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Abstract. Perhaps the two most fundamental well-solved models in combinatorial optimization are the
optimal matching problem and the optimal matroid intersection problem. We review the basic results for both,
and describe some more recent advances. Then we discuss extensions of these models, in particular, two
recent ones—jump systems and path-matchings.

1. Introduction

In the 1960’s Edmonds called attention to the class of (polynomially) solvable problems
and to certain other problems (such as the Travelling Salesman Problem), which he
conjectured to be unsolvable. He also proved that several important models associated
with graph matching and matroids are solvable, and observed an apparent connection
between solvability and the existence of certain of these structures. In the ensuing years
there has been increasing recognition, both of the importance of his results and the
validity of his hypothesis.

Two of those original models, the optimal matching problem and the optimal matroid
intersection problem, remain the most important well-solved models in combinatorial
optimization. Some of the foundations for them already appeared in the 1940’s, in
the purely combinatorial work of Tutte and Rado. However, it was Edmonds in the
1960’s who made these subjects part of combinatorial optimization. He was the first to
provide efficient algorithms and polyhedral descriptions. In addition, he found beautiful
connections, analogies, generalizations, and applications.

Since then, our understanding of both models has grown. Edmonds’ original proofs
were mainly algorithmic and polyhedral. Now several different proofs are known, and
solution algorithms that are essentially different from his augmenting path algorithms
exist. There have also been a number of important successes in extending these models
in new directions. I want to emphasize that these two themes—alternate approaches
to the classical results, and extensions of those results—are not unrelated. Very often
the newer, more general results have been established by methods that were already
introduced for matching, but were not the original methods. In many cases it is simply
not known whether the original methods can be generalized. Having an arsenal of other
techniques, including ones introduced for “already solved problems”, is important.
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The fundamental results on matching and matroid intersection have already found
their way into textbooks. We review some of the main points, and try to emphasize
a few important aspects, such as the Tutte matrix and the Gallai-Edmonds partition,
that are less well-known to optimizers. Work on extensions has already exceeded what
can be surveyed adequately in a paper of this length, so we have made some choices.
The classical extensions found by Edmonds—degree-constrained subgraphs and poly-
matroid intersection—are very important, but have already appeared in earlier surveys.
Of the many other important extensions, several are related to the fundamental notion
of submodular functions, and are rather independent of matching theory. Here I refer
especially to the submodular flow models of Edmonds and Giles [16] and others, the
bisupermodular covering model of Frank and Jordan [18], and, of course, the funda-
mental problem of minimization of submodular functions, on which there have been
exciting developments recently. We continue to be motivated somewhat by the very old
question of finding a satisfactory common generalization of optimal matching and opti-
mal matroid intersection. We describe in some detail two recent attempts, jump systems
and path-matching.

This paper is mainly expository. However, Theorems 13 and 21 are new. Also, we
summarize in Sect. 6 some results from [8], which has not yet appeared.

We introduce here a bit of notation. For sets S, T , we denote their symmetric
difference (the set of elements in exactly one of them) by S � T . We denote by RS (ZS)
the set of all real (integral) vectors having components indexed by S. If we have T ⊆ S
and x ∈ RS, we denote

∑
(x j : j ∈ T ) by x(T ). For an undirected graph G = (V, E)

and S ⊆ V , we denote by δ(S) (respectively, γ(S)) the set of edges having one end
(respectively, both ends) in S. The subgraph of G having vertex set S and edge set γ(S)

is denoted by G[S]. For a path P of a graph, we use E(P) to denote the set of edges
of P.

2. Matching

A matching in a graph G = (V, E) is a set M of edges such that no two elements of M
have a common end. A matching is said to cover the vertices that it is incident with. If B
is the set of vertices covered by some matching, then B is called a matchable set of G.
A matching is perfect if it covers all of the elements of V . The number of components
of G having an odd number of vertices is denoted by odd(G). Tutte [41] proved the
fundamental theorem about the existence of perfect matchings.

Theorem 1. (Tutte’s Matching Theorem) G has a perfect matching if and only if
odd(G[V\S]) ≤ |S| for all S ⊆ V.

By now there are many proofs of this theorem, and we will mention some below.
Tutte’s original proof is not one of the better known ones, but it has begun to attract
more attention recently. It uses the following idea. Let ze, e ∈ E, be distinct commuting
variables. Let A(G) be a V by V skew-symmetric matrix whose entries satisfy ai j = ±ze
if i j = e ∈ E, and ai j = 0 otherwise. We call A(G) the Tutte matrix of G (even though
it is not quite unique). Tutte observed, as a direct consequence of nineteenth century
theory of determinants, the following unexpected fact.
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Theorem 2. G has a perfect matching if and only if A(G) is nonsingular.

(Note what it means for such a matrix to be nonsingular—that its determinant,
viewed as a multivariate polynomial, is not identically zero.) It is a nice exercise to
prove Theorem 2 directly. Here is an outline of a proof. It is easily checked that each
non-zero term in the determinant expansion arises from a set of vertex-disjoint paths
covering all the vertices, such that each path is closed, but is otherwise vertex-simple.
(Note that the path v,w, v arising from a single edge is such a path.) A perfect matching
obviously determines such a set of paths, and moreover, one whose corresponding term
in the expansion cannot be cancelled by another term. If such a set of paths has the
property that each path is of even length, it is easy to see that G has a perfect matching.
On the other hand, if one or more of the paths has odd length, then there is another term
that cancels this term. Thus there is a perfect matching if and only if the determinant is
not zero.

It follows from Theorem 2 that a set B of vertices is matchable if and only if the
principal submatrix of A(G) with rows and columns indexed by B, is nonsingular.
Further, since the rank of a skew-symmetric matrix is equal to the size of a maximum-
size nonsingular principal submatrix, this implies that the rank of the Tutte matrix is
equal to the size of a maximum matchable set.

Tutte’s Matching Theorem is equivalent to the following result of Berge, now often
referred to with both of their names. Note that the size of a largest matchable set is twice
the size of a largest matching, so one can write the formula a little more cleanly in terms
of matchable sets. However, we have used the more traditional statement.

Theorem 3. (Tutte-Berge Formula) The maximum size of a matching of G is the
minimum, over subsets S of V of

1

2
(|V | − odd(G[V\S]) + |S|) .

In his classic paper [13] Edmonds gave the first efficient algorithm to find a matching
of maximum size (and hence to decide whether a graph has a perfect matching). The
algorithm is an augmenting path method—if the current matching M is not maximum, it
finds a path P such that M � E(P) is a matching of size larger by one. If M is maximum
it finds a set S such that |M| = (|V | − odd(G[V\S]) + |S|)/2. Thus it also provides
another proof of the Tutte-Berge Formula. In fact, the algorithm finds a certain canonical
minimizing set S. Namely, define the partition A, C, D of V by

D = {v ∈ V : there is a maximum matching not covering v};
A = {u ∈ V\D : uv ∈ E for some v ∈ D};
C = V\(D ∪ A).

The partition (A, C, D) is called the Gallai-Edmonds partition of G. It is clearly well-
defined. As can be seen from the following result, this partition tells a great deal about
matching properties of G. Its statement uses one more notion—a graph H is critical if,
deleting any vertex from H , the resulting graph has a perfect matching; such a matching
is called a near-perfect matching of H .
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Theorem 4. (Gallai-Edmonds Structure Theorem) If (A, C, D) is the Gallai-Ed-
monds partition of G, then every component of G[D] is critical, and every maximum
matching of G consists of

• a perfect matching of G[C],
• a near-perfect matching of H for each component H of G[D], and
• an edge joining v to some vertex in D for each v ∈ A.

It is an easy consequence that A is a minimizing choice for S in the Tutte-Berge
Formula. Edmonds’ algorithm finds the Gallai-Edmonds partition, in particular, finds as
a minimizing set S, the set A.

Weighted matching and matching polyhedra

Edmonds [14] also considered the problem of finding a (perfect) matching of maximum
weight, subject to given weights on the edges. (The easier special case in which the graph
is bipartite had been solved in the 1950’s by Kuhn.) He was able to find a description
by linear inequalities of the “Matching Polytope”, the convex hull of incidence vectors
of matchings.

Theorem 5. (Matching Polytope Theorem) The convex hull of the set of incidence
vectors of matchings of G is the set of solutions of

x(δ(v)) ≤ 1 (v ∈ V )

x(γ(S)) ≤ (|S| − 1)/2 (S ⊆ V, |S| odd)

x ≥ 0.

