G.
- Compute a minimum cost perfect matching, M, on the set of odd-degree vertices of T. Add M to T to obtain an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T_1 . Let C be that tour.
- Note that $Cost(M) \leq OPT/2$.
- This is a 3/2 factor approximation guarentee for metric TSP.
- Conjecture: An approximation factor of 4/3 may be achievable.

イロン 不得 とくほ とくほう 一頭

Constant factor Approximations Set Cover Example TSP Example

Improving the approximation to factor 3/2...

- Find an MST T of G.
- Compute a minimum cost perfect matching, M, on the set of odd-degree vertices of T. Add M to T to obtain an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in *T*₁. Let C be that tour.
- Note that $Cost(M) \leq OPT/2$.
- This is a 3/2 factor approximation guarentee for metric TSP.
- Conjecture: An approximation factor of 4/3 may be achievable.

<ロ> (四) (四) (三) (三) (三)

Constant factor Approximations Set Cover Example TSP Example

Improving the approximation to factor 3/2...

- Find an MST T of G.
- Compute a minimum cost perfect matching, M, on the set of odd-degree vertices of T. Add M to T to obtain an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in T₁. Let C be that tour.
- Note that $Cost(M) \leq OPT/2$.
- This is a 3/2 factor approximation guarentee for metric TSP.
- Conjecture: An approximation factor of 4/3 may be achievable.

・ロット (雪) (日) (日) (日)

Constant factor Approximations Set Cover Example TSP Example

Improving the approximation to factor 3/2...

- Find an MST T of G.
- Compute a minimum cost perfect matching, M, on the set of odd-degree vertices of T. Add M to T to obtain an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in *T*₁. Let C be that tour.
- Note that $Cost(M) \leq OPT/2$.
- This is a 3/2 factor approximation guarentee for metric TSP.
- Conjecture: An approximation factor of 4/3 may be achievable.

・ロット (雪) (日) (日) (日)

Constant factor Approximations Set Cover Example TSP Example

Improving the approximation to factor 3/2...

- Find an MST T of G.
- Compute a minimum cost perfect matching, M, on the set of odd-degree vertices of T. Add M to T to obtain an Eulerian graph.
- Find an Eulerian tour, T_1 , on this graph.
- Output the tour that visits vertices of G in the order if their first appearance in *T*₁. Let C be that tour.
- Note that $Cost(M) \leq OPT/2$.
- This is a 3/2 factor approximation guarentee for metric TSP.
- Conjecture: An approximation factor of 4/3 may be achievable.

◆□▶ ◆□▶ ★ □▶ ★ □▶ ▲ □ ● ● ● ●

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Some definitions

- Some NP-Hard problems may allow approximability to any required degree.
- Approximation Scheme: Let Π be an NP-Hard problem with objective function f_Π. An algorithm A is an approximation scheme for Π if on input (*I*, *ε*), where I is an instance of Π, and *ε* > 0 is an error parameter, it outputs a solution s such that:

 $f_{\Pi}(I, s) \leq (1 + \epsilon) OPT$ if Π is a minimization problem. $f_{\Pi}(I, s) \geq (1 - \epsilon) OPT$ if Π is a maximization problem.

<ロン <回と < 注入 < 注入 < 注入 < 注入 < 注入

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Some definitions

- Some NP-Hard problems may allow approximability to any required degree.
- Approximation Scheme: Let Π be an NP-Hard problem with objective function f_Π. An algorithm A is an approximation scheme for Π if on input (*I*, *ε*), where I is an instance of Π, and *ε* > 0 is an error parameter, it outputs a solution s such that:

 $f_{\Pi}(I, s) \leq (1 + \epsilon) OPT$ if Π is a minimization problem. $f_{\Pi}(I, s) \geq (1 - \epsilon) OPT$ if Π is a maximization problem.

