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Process Optimization: Equation-Oriented 
(Glass Box) Formulation
Min Overall Objective
s.t. Conservation Laws

Performance Equations
Constitutive Equations
Process/Product Specifications

Minimize Utilities
Via Heat Integration (LP)

Minimize Gibbs Free Energy
(Vapor Liquid Equilibrium)

Minimize Gibbs Free Energy
(Reactor Model)

à Consider MPCCs derived from Bi-level Optimization

Distillation Optimization (MESH Model)
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Minimize Reboiler Duty

s.t. Top/ Bottom Product Specifications

• Three component Separation  
(nC6, nC7, nC9)

• Fixed: 20 trays, Feed = 10
• Reboil and Reflux as decisions

Mass

Heat

Summation

Equilibrium
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Distillation Optimization (MESH Model)
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Minimize Reboiler Duty

s.t. Top/ Bottom Product Specifications

• Three component Separation  
(nC6, nC7, nC9)

• Fixed: 20 trays, Feed = 10
• Reboil and Reflux as decisions

Distillation Results – Min Heat Duty
(Kamath et al., 2010)

x B,hk ≥ 0.9, xD,lk ≥ 0.9

x B,hk ≥ 0.8 

x B,hk ≥ 0.45 
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Equation-Oriented Optimization: 
Air Separation Units (Dowling, B., 2014)

Boiling pts (1 atm.)
•Oxygen: 90 K
•Argon: 87.5 K
•Nitrogen: 77.4 K

Feedstock (air) is free: dominant cost 
is compression energy

Multicomponent distillation with tight 
heat integration

Nonideal Phase Equilibrium: Cubic 
Equations of State

Phase conditions not known a priori

ASU NLP Superstructure
Phase Equilibrium and Heat Integration 
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ASU Optimization 
ΔTmin = 1.5 K, 95% O2 purity LP Column

8% feed air
21 stages,1 bar
98% O2 recovery

HP Column
92% feed air
10 stages, 3.5 bar
98.4% pure N2 stream

• Balanced Reboiler/Condenser
• No heating and cooling, only power
• Typical NLP: 15534 variables, 261 

degrees of freedom
• MPCC bootstrapping “work process” è

15 CPU min (CONOPT/ GAMS) 
• 0.196 kWh/kg (86% comp efficiency)
• Compares well with industrial designs

Heterogeneous Models for Process Optimization

Can we apply Equation-Oriented 
Optimization Solvers and Environments to 

Complex Simulation Models? 

Incorporate Equation-Oriented Reduced (Surrogate) Models

Original Detailed Models (ODMs) Reduced Models (RMs)
Reactor PDEs POD, α model …
Distillation Shortcuts…
Physical Props.   Polynomials, Kriging
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How Simple Should the RM be for 
Optimization?

Consistency
• ODM and Reduced model (RM)

must match (be feasible) 
• ODM and RM must recognize 

same optimum point
=> satisfy same KKT conditions 
(gradient-based)

Stability
• Sequence of objective functions 

remains bounded 
• Provide sufficient improvement 

toward ODM optimum

Roberts (1979), B. et al., (1985); Forbes and Marlin (1998); Engell (2007) 

Reduced Model Optimization Strategy
RM depends on ODM information at current parameter values
ODM gradients - often not available 

Accurate RM

RM shows
error

Trust region based optimization 

optimum

Extend RM-based trust region strategy for objective and constraint functions
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Lifting to Separate Glass and Black 
Box Models

RM

rk(w)

w

y

trust region filter method are introduced. Then, the trust region filter method for reduced

models is presented in section 3 and convergence results are summarized. The algorithm is

applied to process optimization examples in section 4. Finally, directions for future work

using the concept of ✏-exact models are outlined in section 5.

2 Problem Statement

Consider the following formulation of the glass box/black box optimization problem:

min f(z, w, d(w))

s.t. h(z, w, d(w)) = 0

g(z, w, d(w))  0

(1)

where minimization is over z 2 Rn and w 2 Rm. w represents the inputs to the black box

function, and z represents the remaining decision variables. d(w) : Rm ! Rp represents the

outputs of the black box as a function of inputs w. We assume that all functions f, h, g, d are

twice continuously di↵erentiable, although derivatives may be unavailable for d(w). Because

of the inherent di�culty of black box optimization problems, we assume that the black box

model forms a small portion of the overall system. The number of black box inputs and

outputs m and p are assumed to be small (less than a hundred each). By contrast, the

number of glass box variables n could be very large (on the order of tens of thousands).