Edmonds gave an efficient algorithm that not only finds a maximum weight match-
ing, but verifies that the incidence vector of the matching optimizes cT x over all x
satisfying the system, thus proving the Matching Polytope Theorem. It essentially
applies his maximum cardinality matching algorithm to the subgraph consisting of
the edges whose dual constraints are satisfied with equality for the current dual so-
lution, and then changes the dual solution (if necessary). Other proofs of the theo-
rem have been given by Lovász and Schrijver. Both of these newer proofs introduced
techniques that have been useful in proofs of other important theorems of polyhedral
combinatorics.

Cunningham and Marsh [9] proved that the system of linear inequalities in the
Matching Polytope Theorem is totally dual integral—for any c ∈ ZE, such that the
maximum of cT x subject to the system exists, the dual linear program has an integral
optimal solution. This result implies the Tutte-Berge Formula. The proof of [9] is
algorithmic. Schrijver [39] has given a very short inductive proof, again introducing
a technique that has been used elsewhere.

A version of the Matching Polytope Theorem provides a description of the perfect
matchings by linear inequalities. This theorem and Theorem 5 can each be proved from
the other.
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Theorem 6. (Perfect Matching Polytope Theorem) The convex hull of the set of
incidence vectors of perfect matchings of G is the set of solutions of

x(δ(v)) = 1 (v ∈ V )

x(δ(S)) ≥ 1 (S ⊆ V, |S| odd) (1)

x ≥ 0.

There are important extensions of matching theory that are nevertheless essentially
equivalent. A T -join is a subset of edges having the property that the number of them
incident to each vertex of G is odd precisely if the vertex is in T . The Chinese postman
problem in a connected graph is to find a minimum-cost closed path covering all edges.
It can be reduced to the problem of finding a minimum-weight T -join where T is the
set of odd degree vertices of G. Given G, b ∈ ZV+, u ∈ (Z+ ∪ {∞})E , and c ∈ RE , the
u-capacitated b-matching problem is to find x ∈ ZE such that x(δ(v)) = bv for all v ∈ V ,
0 ≤ x ≤ u, and cT x is minimized. These problems can be solved using algorithms for
optimal matching as the essential ingredient. Moreover, the corresponding polyhedral
descriptions can be proved from those for matching. See Cook et al. [5].

Matching algorithms

It seems still to be true that implementations of Edmonds’ algorithm provide the fastest
way, in theory and practice, to solve matching problems. However, several other al-
gorithms, each interesting from some point of view, have been introduced. Often they
have provided techniques that could be generalized when the augmenting path approach
seemed difficult to extend.

An algorithm for finding a maximum matching, or more generally, a maximum-
weight matching, can be based on the equivalence of separation and optimization [24].
It is most convenient to describe this for the problem of finding an optimal perfect
matching. It is enough to show that the problem: “Given x ∈ RE , find if one exists, an
inequality from (1) violated by x” can be solved in polynomial time. The only inequalities
for which testing violation is nontrivial, are the ones of the form x(δ(S)) ≥ 1. It is
enough, therefore, to have an efficient algorithm to find a minimum weight “odd” cut
with respect to given non-negative weights. Padberg and Rao [35] showed that one can
be found by first finding a minimum cut δ(S). If |S| is odd then clearly δ(S) is a minimum
odd cut, and we we are done. If not, one can show that the problem reduces to one of
finding a minimum odd cut in each of two smaller graphs (obtained by shrinking S and
its complement to single vertices). We remark that the resulting algorithm for finding
an optimal perfect matching is based on the ellipsoid method, and is not at all practical.

Lovász and Plummer [33] gave a new algorithm, based on the Gallai-Edmonds
partition, for finding a matching of maximum cardinality. (It is actually a specialization
of Lovász’s algorithm for the linear matroid parity problem, which is introduced below.)
It works as follows. At step i we have a list Li of at most |V | matchings of size ki . Based
on that list we define the partition A, C, D as above. (That is, we use Li instead of the
set of all maximum matchings to define D.) If the set S = A and a matching M of size
ki satisfy the equation of the Tutte-Berge Formula, then M is a maximum matching. If
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not, then one of the conclusions of the Gallai-Edmonds Structure Theorem is violated.
Any such violation leads to the discovery of a new matching M′, of cardinality ki + 1
or ki . In the former case, we proceed to step i + 1 with ki+1 = ki + 1, and Li+1 = {M′}.
In the latter case, we proceed to step i + 1 with ki+1 = ki , and Li+1 = Li ∪ {M′}.
(In this case, the set D of the new partition will be larger.) Of course, we have omitted
some details. These details do involve the use of augmenting-like paths, but, unlike in
Edmonds’ algorithm, one does not have to search for the paths—they just appear.

Lovász and Plummer also gave a variant of the Edmonds algorithm for finding a max-
imum weight matching. Edmonds’ algorithm, while the current dual solution remains
fixed, is essentially working on the subgraph consisting of edges whose corresponding
dual constraints hold with equality. The dual change that it makes can depend, at least
in many versions of the algorithm, on some arbitrary choices. Lovász and Plummer’s
variant uses only the Gallai-Edmonds structure of this subgraph and the old dual solu-
tion to define the new dual solution. It thus separates the primal-dual phase from the
augmenting path phase of the Edmonds algorithm. (Another way to say it, is that any
algorithm capable of finding the Gallai-Edmonds partition of a graph can be used as
a subroutine in the primal-dual algorithm.) Although this idea does not lead to a more
efficent algorithm, it does provide more insight. In addition, it turns out to be very
important in generalizations.

Matching algorithms from the Tutte matrix

The Tutte matrix lends itself to algorithmic approaches to the maximum matching
problem. We know that it is enough to compute its rank. (This will find the size of
a maximum matching; actually finding such a matching takes a bit more work, which
we will ignore here.) However, a straightforward approach fails. Gaussian elimination,
applied directly, leads to intermediate matrices having entries that are exponentially
long. Rather, we use an approach based on the idea of an evaluation of the Tutte matrix.
This is a rational matrix obtained from the Tutte matrix by assigning a rational value
to each variable ze. It is easy to see that the rank of A(G) is at most the rank (over the
rationals) of any evaluation of A(G), and that there exists an evaluation whose rank is
equal to the rank of A(G). Lovász showed that a randomly chosen evaluation of the
Tutte matrix has a significant probability of being such a maximum-rank evaluation.
Choosing a few such evaluations independently, one can find in polynomial time the
size of a maximum matching with high probability.

Geelen [23] recently showed how the Tutte matrix could be used to give a deter-
ministic polynomial-time algorithm. This is a beautiful result, and shows that matching
theory itself remains a vital area of research. His algorithm begins with an arbitrary
evaluation, and then searches locally for an improvement. One obvious idea for a local
improvement is to find a variable ze whose value can be changed to increase the rank of
the evaluation. It is not quite true that an evaluation that is locally optimal in this sense
will have maximum rank. However, it turns out to be sufficient to amend the definition
of “improvement” just slightly. Say that a row or column of a matrix is dependent if its
deletion does not decrease the rank. (In view of Theorem 2, the dependent rows of the
Tutte matrix correspond exactly to the set D of the Gallai-Edmonds partition of G.) We
define an evaluation to be locally optimal if no change to the value of a single variable
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either increases the rank of the evaluation, or keeps the rank the same while increasing
the number of dependent rows.

Theorem 7. A locally optimal evaluation of the Tutte matrix of G is a maximum-rank
evaluation.

Geelen also shows that one can restrict values for the ze in an evaluation to the
integers {1, 2, . . . , |V |}. It is now immediate that there is a polynomial-time algorithm
to find the evaluation. Namely, we try changing the value of a variable to one of
|V | − 1 other possible values. If we get an improvement, we continue, and otherwise
we have an optimal evaluation. Clearly, we need to try at most |V |3 evaluations to get
an improvement, at most |V |5 throughout the algorithm, and the work at each step is
simple linear algebra. Thus there is an almost trivial algorithm for finding the size of
a maximum matching. (On the face of it, it is very inefficient. There are a number of
observations that make it possible to improve the running time. Moreover, the algorithm
can be refined to actually find a maximum matching. See [23].)

It is interesting to observe that three of the algorithms for finding a maximum
matching that we have mentioned have a common structure. The Lovász-Plummer
algorithm keeps at each step a list of matchable sets of the same size. (These are the
sets induced by the matchings in the list Li .) Geelen’s algorithm also keeps such a list,
implicitly; its elements correspond to the maximum-rank principal submatrices of the
current evaluation. Edmonds’ algorithm keeps a forest of “alternating trees” rooted at the
unmatched vertices of a “shrunken graph”, which also encodes such a list implicitly. The
matchable sets correspond to the matchings that can be obtained by taking a maximum
matching of each tree and the current matching of the vertices not in the forest, and
then extending the matching to the original graph by repeatedly “expanding”. Each of
the algorithms tests whether optimality is reached, and if not, makes a new list with
the following property. Either the new list consists of matchable sets of larger size, or
the list consists of matchable sets of the same size, the union of whose complements is
larger.