<ロ> (四) (四) (三) (三) (三)

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

PTAS and FPTAS

- A is said to be a fully polynomial time approximation scheme(FPTAS), if for each fixed ε > 0, its running time is bounded by a polynomial in the size of the instance I and 1/ε.

ヘロト ヘアト ヘビト ヘビト

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

PTAS and FPTAS

- A is said to be a fully polynomial time approximation scheme(FPTAS), if for each fixed *ε* > 0, its running time is bounded by a polynomial in the size of the instance I and 1/*ε*.

・ロット (雪) (山) (山) (山)

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

AS continued...

- Knapsack being NP-Hard does not admit a polynomial time algorithm.
- But it does admit a pseudo-polynomial time algorithm.
- This fact is critically used to obtain a FPTAS for Knapsack.
- All known pseudo-polynomial time algorithms for NP-Hard problems are based on dynamic programming.

ヘロト ヘアト ヘビト ヘビト

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

AS continued...

- Knapsack being NP-Hard does not admit a polynomial time algorithm.
- But it does admit a pseudo-polynomial time algorithm.
- This fact is critically used to obtain a FPTAS for Knapsack.
- All known pseudo-polynomial time algorithms for NP-Hard problems are based on dynamic programming.

ヘロト ヘ戸ト ヘヨト ヘヨト

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

AS continued...

- Knapsack being NP-Hard does not admit a polynomial time algorithm.
- But it does admit a pseudo-polynomial time algorithm.
- This fact is critically used to obtain a FPTAS for Knapsack.
- All known pseudo-polynomial time algorithms for NP-Hard problems are based on dynamic programming.

ヘロト ヘ戸ト ヘヨト ヘヨト

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

AS continued...

- Knapsack being NP-Hard does not admit a polynomial time algorithm.
- But it does admit a pseudo-polynomial time algorithm.
- This fact is critically used to obtain a FPTAS for Knapsack.
- All known pseudo-polynomial time algorithms for NP-Hard problems are based on dynamic programming.

イロト イロト イヨト

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem

- Definition: Given a set S = {a₁,..., a_n} of objects, with sizes size(a_i) ∈ Z⁺, and profits p(a_i) ∈ Z⁺, and a knapsack capacity B ∈ Z⁺, find a maximum profit subset of objects having total size ≤ B.
- Dynamic Programming:
- Let S_{i,p} denote a subset of {a₁,..., a_i with total profit exactly p.
- $A(i + 1, p) = min\{A(i, p), size(a_{i+1}) + A(i, p profit(a_{i+1})) \ if \ p(a_{i+1}) < p.$
- A(i+1,p) = A(i,p) otherwise.
- $max\{p|A(n,p) \leq B\}.$

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem

- Definition: Given a set S = {a₁,..., a_n} of objects, with sizes size(a_i) ∈ Z⁺, and profits p(a_i) ∈ Z⁺, and a knapsack capacity B ∈ Z⁺, find a maximum profit subset of objects having total size ≤ B.
- Dynamic Programming:
- Let S_{i,p} denote a subset of {a₁,..., a_i with total profit exactly p.
- $A(i + 1, p) = min\{A(i, p), size(a_{i+1}) + A(i, p profit(a_{i+1})) \ if \ p(a_{i+1}) < p.$
- A(i+1,p) = A(i,p) otherwise.
- $max\{p|A(n,p) \leq B\}.$

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem

- Definition: Given a set S = {a₁,..., a_n} of objects, with sizes size(a_i) ∈ Z⁺, and profits p(a_i) ∈ Z⁺, and a knapsack capacity B ∈ Z⁺, find a maximum profit subset of objects having total size ≤ B.
- Dynamic Programming:
- Let S_{i,p} denote a subset of {a₁,..., a_i with total profit exactly p.
- $A(i + 1, p) = min\{A(i, p), size(a_{i+1}) + A(i, p profit(a_{i+1})) \ if \ p(a_{i+1}) < p.$
- A(i + 1, p) = A(i, p) otherwise.
- $max\{p|A(n,p) \leq B\}.$