To isolate the black box and glass box information, problem (1) is reformulated as follows:

min
x

f(x)

s.t. h(x) = 0

g(x)  0

y = d(w)

(2)

By introducing new variables y 2 Rp and defining xT = [wT , yT , zT ], all black box information

is moved to a single set of constraints. The remaining constraints h(x) = 0, g(x)  0, and

the objective function f(x) can be calculated without calling the black box. To solve this

problem, we will develop an algorithm that generates a sequence of points x
k

converging

to the solution of (2). This sequence will maintain feasibility for glass box constraints (i.e.

h(x
k

) = 0, g(x
k

)  0 for all k), while simultaneously converging towards optimality of (2)

5

ODM

d(w)

w

y

and feasibility of black box constraints y = d(w).

Problem (2) will be solved using a trust region method. At each iteration k, a reduced

model r
k

(w) is built to locally approximate d(w) on a trust region of radius �
k

. We then

restrict the optimization to stay within the trust region where the reduced model is accurate.

The introduction of the reduced model and trust region constraint gives us the following trust

region subproblem, denoted TRSP
k

:

min f(x)

s.t. h(x) = 0

g(x)  0

y = r
k

(w)

kx� x
k

k  �
k

.

(3)

In order to ultimately guarantee convergence of the subproblem solutions to the solution of

(2), the following accuracy condition is required on each r
k

(w) as adapted from [7]:

Definition 1 (-fully linear models). A model r
k

(w) is -fully linear on �
k

if for all {w :

kw � w
k

k  �
k

},

krr
k

(w)�rd(w)k  
g

�
k

and kr
k

(w)� d(w)k  
f

�2
k

(4)

for some 
g

> 0 and 
f

> 0 independent of k.

Each r
k

(w) must be constructed so as to satisfy the -fully linear property within the

trust region. In essence, we require that the gradients and function values of r
k

(w) and

d(w) converge as the trust region radius �
k

! 0. Even though rd(w) is unknown, we

have assumed that it exists, which means it can be approximated when building a reduced

model. Therefore, the -fully linear condition is an inherent property of the method used to

construct the reduced model. Under mild assumptions on sample set geometry, polynomial

interpolation and Kriging interpolation are examples of -fully linear reduced models [7] [21].

See Section 5 for more insight on how this bound can be guaranteed.

2.1 Compatibility and criticality check

After constructing a -fully linear reduced model, we could attempt to solve the trust

region subproblem (3). However, after replacing d(w) with r
k

(w) and introducing a trust
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Elements of TR Subproblem
(Fletcher,	Gould,	 Leyffer,	Toint,	Wächter,	2002)

and feasibility of black box constraints y = d(w).

Problem (2) will be solved using a trust region method. At each iteration k, a reduced

model r
k

(w) is built to locally approximate d(w) on a trust region of radius �
k

. We then

restrict the optimization to stay within the trust region where the reduced model is accurate.

The introduction of the reduced model and trust region constraint gives us the following trust

region subproblem, denoted TRSP
k

:

min f(x)

s.t. h(x) = 0

g(x)  0

y = r
k

(w)

kx� x
k

k  �
k

.

(3)

In order to ultimately guarantee convergence of the subproblem solutions to the solution of

(2), the following accuracy condition is required on each r
k

(w) as adapted from [7]:

Definition 1 (-fully linear models). A model r
k

(w) is -fully linear on �
k

if for all {w :

kw � w
k

k  �
k

},

krr
k

(w)�rd(w)k  
g

�
k

and kr
k

(w)� d(w)k  
f

�2
k

(4)

for some 
g

> 0 and 
f

> 0 independent of k.

Each r
k

(w) must be constructed so as to satisfy the -fully linear property within the

trust region. In essence, we require that the gradients and function values of r
k

(w) and

d(w) converge as the trust region radius �
k

! 0. Even though rd(w) is unknown, we

have assumed that it exists, which means it can be approximated when building a reduced

model. Therefore, the -fully linear condition is an inherent property of the method used to

construct the reduced model. Under mild assumptions on sample set geometry, polynomial

interpolation and Kriging interpolation are examples of -fully linear reduced models [7] [21].

See Section 5 for more insight on how this bound can be guaranteed.