3. Matroids

A matroid on T can usually be thought of as a matrix with columns indexed by elements
of T , where available knowledge of the matrix is limited to knowledge of the subsets of
T that index linearly independent sets of columns. Although there do exist matroids that
do not arise from matrices in this way, this fact is not very important for our purposes.
However, the fact that we cannot necessarily access the matrix itself is important.
A matroid may be defined in a number of ways, for example, via its set of independent
sets, or its set of bases (maximum size independent sets), its set of circuits (minimal
dependent sets), or its rank function (giving, for any subset A of T , the size r(A) of
a largest subset of A that is independent). Here is an axiomatic definition in terms of the
set of bases—for any two bases B, B′ and any element e ∈ B′\B there exists f ∈ B\B′
such that (B ∪ {e})\{ f } is also a basis. Algorithms operating on matroids typically
access the matroid only through an “oracle” that, given a subset A of T , tells whether
or not A is independent.
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A well-known class of matroids arises from graphs—take T to be the edge set of a
(connected) graph, and define a set of edges to be independent if they do not contain the
edges of a simple circuit. Then the bases of the matroid are the (edge sets of) spanning
trees of the graph. There is a well-known “greedy” procedure for finding a spanning tree
of maximum (or minimum) weight. Perhaps the earliest connection of matroid theory
with combinatorial optimization is a result of Rado [37], that such a procedure works in
general for matroids.

Greedy Algorithm

Order T as {e1, . . . , em}, where ce1 ≥ ce2 ≥ . . . ≥ cem ;
Initialize B = ∅;
For i = 1 to m

If B ∪ {ei} is independent
Add ei to B.

Theorem 8. At termination of the Greedy Algorithm, B is a basis of maximum weight.

Edmonds rediscovered this fact, and proved the stronger result that the incidence
vector of B maximizes cT x over all x satisfying a natural set of inequalities. Thus he
established a description for the convex hull of incidence vectors of bases of the matroid.

Theorem 9. (Matroid Basis Polytope Theorem) The convex hull of the set of incidence
vectors of bases of the matroid M on T is the set of solutions of

x(A) ≤ r(A) (A ⊆ T )

x(T ) = r(T )

x ≥ 0.

Matroid intersection

The most important model related to matroids, is matroid intersection. We are given two
matroids on the same set T , and we are interested in the existence of a common basis.
So we may assume that the two matroids have the same rank, say k. Let ri(A) denote
the rank of A in matroid Mi , for i = 1 and 2. If B is a common basis and A is any subset
of T , we have

k = |B| = |B ∩ A| + |B ∩ (T\A)| ≤ r1(A) + r2(T\A).

Edmonds [15] proved that this necessary condition is also sufficient.

Theorem 10. (Matroid Intersection Theorem) If M1, M2 are matroids on T of rank
k, they admit a common basis if and only if for every set A ⊆ T

r1(A) + r2(T\A) ≥ k.
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One special case of the existence problem for a common basis is the existence
problem for a perfect matching in a bipartite graph G. We may assume that the parts,
P1, P2 of the bipartition both have size k. Where T is the edge-set of the graph, we say
that a set of edges is a basis in M1 if it has exactly one edge incident with each vertex
of P1, and similarly for M2 and P2. Then the common bases are indeed the perfect
matchings of G. Now let us apply the Matroid Intersection Theorem to this special case.
Let A ⊆ E, and consider the set C consisting of those vertices of P1 incident with at
least one edge in A, together with those vertices of P2 incident with at least one edge
of E\A. Notice |C| = r1(A) + r2(T\A), and that every edge of G is incident to at least
one vertex in C. So Theorem 10 implies that, if G has no perfect matching, then it has a
“vertex cover” of size less than k. This is a form of the Kőnig-Hall Theorem for bipartite
matching.

There are a number of attractive theorems that are equivalent to the Matroid In-
tersection Theorem. One of them was actually found earlier by Rado [36]. There are
also a number of elegant proofs. Edmonds’ original proof was constructive, provid-
ing an efficient augmenting path algorithm, generalizing such algorithms for bipartite
matching.

Edmonds also considered the more general problem of finding a maximum weight
common basis. He proved that the convex hull of common bases of two matroids is
the intersection of the convex hulls of the two basis polyhedra. Moreover, he showed
that the system consisting of the linear descriptions for the two basis polyhedra, is
totally dual integral. (This can be used to prove Theorem 10.) He gave an elegant
nonconstructive proof of the polyhedral theorem and the total dual integrality. He also
gave an algorithmic proof, based on a primal-dual approach. Like the maximum-weight
matching algorithm, it uses the linear description and the augmenting-path algorithm
for the unweighted case.

4. Extensions

In the early years the striking similarity of the results—existence theorems, efficient
algorithms, polyhedral descriptions—for matching and matroid intersection suggested
to many the existence of a nice, solvable common generalization. Since one could define
a common generalization to be simply the union of the two models, the “nice” qualifier
is important.

Many of the most useful extensions of one of matching or matroid intersection, do
not seem to bear any relation to the other one. However, we will describe in this paper
three that do, and describe some of their advantages and limitations. The reader (or
time) will decide how “nice” each of them is. The generalizations are matroid parity,
jump systems, and path-matching. Since the first one is relatively old, we discuss it only
briefly here. Then we devote the next two sections to the other two models.

We are given a matroid M on T and a pairing of the elements of T . A parity set is
a subset of T that contains either both or neither of the elements of each pair. We are
interested in parity bases—bases that are also parity sets. Consider the special case in
which we are given a graph G = (V, E); it is convenient to assume that G has no isolated
vertices. We take T = {(v, e) : v ∈ V, e ∈ E, v incident with e}. The pairing simply
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pairs (v, e) and (w, e), where e joins v to w. The matroid M has as bases the subsets of T
of size |V | such that every vertex occurs exactly once. Then the parity bases correspond
to the perfect matchings of G. As a second special case, suppose that we have matroids
M1, M2 on S. We make disjoint copies S′, S′′ of S and form the matroid on T = S′ ∪ S′′
whose bases consist of the union of a subset of S′ corresponding to a basis of M1 with
a subset of S′′ corresponding to a basis of M2. The pairing simply pairs two elements of
T that are copies of the same element of S. Then a parity basis corresponds to a common
basis of M1, M2. So matroid parity is indeed a common generalization of matching and
matroid intersection.

The problem of determining whether a parity basis exists is unsolvable in gen-
eral [30]. (That is, there is no polynomial-time algorithm to solve it, assuming that
the algorithm is allowed to access the matroid only by calling an independence-testing
oracle.) In addition, it contains NP-hard special cases. Nevertheless, there are some
deep results. First, Lovász gave an existence theorem and an efficient algorithm for the
case where M arises from a (given) matrix. This “linear matroid parity problem” does not
quite give a solvable common generalization of matching and matroid intersection—it
includes the case of matroid intersection only where the two matroids arise from (given)
matrices over the same field. (The weighted version of the linear matroid parity problem
remains open.) Second, there are results for the general problem that lead to solutions
for other important special cases [30].

5. Jump systems

In this section we let V = {1, . . . , n}. For x, y ∈ ZV we define [x, y] to be {x′ ∈
ZV : min(xi, yi) ≤ x′

i ≤ max(xi, yi), i ∈ V }. We call [x, y] a (bounded) box. (More
generally, a box is a Cartesian product of intervals in Z , where the intervals are possibly
infinite.)

We define d(x, y) to be
∑

(|xi − yi | : i ∈ V ), and, for subsets A, B of ZV , d(A, B) to
be min(d(x, y) : x ∈ A, y ∈ B). A point x′ ∈ ZV is a step from x to y (or an (x, y)-step)
if x′ ∈ [x, y] and d(x, x′) = 1. Let J be a nonempty subset of ZV ; a point x ∈ J is
called a feasible point. The set J is a jump system if it satisfies the following axiom:

two-step axiom Given feasible points x, y and a step x′ from x to y, then either x′ is
feasible, or there exists a feasible step x′′ from x′ to y.

For convenience in this paper, we will assume that the jump systems are also bounded.
However, the results—sometimes with slight modifications—hold without this assump-
tion.

Examples in Z2 are useful for understanding the definition; see Fig. 1, where solid
points are the feasible ones. The example on the left is a jump system, and that on the
right is not—the two-step axiom fails for the indicated points.

Examples and constructions

Jump systems were introduced by Bouchet and Cunningham [3]. Except where men-
tioned explicitly, the following examples and basic results are from that paper. Here are
some examples of jump systems.