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem

- Definition: Given a set S = {a₁,..., a_n} of objects, with sizes size(a_i) ∈ Z⁺, and profits p(a_i) ∈ Z⁺, and a knapsack capacity B ∈ Z⁺, find a maximum profit subset of objects having total size ≤ B.
- Dynamic Programming:
- Let S_{i,p} denote a subset of {a₁,..., a_i with total profit exactly p.
- $A(i + 1, p) = min\{A(i, p), size(a_{i+1}) + A(i, p profit(a_{i+1})) \ if \ p(a_{i+1}) < p.$
- A(i+1,p) = A(i,p) otherwise.
- $max\{p|A(n,p) \leq B\}.$

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem

- Definition: Given a set S = {a₁,..., a_n} of objects, with sizes size(a_i) ∈ Z⁺, and profits p(a_i) ∈ Z⁺, and a knapsack capacity B ∈ Z⁺, find a maximum profit subset of objects having total size ≤ B.
- Dynamic Programming:
- Let S_{i,p} denote a subset of {a₁,..., a_i with total profit exactly p.
- $A(i + 1, p) = min\{A(i, p), size(a_{i+1}) + A(i, p profit(a_{i+1})) \ if \ p(a_{i+1}) < p.$
- A(i+1,p) = A(i,p) otherwise.
- $max\{p|A(n,p) \leq B\}.$

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem

- Definition: Given a set S = {a₁,..., a_n} of objects, with sizes size(a_i) ∈ Z⁺, and profits p(a_i) ∈ Z⁺, and a knapsack capacity B ∈ Z⁺, find a maximum profit subset of objects having total size ≤ B.
- Dynamic Programming:
- Let S_{i,p} denote a subset of {a₁,..., a_i with total profit exactly p.
- $A(i + 1, p) = min\{A(i, p), size(a_{i+1}) + A(i, p profit(a_{i+1})) \ if \ p(a_{i+1}) < p.$
- A(i+1,p) = A(i,p) otherwise.
- $max\{p|A(n,p) \leq B\}.$

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem Continued...

• Given
$$\epsilon > 0$$
, let $K = \frac{\epsilon P}{n}$.

- For each object a_i , define $p'(a_i) = \lfloor \frac{p(a_i)}{K} \rfloor$.
- With these as profits for objects, use dynamic programming to get the most profitable set, S'.

•
$$p(S') \ge (1 - \epsilon)OPT$$
.

- Uses $P \leq OPT$. and $Kp'(a_i) \leq p(a_i) \leq K(p'(a_i + 1))$.
- Running time is $\mathbb{O}(n^2 \lfloor \frac{P}{K} \rfloor) = \mathbb{O}(n^2 \lfloor \frac{n}{\epsilon} \rfloor)$

ヘロト ヘ戸ト ヘヨト ヘヨト

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem Continued...

• Given
$$\epsilon > 0$$
, let $K = \frac{\epsilon P}{n}$.

- For each object a_i , define $p'(a_i) = \lfloor \frac{p(a_i)}{K} \rfloor$.
- With these as profits for objects, use dynamic programming to get the most profitable set, S'.

•
$$p(S') \ge (1 - \epsilon)OPT$$
.

- Uses $P \leq OPT$. and $Kp'(a_i) \leq p(a_i) \leq K(p'(a_i + 1))$.
- Running time is $\mathbb{O}(n^2 \lfloor \frac{P}{K} \rfloor) = \mathbb{O}(n^2 \lfloor \frac{n}{\epsilon} \rfloor)$

イロト 不得 トイヨト イヨト 三頭

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem Continued...

• Given
$$\epsilon > 0$$
, let $K = \frac{\epsilon P}{n}$.

- For each object a_i , define $p'(a_i) = \lfloor \frac{p(a_i)}{K} \rfloor$.
- With these as profits for objects, use dynamic programming to get the most profitable set, S'.