2.1 Compatibility and criticality check

After constructing a -fully linear reduced model, we could attempt to solve the trust

region subproblem (3). However, after replacing d(w) with r
k

(w) and introducing a trust

6

region constraint kx � x
k

k  �
k

, the subproblem (3) might not be feasible. If the feasible

region of TRSP
k

is close to the trust region center, then the subproblem is likely to be a

good approximation of (2) because it has room to explore the feasible set and improve the

objective function. In this case we say that TRSP
k

is compatible.

Definition 2 (Compatibility). If there exists a point x̄ feasible for TRSP
k

(3) such that,

for fixed parameters � 2 (0, 1) and 
µ

> 0,

kx̄� x
k

k  ��k

min[1,
µ

�µ

k

] (5)

then TRSP
k

is compatible.

The following optimization problem, called the compatibility check, is used to measure

the feasibility of the subproblem:

min
x

ky � r
k

(w)k

s.t. h(x) = 0

g(x)  0

kx� x
k

k  ��k

min[1,
µ

�µ

k

]

(6)

Problem (6) is always feasible (take x = x
k

and recall that h(x
k

) = 0 and g(x)  0 for all k).

The objective function searches for a feasible point to (3), while the trust region constraint

is a requirement for compatibility. At each iteration define

n
k

= x⇤
n,k

� x
k

where x⇤
n,k

is a minimizer of (6). If

y
k

+ n
y,k

� r
k

(w
k

+ n
w,k

) = 0, (7)

then TRSP
k

passes the compatibility test. When TRSP
k

is not compatible, a restoration

procedure is called to generate a compatible trust region subproblem TRSP
k+1 (see Section

2.3).

If TRSP
k

passes the compatibility check, then we apply a criticality test. The criticality

7

Trust Region Subproblem

Compatibility Check
(analogous to ‘normal problem’)

Figure 1: Convergence of the filter

originally developed in [15]. As an alternative to the merit function [19], a filter borrows

concepts from multi-objective optimization to balance the trade-o↵ between feasibility and

the objective function. We define the following infeasibility measure of NLP (2):

✓(x) = ky � d(w)k.

Because all trust region subproblems maintain feasibility for glass box constraints h(x) = 0

and g(x)  0, the infeasibility of black box constraints comprises the entire infeasibility of

the NLP.

The algorithm will define a subset of iterates Z ⇢ N for which (✓, f) pairs are stored in

the filter set, defined as follows:

F
k

= {(✓
j

, f
j

) : j < k, j 2 Z}

where ✓
j

:= ✓(x
j

) and f
j

:= f(x
j

). When we say that (✓
k

, f
k

) is added to the filter, then

we mean that k is assigned to Z. These filter points can be interpreted as building a

Pareto front for the minimization of ✓ and f . This is illustrated in Figure 1. If a point lies

su�ciently below or to the left of the filter front, it is acceptable to the filter; i.e. if for all

(✓
j

, f
j

) 2 F
k

[ (✓
k

, f
k

),

✓(x
k

+ s
k

)  (1� �
✓

)✓
j

or f(x
k

+ s
k

)  f
j

� �
f

✓
j

(10)

then the step s
k

is acceptable to the filter, where �
✓

, �
f

2 (0, 1) are fixed parameters. More-

9

test will use criticality measure �(x) defined as follows:

�(x) =
���min

v

rf(x)Tv
���

s.t. rh(x)Tv = 0

g(x) +rg(x)Tv  0

v
y

�rr
k

(w)Tv
w

= 0

kvk  1

(8)

where the partitioning of vT = [vT
w

, vT
y

, vT
z

] corresponds to that of x. If a polyhedral norm

(e.g. k · k1 or k · k1) is used in the final constraint of (8), this problem is a linear program

and relatively easy to solve.

Criticality is always checked at x
k

+n
k

. For convenience, define �
k

:= �(x
k

+n
k

). TRSP
k

passes the criticality test if:

�
k

> ⇠�
k

(9)

where ⇠ > 0 is a fixed parameter. If TRSP
k

fails the criticality test, it implies that we are

close to optimality. Therefore, the trust region radius is decreased in order to refine the

accuracy of the reduced model. This critcality test directly corresponds to the criticality

phase in Chapter 10 of [7].

If TRSP
k

passes both the compatibility and criticality checks, then the trust region

subproblem (3) is solved. Note that this problem will be feasible since we can initialize at

x
k

+ n
k

and TRSP
k

is compatible.