Matching, matroids, and extensions 525

x

y

Fig. 1. A jump system and a set that is not a jump system

• Low-dimensional jump systems. If n = 1, J is a jump system if and only if there
do not exist two feasible points such that between them, there is no feasible point
and two or more nonfeasible points. If n = 2, a characterization is more involved.
See [22].

• Matroids and delta-matroids. The jump systems contained in {0, 1}V are called
delta-matroids. These were introduced earlier [1], [4], [10], and have many attractive
properties. However, we will not go into them here. Those that are also constant
sum, that is, have the property that each feasible point has the same coordinate sum,
are equivalent to matroids. That is, they are exactly the ones whose feasible points
are the incidence vectors of bases of a matroid.

• Degree systems. This is perhaps the most fundamental example. Let G = (V, E)

be a graph. For a spanning subgraph H of G, we define the degree sequence of H,
to be the vector degH ∈ ZV such that, for v ∈ V , degH(v) is the degree of vertex v

in H . The set of degree sequences of spanning subgraphs of G is called the degree
system of G.

We list a few ways to construct jump systems from others. In the first few examples,
it is obvious that we get a jump system, but in some of the later ones it is not.

♦ Translation. For an integral vector b, add b to every feasible point.
♦ Reflection. For a coordinate i, replace xi by −xi for every feasible point x.
♦ Intersection with a box. Given a box B, J ∩ B is a jump system, if it is non-empty.
♦ Projection. Given a set S ⊆ V , replace each feasible point by its restriction to S

(and delete duplicates).
♦ Sum. This is perhaps the most important operation on jump systems. If J 1 and J 2

are jump systems, then J 1 + J 2 = {x + y : x ∈ J 1, y ∈ J 2} is also a jump
system.

♦ Closest points to a box. Given a box B, J B = {x ∈ J : d(x, B) = d(J , B)} is
a jump system [32].

♦ Faces. Let F be a non-empty face of conv(J ). Then J ∩ F is a jump system [32].

Here are some examples using the above ideas.

• If we intersect the degree system of a graph G with the unit cube, the feasible points
are the incidence vectors of matchable sets of G. This is a fundamental class of
delta-matroids.
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• The degree system of a graph is the sum of the degree systems of its one-edge
spanning subgraphs. Since these are trivially jump systems, this proves that degree
systems are indeed jump systems.

• If we begin with a matroid, reflect it in all coordinates, and then translate it by the
vector of all 1’s, we get another jump system in the unit cube that is constant sum,
that is, we get another matroid. Its bases are the complements of the bases of the
given matroid M; that is, it is the dual of M.

• A minor of J is obtained by taking, for some S ⊆ V and some y ∈ ZV\S, J ′ =
{x ∈ ZS : (x, y) ∈ J }. It is a jump system, because it is a projection followed by
intersection with a box.

• (Homomorphism) Given J ⊆ ZV , form J ′ ⊆ Z(V\{n}) by J ′ = {(x1, . . . , xn−2,

xn−1 + xn) : x ∈ J }. We can see that J ′ is a jump system as follows. First,
extend J to Zn+1 by defining J 1 = {(x, 0) : x ∈ J }. Now define J 2 ⊆ Zn+1 by
J 2 = {(0, . . . , 0,−yn−1,−yn, yn−1 + yn) : yn−1, yn ∈ Z}. It is easy to check that
J 2 is a jump system. Now take J ′′ = J 1 +J 2, and then take the minor consisting
of those points z ∈ J ′′ such that zn−1 = zn = 0. This is J ′ (essentially).

Basic results

The following nested box lemma of Lovász [32], is an important tool in the proof of
many results in [32]. (Actually, as observed by Geelen [22], one can take this as the
definition of a jump system.)

Theorem 11. If J is a jump system and B1 ⊆ · · · ⊆ Br are boxes, then J B1 ∩ · · · ∩
J Br �= ∅.

One application of this lemma is the validity of a greedy algorithm. We state the
algorithm and refer to Geelen [22] for the proof. Suppose that we are interested in
maximizing cT x over feasible points x of a bounded jump system J . By reflection, we
may assume that c ≥ 0.

Greedy Algorithm for Jump Systems

Order V as { j1, . . . , jn}, where c j1 ≥ c j2 ≥ . . . ≥ c jk > 0 = c jk+1 = · · · = c jn ;
Initialize J 0 = J ;
For i = 1 to k

Set α = max(xei : x ∈ J i−1);
Set J i = {x ∈ J i−1 : xei = α}.

Theorem 12. Each point x ∈ J k maximizes cT x over J .

Note that the set J k is a face of J ; we call it a greedy face of J . (It is also a minor
of J .)

It is interesting to consider the relationship between this greedy algorithm and the
one for matroids. If the c j were initially non-negative, then this algorithm does indeed
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yield the one for matroids. And of course, we could (taking advantage of the fact that
matroids are constant-sum) make the c j non-negative by adding a constant to all of them,
and again the above algorithm would reduce to the one for matroids. However, if we use
the reflection method before applying the jump system greedy algorithm, the resulting
matroid algorithm is different—it involves considering the elements in decreasing order
of their absolute value.

Jump systems and restricted ≤ 2-factors

Many of the known algorithms for matching and generalizations are based on aug-
menting paths. Often, however, an augmenting path theorem—roughly, the fact that any
non-maximum matching X can be transformed into a larger one using a path—can be
proved more easily in a nonconstructive way than by formulating an algorithm. (We
are using the term “matching” here, though these remarks also apply to more general
objects.) Indeed, there are settings where augmenting path theorems have been found,
but augmenting path algorithms are not known. Nonconstructive proofs use a particular
larger matching Y together with X to prove the existence of a path. The path transforms
X into a matching X ′′ of size |X| + 1. (In general X ′′ �= Y .) Its degree sequence differs
from that of X only at the ends, u and v, of the path. Suppose that we consider the
degree sequences x of X and y of Y and take x′ to be obtained from x by increasing xu

by 1, and x′′ to be the degree sequence of X ′′. Then there is a good deal of similarity to
the two-step axiom. For a class F of subgraphs of G, we are interested in algorithmic
solvability of problems involving F . Possibly this issue is related to two others—the
existence of an augmenting path theorem forF , and whether the set of degree sequences
of members of F is a jump system. Here we explore this idea in some detail for some
choices of F related to 2-factors.

A 2-factor (respectively, ≤ 2-factor) of a graph G = (V, E) is a set X ⊆ E such
that every vertex of G is incident with exactly (respectively, at most) two edges of X.
For this subsection, we will use the term factor to refer to ≤ 2-factors. For a positive
integer k, a factor X is k-restricted, or simply restricted, if every circuit formed by edges
of X has length at least k + 1. If k ≤ 2, then this is no restriction at all. It is well-known
that questions about factors can be solved by reduction to ordinary matchings—see [5].
(They can also be solved directly, by generalizing matching techniques.) On the other
hand, if |V | − 1 ≥ k ≥ |V |

2 , then a restricted factor can contain only circuits that are
hamiltonian, so deciding the existence of a k-restricted 2-factor is hard in general. In
fact, for most other values of k, questions about restricted factors are also hard. For
k ≥ 5 the problem of finding a largest restricted factor has been proved to beNP-hard
by Papadimitriou; see [6]. Hell, Kirkpatrick, Kratchovil, and Kriz [27] proved a stronger
result, that if the set of circuit lengths to be excluded is not a subset of {3, 4}, then the
problem is NP-hard.

On the positive side, Hartvigsen [25] gave an efficient (but very complicated) algo-
rithm for the case when k = 3. As yet, no clean statement of a min-max theorem for this
case is known. The case k = 4 remains open, but there are some reasons for optimism.
One reason is that there exists an augmenting path theorem—see Russell [38]. (In fact,
[38] identifies exactly the sets of excluded circuit lengths for which there exists an
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augmenting path theorem. One warning—there do exist NP-hard problems for which
augmenting-path theorems exist; an example is the problem where the only allowed
circuit length is 3.) Another reason is that there is a nice min-max theorem for the case
when G is bipartite, due to Kiraly [28]. Also Frank [17] observed that this theorem
could be derived from the very general theory of Frank and Jordan [18]. Neither of these
proofs is algorithmic, but Hartvigsen [26] has outlined an algorithm.

There is also the more general problem, where there are weights on the edges and
the goal is to find a maximum-weight factor. Of course, this problem is efficiently
solvable for k ≤ 2 and NP-hard for k ≥ 5, so the dividing line between tractability
and hardness is near that for the unweighted version. However, the case k = 4 of the
weighted problem is alreadyNP-hard, even when G is bipartite. (See Vornberger [42].)
Moreover, the case k = 3 remains open (although it is solved in the unweighted case),
and there is evidence that the corresponding polytope is complicated.