•
$$p(S') \ge (1 - \epsilon)OPT$$
.

- Uses $P \leq OPT$. and $Kp'(a_i) \leq p(a_i) \leq K(p'(a_i + 1))$.
- Running time is $\mathbb{O}(n^2 \lfloor \frac{P}{K} \rfloor) = \mathbb{O}(n^2 \lfloor \frac{n}{\epsilon} \rfloor)$

<ロ> (同) (同) (目) (日) (日) (日)

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem Continued...

• Given
$$\epsilon > 0$$
, let $K = \frac{\epsilon P}{n}$.

- For each object a_i , define $p'(a_i) = \lfloor \frac{p(a_i)}{K} \rfloor$.
- With these as profits for objects, use dynamic programming to get the most profitable set, S'.

•
$$p(S') \ge (1 - \epsilon)OPT$$
.

- Uses $P \leq OPT$. and $Kp'(a_i) \leq p(a_i) \leq K(p'(a_i + 1))$.
- Running time is $\mathbb{O}(n^2 \lfloor \frac{P}{K} \rfloor) = \mathbb{O}(n^2 \lfloor \frac{n}{\epsilon} \rfloor)$

<ロ> (同) (同) (目) (日) (日) (日)

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem Continued...

• Given
$$\epsilon > 0$$
, let $K = \frac{\epsilon P}{n}$.

- For each object a_i , define $p'(a_i) = \lfloor \frac{p(a_i)}{K} \rfloor$.
- With these as profits for objects, use dynamic programming to get the most profitable set, S'.

•
$$p(S') \ge (1 - \epsilon)OPT$$
.

- Uses $P \leq OPT$. and $Kp'(a_i) \leq p(a_i) \leq K(p'(a_i + 1))$.
- Running time is $\mathbb{O}(n^2 \lfloor \frac{P}{K} \rfloor) = \mathbb{O}(n^2 \lfloor \frac{n}{\epsilon} \rfloor)$

<ロ> (四) (四) (三) (三) (三)

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

Knapsack Problem Continued...

• Given
$$\epsilon > 0$$
, let $K = \frac{\epsilon P}{n}$.

- For each object a_i , define $p'(a_i) = \lfloor \frac{p(a_i)}{K} \rfloor$.
- With these as profits for objects, use dynamic programming to get the most profitable set, S'.

•
$$p(S') \ge (1 - \epsilon)OPT$$
.

- Uses $P \leq OPT$. and $Kp'(a_i) \leq p(a_i) \leq K(p'(a_i + 1))$.
- Running time is $\mathbb{O}(n^2 \lfloor \frac{P}{K} \rfloor) = \mathbb{O}(n^2 \lfloor \frac{n}{\epsilon} \rfloor)$

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

LP based schemes

- The linear relaxation of an LP provides a lower bound to the optimal solution.
- Integrality gap/ratio sup₁ OPT(1) OPT(1). If the relaxation is not exact, then the best approximation ratio an algorithm may hope for is the integrality ratio.
- Rounding of fractional values(including randomized rounding)
- Dual LP. Dual of the linear programming relaxation.
 (*z*_{DP} ≤ *z*_{LP} ≤ OPT)

・ロット (雪) (日) (日) (日)

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

LP based schemes

- The linear relaxation of an LP provides a lower bound to the optimal solution.
- Integrality gap/ratio sup₁ OPT(1) / OPT_f(1). If the relaxation is not exact, then the best approximation ratio an algorithm may hope for is the integrality ratio.
- Rounding of fractional values(including randomized rounding)
- Dual LP. Dual of the linear programming relaxation.
 (*z*_{DP} ≤ *z*_{LP} ≤ OPT)