2.2 Filter

Define

s
k

:= x⇤
s,k

� x
k

where x⇤
s,k

is the minimizer of (3). After solving TRSP
k

to obtain s
k

, we evaluate the quality

of this step. If s
k

makes su�cient progress towards feasibility and/or optimality of (2), then

the step is successful and we assign x
k+1 = x

k

+ s
k

. Otherwise, the step is unsuccessful and

x
k+1 = x

k

.

To define the notion of su�cient progress, our method will use the concept of a filter

8

Criticality Measure
Trust Region Management

𝜌" =
$%&'(
)%&'(

= *(,().*(,(/0()
*1(,()	.*1(,(/0()

=
𝜃(𝑥")− 𝜃(𝑥"+𝑠")

𝑦" −𝑟"(𝑤")
= 1 −

𝜃(𝑥"+𝑠")
𝜃% (𝑥")
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Trust Region Filter Method 
(Fletcher, Gould, Leyffer, Toint, Wächter, 2002)

•Store (fj, θj) at allowed iterates è F

•Allow TR step if trial point is acceptable 
to filter with θj margin

•If switching condition is satisfied (f-type 
step), only  f(x) should be sufficiently 
reduced in TR.

•If insufficient progress on in TR, evoke 
restoration phase to reduce θ.

f(x)

θ(x)

• Exact derivatives from ODM (Agarwal, B., 2012)

• Inexact Jacobians from ODM (Walther, B., 2015)

• Derivative Free Models from ODM (Eason, B., 2015 -)
(assuming no noisy functions)

Trust Region Strategy w/o ODM Gradients
(Conn, Scheinberg, Vicente, 2010)

κ - Fully Linear Property (FLP): As trust region Δ shrinks, both 
model functions and gradients must match: 

If κ - FLP does not hold in Δ, refine RM 
(apply more ODM evaluations until property holds) 

• Requires Criticality Phase as in DFO Trust Region 
Algorithm

• Convergence of TR method requires Δk à 0

and feasibility of black box constraints y = d(w).

Problem (2) will be solved using a trust region method. At each iteration k, a reduced

model r
k

(w) is built to locally approximate d(w) on a trust region of radius �
k

. We then

restrict the optimization to stay within the trust region where the reduced model is accurate.

The introduction of the reduced model and trust region constraint gives us the following trust

region subproblem, denoted TRSP
k

:

min f(x)

s.t. h(x) = 0

g(x)  0

y = r
k

(w)

kx� x
k

k  �
k

.

(3)

In order to ultimately guarantee convergence of the subproblem solutions to the solution of

(2), the following accuracy condition is required on each r
k

(w) as adapted from [7]:

Definition 1 (-fully linear models). A model r
k

(w) is -fully linear on �
k

if for all {w :

kw � w
k

k  �
k

},

krr
k

(w)�rd(w)k  
g

�
k

and kr
k

(w)� d(w)k  
f

�2
k

(4)

for some 
g

> 0 and 
f

> 0 independent of k.

Each r
k

(w) must be constructed so as to satisfy the -fully linear property within the

trust region. In essence, we require that the gradients and function values of r
k

(w) and

d(w) converge as the trust region radius �
k

! 0. Even though rd(w) is unknown, we

have assumed that it exists, which means it can be approximated when building a reduced

model. Therefore, the -fully linear condition is an inherent property of the method used to

construct the reduced model. Under mild assumptions on sample set geometry, polynomial

interpolation and Kriging interpolation are examples of -fully linear reduced models [7] [21].

See Section 5 for more insight on how this bound can be guaranteed.

2.1 Compatibility and criticality check

After constructing a -fully linear reduced model, we could attempt to solve the trust

region subproblem (3). However, after replacing d(w) with r
k

(w) and introducing a trust

6
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Trust Region Filter with Reduced Models
1. Initialize constants, starting guesses, trust region and filter.  