To make the link with jump systems, we ask the question, “For what values of
k does the set G(k) of degree sequences of restricted factors of any graph G form
a jump system?” The following result gives some evidence of a connection between the
solvability of questions about restricted factors and the existence of associated jump
systems.

Theorem 13. For any graph G and any k ≤ 3, G(k) is a jump system. For any k > 4
there exists a graph G such that G(k) is not a jump system.

Proof. For k ≤ 2, since the restricted factors are just the factors, G(k) is the intersection
of the degree system of G with a box, and so is indeed a jump system.

For k = 5, consider the graph G of Fig. 2. (This example is derived from a gadget
used in an NP-completeness proof of [27].) It is easy to see that there is a circuit of G

v

u

Fig. 2. G(5) is not a jump system

of length 9 missing vertex u, and also such a circuit missing v. Therefore, the vectors x
and y are both in G(k), where xu = 0 = yv and xw = 2 for all w �= u and yw = 2 for
all w �= v. Suppose that G(k) is a jump system. Then one of the vectors z defined by
zw = 2 for all w, or z′ defined by z′

u = z′
v = 1 and z′

w = 2 for all other w, is in G(k).
But we are not allowed to use circuits of length 5 or less, and G has just 10 vertices.
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Therefore, z ∈ G(k) implies that G has a hamiltonian circuit, whereas z′ ∈ G(k) implies
that there is a path from u to v, either of length 9 or less than 4. It is easy to see that
none of these possibilities holds, so G(k) is not a jump system. An easy modification to
this example (inserting some additional vertices of degree 2) shows that for any larger
value of k, we again do not get a jump system.

Now consider the case when k = 3. We refer to circuits of length three as triangles.
We denote G(3) by J . Let x, y ∈ J , let x′ be a step from x to y, and let u be the
component on which x′ differs from x. Suppose first that xu < yu . Then x′ is obtained
from x by increasing xu by 1. Of course, x′ /∈ J , since it has odd component sum.
Therefore, we seek a step x′′ from x′ to y such that x′′ ∈ J . Choose restricted factors
X, Y having degree sequence x, y, respectively. We show that there exists an edge-simple
path P from u such that X ′′ = X � E(P) satisfies the properties required of x′′ above.

Consider a path v0, v1, . . . , vm from u to some vertex v. For i = 0, 1, . . . , m, we
use Pi to denote the path v0, v1, . . . , vi , and we use Xi to denote X � E(Pi). We require
that the path Pm satisfy:

(a) vivi+1 ∈ Y\(X ∪ E(Pi)) for i even
(b) vivi+1 ∈ X\(Y ∪ E(Pi)) for i odd
(c) Xm is triangle-free.

Obviously, the path P0 satisfies these conditions. We will show how any such path
Pm that does not satisfy the requirements for P above, can be extended to a longer path
satisfying (a), (b), and (c). Let us write the degree of a vertex w in the subgraph with
edge-set Xm as deg′(w).

Suppose first that m is odd. If the degree sequence of Xm is a step from x′ to y, then
Pm is the required path P. If not, then deg′(v) = xv + 1 > yv, and we conclude that
there exists an edge vq ∈ X\(Y ∪ E(Pm)). We extend Pm by putting vm+1 = q.

Now suppose that m is even. If the degree sequence of Xm is a step from x′ to y,
then Pm is the required path P. If not, then deg′(v) = xv − 1 < yv, and we conclude
that there exists an edge vq ∈ Y\(X ∪ E(Pm)). If Xm ∪ {vq} is triangle-free, then we
can extend Pm by putting vm+1 = q. So suppose that Xm contains edges qw,wv for
some vertex w. If qw ∈ X\E(Pm), then we can extend Pm by putting vm+1 = q and
vm+2 = w. Otherwise, we have qw ∈ E(Pm)\X (and therefore qw ∈ Y ). Then since Y is
triangle-free, we must have vw ∈ X\(E(Pm)∪Y ). Now deg′(v) = xv −1 = 1, whereas
yv = 2. Therefore, there exists an edge vp �= vq in Y\X. Suppose that Xm ∪ {vp}
contains a triangle. Then the triangle must have vertices v, p, w. But this would imply
that deg′(w) = 3, a contradiction. Therefore, we can extend Pm by putting vm+1 = p.

Since the path Pm is edge-simple, and can be extended as long as it does not have
the properties required of P, we must eventually find such a path P.

This completes the proof for k = 3 when xu < yu . However, the situation where
xu > yu can be reduced to this one. Add a new vertex u′ and a new edge uu′ to G and
put the edge into Y . Now xu′ < yu′ . Apply the previous result, to get X ′′. Necessarily,
uu′ ∈ X ′′. Deleting it, we get a restricted factor of the original graph with the required
properties.

��
The above theorem does not address the case k = 4. It seems that a similar, but more

complicated, approach can be used to prove that G(4) is a jump system for all graphs G.
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If so, then the values of k not having the jump system property are precisely those for
which the existence problem for restricted factors is known to beNP-hard. I also expect
(but do not know how to prove) that the latter problem is solvable in polynomial time
for k = 4. Note that the paths that arise in this case (either to prove that G(4) is a jump
system or to use as augmenting paths in a possible algorithm) need not be edge-simple.
An example to show that it may be necessary to traverse an edge twice is shown in
Fig. 3. Here X is the factor consisting of the thick edges, and Y is any larger restricted
factor.

Fig. 3. Edge-simple paths are not enough

The membership problem

The membership problem for a jump system J is “Given x ∈ ZV , is x feasible?”
Here are some examples. Suppose that J is the degree system of a graph G. Then the
question amounts to whether there exists a subgraph of G with prescribed degrees at
the vertices, the existence problem for ‘degree-constrained subgraphs’. Of course, the
perfect matching existence problem is a special case.

Our next two examples use the fact that, for jump systemsJ 1,J 2, the setJ 1−J 2 =
{x − y : x ∈ J 1, y ∈ J 2} is also a jump system. (It is the sum of two jump systems,
the second one obtained by reflection of J 2 in all coordinates.) Then 0 ∈ J 1 − J 2 if
and only if J 1,J 2 have a common point. So the “intersection problem” for two jump
systems reduces to the membership problem for their “difference”.

This implies, since matroids are jump systems, that the membership problem in-
cludes the matroid intersection (existence) problem as a special case. On the other hand,
suppose that we takeJ 1 to be a matroid andJ 2 to consist of the set of incidence vectors
of the matchable sets of G, where the edges of G consist of a perfect matching. Then
the points of J 2 are the parity sets of V with respect to the pairing determined by the
edges of G. Therefore, a common point of J 1,J 2, will correspond to a parity basis.

These examples suggest some remarks. One is that the membership problem is,
in general, hard, since it includes matroid parity as a special case. Another is that the
device used to reduce intersection to membership should be used with caution. For one
thing, the difficulty of a problem on jump systems may depend on how the system is
given to us. There seems as yet to be no agreement on standard assumptions about how
this is to be done. Moreover, if one considers, not just the existence of a common point
of two jump systems, but the problem of finding a best common feasible point, the
reduction to their difference seems useless. So, for example, there are as yet no results
on generalizing the weighted matroid intersection problem to jump systems.
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If a point x̂ is not feasible, we need to be able to demonstrate this fact. It may be that
x̂ is not in the convex hull of J , in which case there is an inequality aT x ≤ b satisfied
by every point of J but violated by x̂. On the other hand, it may be that x̂ is a gap
of J—it is an integral but not feasible point in the convex hull of J . We call a jump
system convex if it has no gaps. Many important classes of jump systems are convex
(more on this below), so the first case is important by itself. Note that the degree system
of a graph has gaps—take any integral vector with odd component-sum that is in the
convex hull of the system. (In fact, a theorem of Koren [29] implies that these are the
only gaps. However, if we intersect the degree system with a box—that is, put upper and
lower bounds on the degrees—the resulting jump system has more interesting gaps.)

To understand the situation when x̂ is not in the convex hull of J , it is useful to have
a linear-inequality description of the convex hull of a jump system. Let us define, for
disjoint subsets A, B of V , f(A, B) to be max(x(A) − x(B) : x ∈ J ). Then f has the
following property, called bisubmodularity:

f(A, B) + f(A′, B′) ≥ f(A ∩ A′, B ∩ B′)
+ f((A ∪ A′)\(B ∪ B′), (B ∪ B′)\(A ∪ A′)) (2)

An integral bisubmodular polyhedron is a polyhedron of the form {x ∈ RV :
x(A) − x(B) ≤ f(A, B) for all disjoint A, B ⊆ V }, where f is an integral bisubmodu-
lar function. Bisubmodular polyhedra generalize polymatroids, submodular polyhedra,
generalized polymatroids, and other classes. This class of polyhedra was first consid-
ered by Dunstan and Welsh [12], but without the connection to bisubmodularity. The
connection with jump systems is given by the following result from [3].