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

LP based schemes

- The linear relaxation of an LP provides a lower bound to the optimal solution.
- Integrality gap/ratio sup₁ OPT(1) / OPT_f(1). If the relaxation is not exact, then the best approximation ratio an algorithm may hope for is the integrality ratio.
- Rounding of fractional values(including randomized rounding)
- Dual LP. Dual of the linear programming relaxation.
 (*z*_{DP} ≤ *z*_{LP} ≤ OPT)

LP based schemes

- The linear relaxation of an LP provides a lower bound to the optimal solution.
- Integrality gap/ratio sup₁ OPT(1) / OPT_f(1). If the relaxation is not exact, then the best approximation ratio an algorithm may hope for is the integrality ratio.
- Rounding of fractional values(including randomized rounding)
- Dual LP. Dual of the linear programming relaxation.
 (*z*_{DP} ≤ *z*_{LP} ≤ OPT)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

LP based schemes

- Primal-Dual schema. Suitable relaxations to the complementary slackness conditions.
- $\alpha \geq 1, \beta \geq 1$. Then

$$x_j = 0$$
 or $c_j / \alpha \leq \sum a_{ij} y_i \leq c_j$ (1)

$$y_i = 0$$
 or $b_i \leq \sum a_{ij} x_j \leq \beta b_i$ (2)

$$\sum c_j x_j \le \alpha \beta \sum b_i y_i \tag{3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

LP based schemes

• Primal-Dual schema. Suitable relaxations to the complementary slackness conditions.

•
$$\alpha \geq 1, \beta \geq 1$$
. Then

$$m{x}_j = m{0}$$
 or $m{c}_j / lpha \leq \sum m{a}_{ij} m{y}_i \leq m{c}_j$ (1)

$$y_i = 0$$
 or $b_i \leq \sum a_{ij} x_j \leq \beta b_i$ (2)

$$\sum c_j x_j \le \alpha \beta \sum b_i y_i \tag{3}$$

・ロット (雪) (日) (日) (日)

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

SemiDefinite Programming

Another class of relaxations.

- Many NP-Hard problems can be expressed as strict quadratic programs(MAX-CUT).
- maximize C.Y

$$D_i.Y = d_i \tag{4}$$

positive semidefinite

- A matrix is semidefinite if $\forall x \in \mathbb{R}^{\ltimes}, x^T A x \ge 0$.
- $A.B = tr(A^T B)$
- There is a theorem on finding seperating hyperplane for Y in polynomial time.
- As a result, semidefinite programs can be solved in time polynomial in n and *log*(1/ε) using ellipsoid algorithm.

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

SemiDefinite Programming

- Another class of relaxations.
- Many NP-Hard problems can be expressed as strict quadratic programs(MAX-CUT).

maximize C.Y

$$D_i \cdot Y = d_i \tag{4}$$

positive semidefinite

- A matrix is semidefinite if $\forall x \in \mathbb{R}^{\ltimes}, x^T A x \ge 0$.
- $A.B = tr(A^T B)$
- There is a theorem on finding seperating hyperplane for Y in polynomial time.
- As a result, semidefinite programs can be solved in time polynomial in n and $log(1/\epsilon)$ using ellipsoid algorithm.

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

SemiDefinite Programming

- Another class of relaxations.
- Many NP-Hard problems can be expressed as strict quadratic programs(MAX-CUT).
- maximize C.Y

$$D_i.Y = d_i \tag{4}$$

(5)

Y positive semidefinite

- A matrix is semidefinite if $\forall x \in \mathbb{R}^{\ltimes}, x^{T}Ax \ge 0$.
- $A.B = tr(A^T B)$
- There is a theorem on finding seperating hyperplane for Y in polynomial time.
- As a result, semidefinite programs can be solved in time polynomial in n and $log(1/\epsilon)$ using ellipsoid algorithm.

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

SemiDefinite Programming

- Another class of relaxations.
- Many NP-Hard problems can be expressed as strict quadratic programs(MAX-CUT).
- maximize C.Y

$$D_i \cdot Y = d_i \tag{4}$$

Y positive semidefinite

(5)

• A matrix is semidefinite if $\forall x \in \mathbb{R}^{\ltimes}, x^T A x \ge 0$.