2. Generate RM that is κ-fully linear on trust region. 

3. Check for Compatibility. If infeasible, add (fk, θk) to filter. Go to Step 9.

4. Check for convergence of TRSP. If satisfied, reduce Δ. Go to Step 2. 

5. Solve TRSP to yield xk + sk. If infeasible, add (fk, θk) to filter. Go to Step 9.

6. If xk + sk is not acceptable to filter, reduce Δ. Go to step 7. 

7. If sk is f-type step, improve trust region Δ.  Else, add (fk, θk) to filter, update Δ.

8. Set k = k + 1, so to step 2. 

9. Restoration: compute some xk+1 acceptable to filter (heuristics). Go to step 7. 

Algorithm is globally convergent to KKT point with ODM. Proof   
modified from Fletcher et al. to deal with  nonlinear TRSP (MFCQ needed) 

and Steps 2-4 (criticality phase from CSV)

Williams-Otto	(Toy)	Optimization	Problem

18

RM

RMs:	Extent	of	reaction	models	as	function	of	
T,	V,	and	component	 fraction
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Williams-Otto:	ODMà RM

19

Replaced	by	
RMs

Williams-Otto Optimization Results

20

• Filter method with linear RM efficiently reduces simulation calls
• Kriging RM also converges but more expensive due to poorer 

approximations
• Linearization with finite differences in the filter method drastically 

reduces ODM calls over Full Process (SQP, exact gradients) by 
57%

• Unconstrained DFO with Kriging RMs is 100x more expensive

Linear	RM Linear	RM Kriging on ODM Process	Opt. Kriging on Process
1.e	-5 Δ/2 (DACE) (SQP) (Penalty)

Objective -1.2111 -1.2111 -1.211 -1.2111 -1.2111
Iterations 13 92 123 15 53
RM	Points 91 644 3141 - 573
ODM	Calls 91 644 3141 210 11622



1/11/16

11

Oxycombustion Power Plants with  CO2 Capture

Steam Cycle 
Turbine 

Generator

Fuel 
Combustion

Air 
Separation

Unit

H2O/CO2

Separation

Electricity

Air

Nitrogen

Oxygen
CO2

WaterSteam

Oxycombustion

Fuel

Heterogeneous Process Optimization Models:
ASU – distillation (MPEC)
Combustion – PDAE/CFD Models
Steam Tables – Procedural Model
Gas separation – EO equipment, distillation

Schwarze Pumpe, 30MW Pilot (2008)
Feed: Lignite; Bituminous Coal

Brandenburg, Germany

Air-fired Power Plant Optimization:
Integrating Detailed Boiler Model
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Air-fired Steam Cycle Optimization
(Dowling et al., 2015)

23

Max Thermal Efficiency
s.t. Steam cycle connectivity

Heat exchanger model
Pump model
Fixed isentropic efficiency turbine model
Hybrid boiler model with fixed fuel rate
Heat integration model
Steam thermodynamics

Using reduced models 
with trust region method  

è rigorous optimum

Solved in GAMS 24.2.1 with CONOPT 3
Trust region algorithm in MATLAB R2013a

Oxycombustion Optimization:
Integrated ASU, CPU, Boiler, Steam Cycle
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Oxycombustion Optimization
(Dowling et al., 2015)

25

Max  Thermal Efficiency
s.t. Steam cycle connectivity

Heat exchanger model
Pump model
Fixed isentropic efficiency turbine model
Hybrid boiler model with fixed fuel rate
Heat integration model
Steam thermodynamics
Correlation models for ASU and CPU

Solved in GAMS 24.2.1 with CONOPT 3
Trust region algorithm in MATLAB R2013a

Standard supercritical 
steam cycle, double reheat

Using reduced models 
with trust region method  

è rigorous optimum

26

Oxycombustion Compared 
to Air-Fired Power Plants

Air-fired Oxy-fired

Solution time (hours) 9.8 8.6

Boiler simulations:
(run on 4 cores)

759 598

Flue exit gas temperature (K) 1600 1600

Steam exit temperature (K) 835 835

Steam exit pressure (bar) 223 223

Fuel rate, HHV (MW) 1325.5 1325.5

ASU + CPU Power (MW) N/A 114.3

Net Power (MWe) 515.5 437.4

Efficiency (HHV) 38.9% 33.0%

Only 5.9% penalty for oxy-fired configuration
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Conclusions

• Need efficient optimization strategies for heterogeneous 
models (glass box vs. black box) 
– Use RMs to turn black box to glass box formulations

• Trust region algorithm embeds RMs into equation-based 
optimization problems
– Guaranteed convergence to rigorous optimum

• Process Optimization Results
– Validated on Toy (W-O) Problem 
– Demonstrated on Oxycombustion Power Plant Optimization 
– 38.9% efficient (optimal) air-fired configuration
– Optimal CO2 capture has less than 6% efficiency penalty over air-fired
– Next steps: enhanced boiler model with geometric decisions and 

economics 