Theorem 14. The convex hull of a jump system is an integral bisubmodular polyhedron.
The set of integral points in any integral bisubmodular polyhedron is a (convex) jump
system.

Corollary 1. Let J be a jump system. Then the convex hull of J is the solution set of
a set of inequalities with 0, 1,−1 coefficients.

We summarize the approach of Lovász [32] to the membership problem. First, we
generalize the problem to the following. For a jump systemJ and a box B, find d(J , B).
(In the special case where B = {x}, this minimum distance is 0 if and only if x ∈ J ).
Here is a rather trivial lower bound. Let w ∈ {0, 1,−1}V . Then

d(J , B) ≥ min
x∈J

wT x − max
x∈B

wT x. (3)

Cases where there exists a w for which equality holds in (3), provide most of our positive
results on the membership problem. One case in which this is true, is when B is “fat”.

Theorem 15. Let B = [a, b] be a box with ai �= bi for all i. Then there exists w ∈
{0, 1,−1}V giving equality in (3).

Corollary 2. If B = [a, b] is a box with ai �= bi for all i and J is a jump system such
that B ∩ J = ∅, then there exists w ∈ {0, 1,−1}V , and w0 ∈ Z such that wT x ≤ w0
for all x ∈ J , and wT x > w0 for all x ∈ B.
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Notice that, while the convex hull of a jump system can contain an integral point
that is not feasible, the corollary implies that it cannot contain a box with no feasible
point that has non-zero width in every direction. In fact, it cannot even intersect such
a box.

This last result seems to say nothing about the original motivating case, that is,
when B is a singleton. But, by a trick, we can apply it to the membership problem for
constant-sum jump systems. Suppose that J is a jump system for which every feasible
point x satisfies

∑
(x j : j ∈ V ) = α. If we wish to determine whether y is feasible,

we first check that
∑

(y j : j ∈ V ) = α. Now y is feasible if and only if B ∩ J �= ∅,
where B = {x ∈ ZV : y ≤ x}. Therefore, if y is not feasible, we get w and w0 as in
the corollary. Clearly, we cannot have any w j = −1, so there is a set A ⊆ V such that
every feasible point x satisfies x(A) ≤ w0, while y(A) > w0.

The latter result is already strong enough to imply the Matroid Intersection Theorem.
Namely, if J is the difference of two matroids, each having rank k, and having rank
functions r1, r2, then J has constant sum with α = 0, and the question whether there
is a common basis, is the question whether y = 0 is in J . Therefore, if there is no
common basis, we have A as above, and since we can choose w0 = −1, we have, for
all x ∈ J , x(A) < 0. That is, for all bases B1 of the first matroid and B2 of the second,

|B1 ∩ A| < |B2 ∩ A| = k − |B2 ∩ (V\A)|.
This gives the Matroid Intersection Theorem.

Lovász provides a deeper application of (3), as follows. Let us consider the problem
of finding the minimum distance from J to 0. Define J to be critical if for every
j ∈ V and every σ ∈ {1,−1}, d(σe j ,J ) < d(0,J ). (e j is the integral unit vector
corresponding to j ∈ V .) In other words, every step from 0 is closer to J than is 0.
Before describing the result, we provide a bit of motivation, by showing that, if J is the
degree system of a connected graph G, translated by subtracting the vector of 1’s, then
J is critical if and only if G is critical in the sense defined in Sect. 2. Suppose first that
G is critical. Then clearly the distance from 0 to J is 1, so we need to show that, for
every vertex j of G and every σ ∈ {1,−1}, σe j ∈ J , that is, that (1, . . . , 1)+σe j is the
degree sequence of a subgraph of G. Since G has a matching missing only j , the case
when σ = −1 is immediate. Now choose an edge jk of G. There is a matching of G
missing only k, and adding jk to the matching gives a subgraph with degree-sequence
equal to e j plus the vector of 1’s, handling the other case. Now suppose thatJ is critical.
Fix j ∈ V . Since −e j is closer to J than is 0, there is a subgraph H of G whose degree-
sequence is as close to the all 1’s vector as possible and such that j has degree 0. By
repeatedly deleting from H an edge at a vertex of degree more than 2, we can convert H
to a maximum matching leaving j exposed. Therefore, in the Gallai-Edmonds partition,
D = V , and, since G is connected, G is critical.

Theorem 16. Let J be a jump system, let w ∈ {0, 1,−1}V , and let S ⊆ V with w j = 0
for all j ∈ S. Let F be the greedy face of J maximizing wT x, let w0 be the optimal
value, and let FS be the projection of F onto S. Then

d(J , 0) ≥ d(FS, 0) − w0.

Moreover, there exist S and w such that equality holds, and FS is critical.
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This result provides a reduction of the minimum distance problem to the special
case of critical jump systems. In some cases the reduction is well behaved, and it is
possible to obtain a good characterization of the minimum distance. For example, in the
case of degree systems, the critical systems that arise are also degree systems, and they
are well understood. Lovász gives a min-max theorem for a class of jump systems that
includes degree systems and differences of matroids. (In particular, both the existence
theorem for degree-constrained subgraphs and the Matroid Intersection Theorem can
be derived.) There may be room to go further in this direction.

6. Path-matchings

Let G = (V, E) be a graph and T1, T2 disjoint stable sets of G, that is, sets of mutually
nonadjacent vertices, with |T1| = |T2| = k. We denote V\(T1 ∪ T2) by R. A perfect
path-matching is a collection of k vertex-disjoint paths, all of whose internal vertices are
in R, linking T1 to T2, together with a perfect matching of the vertices of R not in any of
the paths. Figure 4 shows an example—the thick edges form a perfect path-matching. In

Fig. 4. A perfect path-matching

the special case when R = V , a perfect path-matching is nothing but a perfect matching
of G. In the special case when R = ∅, then G is bipartite, and again, a perfect path-
matching is a perfect matching of G. Therefore, this model contains bipartite matching
in two different ways. As we shall see, this fact is related to the existence of a further
generalization that includes matroid intersection.

We first describe a condition for the existence of a perfect path-matching. A pair of
subsets D1 ⊆ T1 ∪ R, D2 ⊆ T2 ∪ R is called stable if no edge of G joins a vertex in
D1\D2 to a vertex in D2 or a vertex in D2\D1 to a vertex in D1. The vertices contained
in the ellipses of Fig. 5 form a stable pair.

Suppose that there exists a perfect path-matching K , and let (D1, D2) be a stable
pair. We think of the paths of K as being from T1 to T2. There are at least k − |T1\D1|
paths of K beginning in D1 ∩ T1. Each of them eventually leaves D1; consider its first
vertex not in D1. Since (D1, D2) is stable, that vertex must be in (R ∪ T2)\(D1 ∪ D2).
Also, for each odd component H of G[D1 ∩ D2], either an edge of a path of K leaves
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Fig. 5. A stable pair

H or a matching edge of K leaves H . In either case the other end of this edge is again in
(R ∪ T2)\(D1 ∪ D2). Now we have identified at least k − |T1\D1| + odd(G[D1 ∩ D2])
vertices of (R ∪ T2)\(D1 ∪ D2), and all of them must be distinct. Therefore,

k − |T1\D1| + odd(G[D1 ∩ D2]) ≤ |(R ∪ T2)\(D1 ∪ D2)|. (4)

The stable pair of Fig. 5 violates (4), and hence no perfect path-matching exists in that
example. The condition (4) is also sufficient, as the following existence theorem [7]
shows.

Theorem 17. (G, T1, T2) admits a perfect path-matching if and only if for every stable
pair (D1, D2) we have

odd(G[D1 ∩ D2]) ≤ |V\(D1 ∪ D2)| − k.

Let us show how Tutte’s Matching Theorem follows from this result. The nontrivial
part is to show that, if G has no perfect matching, then there is a set S violating the
condition of the theorem. Applying Theorem 17 with R = V (and so k = 0), there
exists a stable pair (D1, D2) such that

|V\(D1 ∪ D2)| < odd(G[D1 ∩ D2]).
Now observe that, because (D1, D2) is stable, every odd component of G[D1∩D2] is also
an odd component of G[D1 ∪ D2]. Therefore, odd(G[D1 ∩ D2]) ≤ odd(G[D1 ∪ D2]).
If we take S = V\(D1 ∪ D2), it follows that odd(G[V\S]) > |S|, as required.