- $A.B = tr(A^T B)$
- There is a theorem on finding seperating hyperplane for Y in polynomial time.
- As a result, semidefinite programs can be solved in time polynomial in n and *log*(1/ε) using ellipsoid algorithm.

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

SemiDefinite Programming

- Another class of relaxations.
- Many NP-Hard problems can be expressed as strict quadratic programs(MAX-CUT).
- maximize C.Y

$$D_i \cdot Y = d_i \tag{4}$$

Y positive semidefinite

(5)

- A matrix is semidefinite if $\forall x \in \mathbb{R}^{\ltimes}, x^T A x \ge 0$.
- $A.B = tr(A^TB)$
- There is a theorem on finding seperating hyperplane for Y in polynomial time.
- As a result, semidefinite programs can be solved in time polynomial in n and log(1/ε) using ellipsoid algorithm.

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

SemiDefinite Programming

- Another class of relaxations.
- Many NP-Hard problems can be expressed as strict quadratic programs(MAX-CUT).
- maximize C.Y

$$D_i \cdot Y = d_i \tag{4}$$

(5)

Y positive semidefinite

- A matrix is semidefinite if $\forall x \in \mathbb{R}^{\ltimes}, x^T A x \ge 0$.
- $A.B = tr(A^T B)$
- There is a theorem on finding seperating hyperplane for Y in polynomial time.
- As a result, semidefinite programs can be solved in time polynomial in n and $log(1/\epsilon)$ using ellipsoid algorithm.

PTAS, FPTAS... LP based approximation schemes Semidefinite Programming

SemiDefinite Programming

- Another class of relaxations.
- Many NP-Hard problems can be expressed as strict quadratic programs(MAX-CUT).
- maximize C.Y

$$D_i \cdot Y = d_i \tag{4}$$

(5)

Y positive semidefinite

- A matrix is semidefinite if $\forall x \in \mathbb{R}^{\ltimes}, x^T A x \ge 0$.
- $A.B = tr(A^T B)$
- There is a theorem on finding seperating hyperplane for Y in polynomial time.
- As a result, semidefinite programs can be solved in time polynomial in n and log(1/e) using ellipsoid algorithm.

Some Results MAX-SNP

Some results

- Strongly NP-Hard: A problem is strongly NP-Hard if the problem is NP-Hard even when all the numbers in the input are encoded in unary.
- A strongly NP-Hard problem cannot have a FPTAS assuming P ≠ NP.
- KNAPSACK is not strongly NP-hard.

Some Results MAX-SNP

Some results

- Strongly NP-Hard: A problem is strongly NP-Hard if the problem is NP-Hard even when all the numbers in the input are encoded in unary.
- A strongly NP-Hard problem cannot have a FPTAS assuming *P* ≠ *NP*.
- KNAPSACK is not strongly NP-hard.

Some Results MAX-SNP

Some results

- Strongly NP-Hard: A problem is strongly NP-Hard if the problem is NP-Hard even when all the numbers in the input are encoded in unary.
- A strongly NP-Hard problem cannot have a FPTAS assuming *P* ≠ *NP*.
- KNAPSACK is not strongly NP-hard.

Some Results MAX-SNP

Inapproximability Results

- Sometimes, achieving certain reasonable approximation ratios is no easier than computing optimal solutions.
- Approximability preserving reductions. If two problems are interreducble as such, then they have the same approximability.
- This can be used to categorize NP-Hard problems into a small number of equivalence classes and get *complete* problems for each class.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Some Results MAX-SNP

Inapproximability Results

- Sometimes, achieving certain reasonable approximation ratios is no easier than computing optimal solutions.
- Approximability preserving reductions. If two problems are interreducble as such, then they have the same approximability.
- This can be used to categorize NP-Hard problems into a small number of equivalence classes and get *complete* problems for each class.