Optimal path-matchings and polyhedral descriptions

An attempt to generalize the problem of finding a perfect path-matching to that of finding
one of maximum weight leads to the following difficulty. If we consider the weight of
a perfect path-matching to be (as usual), the sum of the weights of its edges, then the
problem isNP-hard. For suppose that all edge-weights are 1, and |T1| = |T2| = 1. Then
there exists a perfect path-matching of weight |V |−1 if and only if G has a hamiltonian
path joining T1 to T2. Instead, we define the weight of a perfect path-matching to be the
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sum of the weights of the edges of the paths plus twice the weights of its other edges.
Notice that this choice has the nice property that it does not favour putting edges into
paths over putting them into the matching, and the resulting maximum-weight problem
still contains the weighted version of the perfect matching problem.

We define the vector of a perfect path-matching K with the above in mind, that
is, we assign a component of 1 for each path edge of K , a component of 2 for each
matching edge of K , and a component of 0 for each non-edge of K . Then the weight of
an optimal perfect path-matching is equal to the optimal value of cT x over the convex
hull of such vectors. This convex hull can be nicely described.

Theorem 18. (Perfect Path-Matching Polytope Theorem) The convex hull of vectors
of perfect path-matchings with respect to G, T1, T2 is equal to the set of all x ∈ RE

satisfying

x(δ(v)) = 1 (v ∈ V\R)

x(δ(v)) = 2 (v ∈ R)

x(δ(S)) ≥ k (T1 ⊆ S ⊆ T1 ∪ R)

x(δ(S)) ≥ 2 (S ⊆ R, |S| odd)

x ≥ 0.

The Perfect Matching Polytope Theorem is an easy consequence. It is also quite
easy to check that the separation problem for the inequalities of Theorem 18 is solvable
in polynomial time, and therefore that there is a polynomial-time algorithm for finding
an optimal perfect path-matching. This is the way in which polynomial-time solvability
of path-matching problems was first established [21].

We have found it convenient to describe the above results in terms of perfect path-
matchings, which generalize perfect matchings in graphs. However, there is also a notion
that generalizes matchings. We take a partition T1, T2, R of V as before, but we do not
require that |T1| = |T2|. A path-matching is a subset K of edges such that every
component of G(V, K ) is a simple path from T1 ∪ R to T2 ∪ R, all of whose internal
vertices are in R. Let us refer to the “matching edges” of K as the edges of paths of
length 1 having both ends in R, and refer to the other edges of K as “path edges”. If
we define the “value” of path-matching K to be |K | plus the number of matching edges
of K , then the maximum value of a path-matching can be characterized as follows.

Theorem 19. The maximum value of a path-matching with respect to (G, T1, T2) is the
minimum, over stable pairs (D1, D2) of

|V\(D1 ∪ D2)| + |R| − odd(G[D1 ∩ D2]).

This theorem generalizes the Tutte-Berge Formula and also implies the existence
theorem for perfect path-matchings. (It has been given a nice restatement and inductive
proof by Frank and Szegő [19].) Morever, the convex hull of path-matching vectors
(defined again to have a 2 for each matching edge) has a totally dual integral polyhedral
description. The proof in Geelen [21] of the description follows by a construction from
Theorem 18; that construction was introduced for matching by Schrijver [40]. The total
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dual integrality of the description is proved in [21] using another idea introduced for
matching by Schrijver [39]. The min-max theorem above is proved in [21] from the
total dual integrality of the system. The proofs in the published version [7] follow the
same lines, except that they apply to a more general model (outlined below). Finally,
we remark that algorithmic results for path-matching follow from those for perfect
path-matchings by straightforward reductions.

Combinatorial algorithms for path-matching

The path-matching algorithms derived above depend on the ellipsoid method, and so
are somewhat unsatisfactory. Similarly, the proofs of the existence theorems are non-
constructive. One natural route to filling these gaps, would be an augmenting-path
algorithm, generalizing Edmonds’ matching algorithm. No such algorithm is yet known;
we will say a bit more about this later.

A combinatorial method to find a path-matching of maximum value has been
found [8]; it is an extension of Geelen’s algorithm for matching. This approach is
based on the following result, which generalizes Theorem 2; it can be proved by the
same methods. In fact, this observation was the original motivation for the notion of
path-matching.

Theorem 20. G, T1, T2 admits a perfect path-matching if and only if the submatrix of
A(G) having rows indexed by V\T2 and columns indexed by V\T1 is nonsingular.

In one direction, this implies that there exists a polynomial-time (ellipsoid) algorithm
to determine whether any square submatrix of the Tutte matrix is nonsingular. (More
generally, by elementary linear algebra, there is an efficient algorithm to find the rank
of any submatrix of the Tutte matrix.) In the other direction, it allows the application
of linear algebra to path-matching. One such application is an argument of Lovász [31]
that gave the first characterization of existence for perfect path-matchings, and leads
to a proof of Theorem 17. A second application is the extension of Geelen’s matching
algorithm to path-matching. Theorem 7 generalizes to submatrices of the Tutte matrix,
thus yielding such an extension. (One small difference is that the values of the variables
can be restricted to the set of integers i such that −(|V | + 1) ≤ i ≤ |V | + 1.)

It is also desirable to have a combinatorial algorithm to find a minimum-weight
perfect path-matching. A primal-dual approach to this, with the idea of using the matrix
algorithm as a subroutine, runs into the difficulty that the subproblems generated by
the primal-dual approach are more general than path-matching. Here is a description of
the new problem. Suppose that G′ is a directed graph. An even factor is a collection
of vertex-disjoint dipaths and even dicircuits. From a perfect path-matching problem,
one can make such a problem by replacing each edge in γ(R) by a pair of oppositely
directed arcs, and replacing each other edge by a single arc, such that vertices in T1
are not heads of arcs and vertices in T2 are not tails of arcs. It is easy to see that there
exists an even factor in G′ having |V | − k arcs if and only if G, T1, T2 has a perfect
path-matching. The problem of finding an even factor of maximum cardinality is shown
in [8] to be NP-hard in general, but solvable in polynomial time for digraphs that are
weakly symmetric, meaning that every strong component is symmetric. Since G′ above is
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weakly symmetric, this result implies the solvability of the problem for path-matchings.
The algorithm for weakly symmetric digraphs depends on a generalization of the Tutte
matrix—if e = i j is a directed edge then we put ze into position (i, j), and put −ze or
0 into position ( j, i), according to whether ji is a directed edge or not. These results
do provide combinatorial algorithms for weighted perfect path-matchings, and some
generalizations, and also constructive proofs of the polyhedral theorems.

Of course, the problem of finding an even factor of minimum weight is NP-hard.
Are there other special cases that are solvable? Notice that requiring only that the
digraph be weakly symmetric will not be enough. Namely, we could reduce the problem
of finding a maximum cardinality even factor in a digraph to the problem of finding
a minimum-weight even factor in a weakly connected digraph, by giving each arc weight
−1 and adding appropriate zero-weight arcs. So one must restrict the choice of weights,
too. It turns out that one can solve the problem for digraphs G and weights c such
that G is weakly symmetric and any two oppositely directed arcs have equal weights.
Of course, this class of problems does include the optimal path-matching problem as
a special case.

Path-matchings and jump systems

As indicated in the section on jump systems, an augmenting-path result for a family
of subgraphs implies that the two-step axiom holds (at least for certain cases) for the
degree sequences of those subgraphs. We will show that the degree sequences of path-
matchings do satisfy the two-step axiom, which suggests that there may be some hope
for finding an augmenting path result for path-matchings. (But as yet, no such result
has been found.) Suppose that we define the degree sequence of a path-matching K by
defining component v to be 2 if v is incident to a matching edge of K , and to be the
number of path edges of K to which v is incident, otherwise.

Theorem 21. The set of degree sequences of path-matchings with respect to G, T1, T2
is a jump system.

The proof uses the following (known) lemma.

Lemma 1. Let A be a matrix with rows indexed by I and columns indexed by J, where
I and J are disjoint, and let J denote the incidence vectors of sets of the form P ∪ Q
where P ⊆ I, Q ⊆ J and the (P, Q)-submatrix of A is nonsingular. Then J is a jump
system.

Proof. The result can be proved by elementary linear algebra, but here is another proof
that uses some ideas from the previous section. Append an |I | by |I | identity matrix to
A to form a matrix A′, whose columns are indexed by I ∪ J . Then the (P, Q) submatrix
of A is nonsingular if and only if (I\P)∪ Q indexes a (column) basis of A′. ThusJ can
be obtained from the jump system J ′ of incidence vectors of these bases by negating
the components for elements of I and translating by the incidence vector of I .

��
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Proof of Theorem 21. Let K be a path-matching. We choose a submatrix of A(G) with
rows I ′ and columns J ′ corresponding to K as follows. If a vertex v is incident with
a matching edge of K or is an internal vertex of a path of K , put v into both I ′ and J ′.
For a path of K , put one end into I ′ and the other end into J ′, being careful always to put
elements of T1 only into I ′ and elements of T2 only into J ′. Now the (I ′, J ′)-submatrix
of the Tutte matrix is nonsingular, since K is a perfect path-matching with respect to
H, T ′

1, T ′
2, where T ′

1 = I ′\J ′, T ′
2 = J ′\I ′, and H is the subgraph obtained from G by

deleting the vertices not in I ′ ∪ J ′ and the edges in γ(T ′
1) ∪ γ(T ′

2). Conversely, given
a nonsingular square submatrix with row indices I ′ ⊆ I = R ∪ T1 and column indices
J ′ ⊆ J = R ∪ T2, we form the subgraph H and terminal sets T ′

1, T ′
2 as above. Then

(H, T ′
1, T ′

2) admits a perfect path-matching K , which is a path-matching with respect to
G, T1, T2.

If we now think of I and J as disjoint sets (say, by making copies R1, R2 of R to
index the rows and columns, respectively), then we get a jump systemJ from Lemma 1.
We can now form a new jump system J ′ from J using homomorphism, getting the
component for v ∈ R by adding the components corresponding to its two copies. The
feasible points will be precisely the degree sequences of path-matchings, as required.

��

A matroid generalization

Now we describe a further extension [7] of the path-matching model, which also includes
matroid intersection as a special case. We consider as before a graph G = (V, E) and
a partition of V into T1, T2, R with T1, T2 stable sets, but we drop the condition that
T1 and T2 have the same size. On the other hand, now we are given matroids M1 on
T1 and M2 on T2. We assume that the two matroids have the same rank k. A basic
path-matching is now a set of vertex-disjoint paths joining a basis of M1 to a basis of
M2 together with a perfect matching of the vertices of R not in any path.

In the special case in which Ti is a basis of Mi for i = 1 and 2, a basic path-matching
is precisely a perfect path-matching. A second special case occurs when R = ∅ and
G consists of a perfect matching joining T1 to T2. In this case, suppose we think of
M1 and M2 as matroids on the same set T that have been copied onto the sets T1, T2,
respectively, with edges joining corresponding copies. Then a basic path-matching is
a subset of the edges matching a basis of M1 to a basis of M2, and hence corresponds to
a common basis.

Most of the results for perfect path-matching above go through—existence theorem,
polyhedral description, existence of polynomial-time solution algorithms (based, again,
on the equivalence of separation and optimization). We limit ourselves here to stating
the existence theorem. (Further results and proofs are in [7].) The reader can use it to
derive the existence theorems for perfect path-matching and for common bases of two
matroids.

Theorem 22. There exists a basic path-matching with respect to G, M1, M2 if and only
if there does not exist a stable pair (D1, D2) for which

r1(T1\D1) + r2(T2\D2) + |R\(D1 ∪ D2)| < k + odd(G[D1 ∩ D2]).
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Basic path-matching seems to provide the desired solvable common generalization
of (weighted) matching and (weighted) matroid intersection. We explain now how this
model can be handled combinatorially. (These ideas are from [8].) Surprisingly, the
techniques required to do this are essentially path-matching plus (valuated) matroid
intersection. This may suggest that the generalization from path-matching to basic
path-matching is not so substantial.

Let V ′ be a copy of V . For each subset P of V , we use P′ to denote the corresponding
subset of V ′. We also use M′

1 to denote the copy of matroid M1 on T ′
1. We define two

matroids Na and Nb on V ∪V ′, each having rank |V |. Let Na be the matroid of the matrix
(I |A(G)), where the columns of the identity matrix I are indexed by the elements of
V ′. Then the bases of Na are the sets (V ′\P′) ∪ Q, where P and Q are subsets of V
such that the (P, Q)-submatrix of A(G) is (square and) nonsingular. From Theorem 20,
for (V ′\P′) ∪ Q to correspond to a basic path-matching, it will be enough to assure in
addition that

(a) P ∩ T1 is a basis of M1 and Q ∩ T2 is a basis of M2;
(b) P ∩ T2 = ∅ = Q ∩ T1;
(c) P ⊇ R and Q ⊇ R.

We define Nb to have as bases, sets of the form

R ∪ T ′
2 ∪ (T ′

1\B′
1) ∪ B2,

where B1 is a basis of M1 and B2 is a basis of M2. It is easy to see that Nb is a matroid,
since it is the “direct sum” of M2, the dual of M′

1, and a trivial matroid. Notice that P, Q
will have properties (a), (b), (c) above if and only if (V ′\P′) ∪ Q is a basis of Nb. So
we get the following result.

Proposition 1. There is a basic path-matching with respect to G, M1, M2 if and only if
there is a common basis with respect to Na, Nb.

One can use this construction to prove the Basic Path-Matching Existence Theo-
rem 22 from the Matroid Intersection Theorem and the Path-Matching Existence Theo-
rem 17. From the algorithmic point of view, we can apply the Matroid Intersection
Algorithm to determine whether there exists a basic path-matching. It needs efficient
subroutines to determine whether a given subset S of V ∪ V ′ is independent in Na, Nb.
For Nb, one needs to check that S ∩ T2 is independent in M2, that T ′

1\S contains a basis
of M′

1, that S ∩ R′ = ∅, and that S ∩ T1 = ∅. Therefore, if we have efficient algorithms
to test independence in M1, M2, then we have such an algorithm for Nb. To test whether
S is independent in Na , we need to know, where P′ = V ′\S and Q = S ∩ V , whether
the (P, Q)-submatrix of A(G) has rank |Q|. As we pointed out earlier, we do have an
efficient combinatorial algorithm for determining the rank of any submatrix of the Tutte
matrix.

Optimal basic path-matching

Finally, we would like to have a combinatorial algorithm for finding a minimum-weight
basic path-matching. Presumably, it is possible to adopt a primal-dual approach, as was
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done for perfect path-matchings; one would first generalize basic path-matchings to
“basic even factors” in weakly symmetric digraphs. In [8], a different approach is taken;
it utilizes work of Murota on valuated matroids.

A valuation on a matroid M on T is a function w assigning an integer weight to
each basis B of M so that for bases B, B′ and elements u ∈ B\B′ and v ∈ B′\B

w(B) + w(B′) ≤ w((B\{u}) ∪ {v}) + w((B′\{v}) ∪ {u})
whenever the sets on the right are bases. This notion was introduced by Dress and
Wentzel [11]. The function w given by w(B) = c(B), arising from an “ordinary”
(integral) weighting c of the elements of T , is a valuation. Murota [34] has described
a polynomial-time combinatorial algorithm that, given two matroids on T and valuations
w1, w2 for them, finds a common basis B maximizing w1(B) + w2(B). His algorithm
requires, for each of the matroids, efficient subroutines to test the independence of
a given subset, and to give the valuation associated with a given basis.

Suppose that there exists a basic path-matching, and we wish to find a maximum-
weight basic path-matching with respect to given non-negative integral weights ce. (Any
minimization problem with integral data can be converted to this form, by first negating
the weights and then adding a sufficiently large positive integer to each of them.) We
replace the Tutte matrix A(G) by the matrix A′ obtained by multiplying the entries
containing ze by tce , where t is a new variable. For a polynomial p in t and the ze, we
denote by degt(p), the degree of the polynomial obtained from p by treating the ze as
constants. For each square nonsingular submatrix A′(P, Q) of A′ and the corresponding
basis (V ′\P′) ∪ Q of Na , define

w((V ′\P′) ∪ Q) = degt(det(A′(P, Q)).

It follows from a result of Dress and Wentzl [11] that w is a valuation on Na . Note
that, given P, Q, the required degree is equal to the maximum weight of a perfect
path-matching with respect to G[P ∪ Q], P\Q, Q\P. If we now assign Nb the zero
valuation, it is easy to see that solving the valuated matroid intersection problem on these
two valuated matroids, solves the maximum weight basic path-matching problem. Thus
we can apply Murota’s algorithm to solve the optimal basic path-matching problem. It
requires a subroutine for optimal perfect path-matching.

7. Remarks

The importance of the two extensions that we have emphasized here remains to be seen.
Path-matching seems to be well-understood in the sense that we have the basic results
that we would like. What is not clear, is whether there are additional useful applications
of the model. In other words, this may be an extension that is a bit too special to be
really important. Jump systems have somewhat the opposite characteristic. They have
very many applications, but, in the sense that the membership problem is unsolvable,
they may be too general. This suggests the challenge of finding additional conditions
under which the membership problem for jump systems is solvable.
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