Some Results MAX-SNP

Inapproximability Results

- Sometimes, achieving certain reasonable approximation ratios is no easier than computing optimal solutions.
- Approximability preserving reductions. If two problems are interreducble as such, then they have the same approximability.
- This can be used to categorize NP-Hard problems into a small number of equivalence classes and get *complete* problems for each class.

イロト 不得 トイヨト イヨト 三頭

Some Results MAX-SNP

PCP(Probabilistically checkable proofs) Theorem

- Probabilistic characterizations of class NP yield a general technique for obtaining gap-introducing reductions. The PCP Theorem captures this characterization.
- Class PCP(r(n), q(n)) : a complexity class consisting of every language with an (r(n), q(n))-restricted verifier. Verifier reads the input of size n and uses O(r(n)) random bits to compute a sequence of O(q(n)) addresses in the proof. if input ∈ L , then probability of acceptance is 1, else it is less than half.
- NP = PCP(logn, 1)

Some Results MAX-SNP

PCP(Probabilistically checkable proofs) Theorem

- Probabilistic characterizations of class NP yield a general technique for obtaining gap-introducing reductions. The PCP Theorem captures this characterization.
- Class PCP(r(n), q(n)) : a complexity class consisting of every language with an (r(n), q(n))-restricted verifier. Verifier reads the input of size n and uses O(r(n)) random bits to compute a sequence of O(q(n)) addresses in the proof. if input ∈ L , then probability of acceptance is 1, else it is less than half.

• NP = PCP(logn, 1)

<ロ> (四) (四) (三) (三) (三)

Some Results MAX-SNP

PCP(Probabilistically checkable proofs) Theorem

- Probabilistic characterizations of class NP yield a general technique for obtaining gap-introducing reductions. The PCP Theorem captures this characterization.
- Class PCP(r(n), q(n)) : a complexity class consisting of every language with an (r(n), q(n))-restricted verifier. Verifier reads the input of size n and uses O(r(n)) random bits to compute a sequence of O(q(n)) addresses in the proof. if input ∈ L , then probability of acceptance is 1, else it is less than half.
- NP = PCP(logn, 1)

・ロン ・四 と ・ ヨン ・ ヨン

Some Results MAX-SNP

MAX-SNP

- Class of Problems defined by Papadimitriou et al.for studying which problems have a PTAS.
- Max-SNP is defined as a class of problems having constant factor approximation algorithms, but no approximation schemes unless P = NP.
- Result: There does not exist a PTAS for MAX-SNP hard problems unless P = NP. (Proof uses PCP Theorem)
- Using approximability preserving reductions, completeness for MAX-SNP problems were defined.

<ロ> (四) (四) (三) (三) (三)

Some Results MAX-SNP

MAX-SNP

- Class of Problems defined by Papadimitriou et al.for studying which problems have a PTAS.
- Max-SNP is defined as a class of problems having constant factor approximation algorithms, but no approximation schemes unless P = NP.
- Result: There does not exist a PTAS for MAX-SNP hard problems unless P = NP. (Proof uses PCP Theorem)
- Using approximability preserving reductions, completeness for MAX-SNP problems were defined.

<ロト < 同ト < 目ト < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

Some Results MAX-SNP

MAX-SNP

- Class of Problems defined by Papadimitriou et al.for studying which problems have a PTAS.
- Max-SNP is defined as a class of problems having constant factor approximation algorithms, but no approximation schemes unless P = NP.
- Result: There does not exist a PTAS for MAX-SNP hard problems unless P = NP. (Proof uses PCP Theorem)
- Using approximability preserving reductions, completeness for MAX-SNP problems were defined.

<ロト < 同ト < 目ト < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

Some Results MAX-SNP

MAX-SNP

- Class of Problems defined by Papadimitriou et al.for studying which problems have a PTAS.
- Max-SNP is defined as a class of problems having constant factor approximation algorithms, but no approximation schemes unless P = NP.
- Result: There does not exist a PTAS for MAX-SNP hard problems unless P = NP. (Proof uses PCP Theorem)
- Using approximability preserving reductions, completeness for MAX-SNP problems were defined.

Some Results MAX-SNP

MAX-SNP

- A reduction : A problem P is A-reducible if to problem T, implies if P is approximable to a factor a, then T is approximable to a factor O(a).
- AP reduction : A problem P is AP-reducible if to problem T , implies if P is approximable to a factor 1 + a, then T is approximable to a factor 1 + O(a).
- L-Reductions: A L-reduction from A to B is a pair of functions R and S, computable in logarithmic space, such that if x is an instance of A with optimal cost OPT(x), then R(x) is an instance of B with optimal cost that satisfies: OPT(R(x)) ≤ αOPT(x)

(日)(同)(日)(日)(日)

Some Results MAX-SNP

MAX-SNP

- A reduction : A problem P is A-reducible if to problem T, implies if P is approximable to a factor a, then T is approximable to a factor O(a).
- AP reduction : A problem P is AP-reducible if to problem T, implies if P is approximable to a factor 1 + a, then T is approximable to a factor 1 + O(a).
- L-Reductions: A L-reduction from A to B is a pair of functions R and S, computable in logarithmic space, such that if x is an instance of A with optimal cost OPT(x), then R(x) is an instance of B with optimal cost that satisfies: OPT(R(x)) ≤ αOPT(x)

<ロ> (四) (四) (三) (三) (三)

Some Results MAX-SNP

MAX-SNP

- A reduction : A problem P is A-reducible if to problem T, implies if P is approximable to a factor a, then T is approximable to a factor O(a).
- AP reduction : A problem P is AP-reducible if to problem T, implies if P is approximable to a factor 1 + a, then T is approximable to a factor 1 + O(a).
- L-Reductions: A L-reduction from A to B is a pair of functions R and S, computable in logarithmic space, such that if x is an instance of A with optimal cost OPT(x), then R(x) is an instance of B with optimal cost that satisfies: OPT(R(x)) ≤ αOPT(x)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Some Results MAX-SNP

- Using L-reductions(), it was shown that every MAX-SNP Hard problem is L-reducible to the MAX-3SAT, MAX-CUT, Metric TSP problems.
- MAX-3SAT, MAX-CUT, Metric TSP are MAX-SNP complete.
- MAX-CSP. (Constraint Satisfaction Problem)
- Only two types of Max-CSP problems: either solvable to optimality in polynomial time, or, MAX-SNP Hard.

Some Results MAX-SNP

- Using L-reductions(), it was shown that every MAX-SNP Hard problem is L-reducible to the MAX-3SAT, MAX-CUT, Metric TSP problems.
- MAX-3SAT, MAX-CUT, Metric TSP are MAX-SNP complete.
- MAX-CSP. (Constraint Satisfaction Problem)
- Only two types of Max-CSP problems: either solvable to optimality in polynomial time, or, MAX-SNP Hard.

Some Results MAX-SNP

- Using L-reductions(), it was shown that every MAX-SNP Hard problem is L-reducible to the MAX-3SAT, MAX-CUT, Metric TSP problems.
- MAX-3SAT, MAX-CUT, Metric TSP are MAX-SNP complete.
- MAX-CSP. (Constraint Satisfaction Problem)
- Only two types of Max-CSP problems: either solvable to optimality in polynomial time, or, MAX-SNP Hard.

Some Results MAX-SNP

- Using L-reductions(), it was shown that every MAX-SNP Hard problem is L-reducible to the MAX-3SAT, MAX-CUT, Metric TSP problems.
- MAX-3SAT, MAX-CUT, Metric TSP are MAX-SNP complete.
- MAX-CSP. (Constraint Satisfaction Problem)
- Only two types of Max-CSP problems: either solvable to optimality in polynomial time, or, MAX-SNP Hard.