Nested Clustering on a Graph

Dave Morton
Industrial Engineering & Management Sciences
Northwestern University

Joint work with Gökçe Kahvecioğlu and Mike Nehme
Clustering on a Graph

Optimal attack and reinforcement of a network
W.H. Cunningham (1985)
Clustering on a Graph

- Given \(G = (V, E) \). Each edge has cost \(c_e > 0 \), \(e \in E \)
- Delete edges \(K \subset E \) to form \(G' = (V, E \setminus K) \)
- Cost: \(c(K) = \sum_{e \in K} c_e \)
Clustering on a Graph

- Given \(G = (V, E) \). Each edge has cost \(c_e > 0, \ e \in E \)
- Delete edges \(K \subset E \) to form \(G' = (V, E \setminus K) \)
- **Cost:** \(c(K) = \sum_{e \in K} c_e \)
- **Gain:** \(g(K) = \text{number of connected components of } G' = (V, E \setminus K) \)
 - Let \(r(K) \) be the rank of \(G' = (V, E \setminus K) \), where rank is the largest number of edges that can participate in a forest
 - Then \(g(K) = |V| - r(K) \)
Clustering on a Graph

• Model:

\[
\max_{K \subseteq E} \quad g(K) \\
\text{s.t.} \quad c(K) \leq b
\]

• If \(c(K) = |K| \): Partition graph into as many pieces as possible, subject to cardinality constraint on number of edges we delete
Clustering on a Graph
Clustering on a Graph
Clustering on a Graph
Clustering on a Graph

• A related model:

\[
\max_{K \subset E} g(K) - \lambda c(K),
\]

where \(\lambda > 0 \) is given

• Easier model and important for reasons we’ll see shortly

• Cunningham’s strength of a graph:

\[
\min_{K \subset E} \frac{c(K)}{g(K) - 1}
\]

• Bicriteria view: Find Pareto efficient solutions, maximizing \(g(K) \) and minimizing \(c(K) \)

• \(g(K) \) is a supermodular function
Maximize a supermodular function subject to a submodular knapsack constraint
A Bicriteria Combinatorial Optimization Problem

• Let S be a finite universal set
• Let $g : 2^S \rightarrow \mathbb{R}$ be a supermodular gain function
• Let $c : 2^S \rightarrow \mathbb{R}$ be an increasing, submodular cost function
• Model:
 \[
 \max_{K \subseteq S} g(K) \quad \text{s.t.} \quad c(K) \leq b
 \] \hspace{1cm} (1)
• Bicriteria view: Find Pareto efficient solutions, maximizing $g(K)$ and minimizing $c(K)$
• Nestedness: Let K_b and K_b' solve model (1) for b and b', $b < b'$. These optimal solutions are nested, if $K_b \subseteq K_b'$
Super- and Submodular Functions

• $g : 2^S \rightarrow \mathbb{R}$ is a supermodular function, provided

$$g(B \cup \{k\}) - g(B) \geq g(A \cup \{k\}) - g(A)$$

where $A \subset B \subset S$ and where $k \in S \setminus B$

• $c : 2^S \rightarrow \mathbb{R}$ is submodular if $-c(\cdot)$ is supermodular

• A function is modular if it is both super- and submodular
Nested Clustering on a Graph
Geometry and Nestedness under Supermodularity

- Model:

\[
\max_{K \subset S} \quad g(K) \\
\text{s.t.} \quad c(K) \leq b
\]

- Assume \(c(\cdot) \) is submodular and increasing. And \(g(\cdot) \) is supermodular.

- Let \(A, B \subset S \) satisfy \(c(A) < c(B) \).

Gain-to-cost ratio: \(m : 2^S \times 2^S \to \mathbb{R} \) is:

\[
m(A, B) = \frac{g(B) - g(A)}{c(B) - c(A)}
\]
Gain-to-Cost Ratio

\[m(A, B) = \frac{g(B) - g(A)}{c(B) - c(A)} \]
Geometry and Nestedness under Supermodularity

Lemma 1 Let $B \subset S$ be a solution of model (1) on the concave envelope of the efficient frontier. Then,

$$m(A, B) = \max_{K \subset S: c(K) \geq c(B)} m(A, K) \ \forall A : c(A) < c(B)$$

and

$$m(B, C) = \min_{K \subset S: c(K) \leq c(B)} m(K, C) \ \forall C : c(C) > c(B)$$
Lemma 1 (in pictures): Let $B \subset S$ be a solution of model (1) on the concave envelope of the efficient frontier. Then the following is impossible; i.e., there is no such K^*:

\[
\begin{align*}
B & \quad A \quad * \\
K^* & \quad B
\end{align*}
\]

Figure 2: In (a) we have that if $m(A, B) < m(A, K^*)$ for some A and K^* satisfying $c(A) < c(B) \leq c(K^*)$, then B is convex dominated by A and K^*.

In (b) we have that if $m(B, C) > m(K^*, C)$ for some K^* and C satisfying $c(K^*) \leq c(B) < c(C)$, then B is convex dominated by K^* and C.

Part (b) follows in a similar fashion by supposing that $m(K^*, C) < m(B, C)$ for some K^* satisfying $c(K^*) \leq c(B)$.

This implies that B is convex dominated by K^* and C.

Proposition 1(a) implies that the solutions of model (1) that we can find in polynomial time maximize the gain per unit cost, relative to any solution with smaller cost. Figure 2 provides a geometric interpretation.
Geometry and Nestedness under Supermodularity

Lemma 2 Assume $c(\cdot)$ is submodular and increasing and $g(\cdot)$ is supermodular. Let $K_1, K_2 \subset S$ be solutions on the concave envelope of the efficient frontier of model (1) with $K_1 \notin K_2$ and $K_2 \notin K_1$. Then

$$m(K_1 \cap K_2, K_1) = m(K_2, K_1 \cup K_2) = m(K_1 \cap K_2, K_1 \cup K_2).$$
Geometry and Nestedness under Supermodularity

Lemma 2 (in pictures): Assume \(c(\cdot) \) is submodular and increasing and \(g(\cdot) \) is supermodular. Then

\[
m(K_1 \cap K_2, K_1) = m(K_2, K_1 \cup K_2) = m(K_1 \cap K_2, K_1 \cup K_2)
\]
Proof of Lemma 2

- $K_1 \cap K_2 \subset K_2$. So,

$$g(K_1) - g(K_1 \cap K_2) \leq g(K_1 \cup K_2) - g(K_2)$$

$$c(K_1) - c(K_1 \cap K_2) \geq c(K_1 \cup K_2) - c(K_2)$$

- Thus

$$m(K_1 \cap K_2, K_1) \leq m(K_2, K_1 \cup K_2) \quad (1)$$

- Applying Lemma 1 with $A = K_1 \cap K_2$ and $B = K_1$ yields:

$$m(K_1 \cap K_2, K_1 \cup K_2) \leq m(K_1 \cap K_2, K_1). \quad (2)$$

- Applying Lemma 1 with $B = K_2$ and $C = K_1 \cup K_2$ yields:

$$m(K_2, K_1 \cup K_2) \leq m(K_1 \cap K_2, K_1 \cup K_2). \quad (3)$$

Taken together, inequalities (1)-(3) yield the desired result.
Geometry and Nestedness under Supermodularity

Theorem 3 Assume $c(\cdot)$ is submodular and increasing and $g(\cdot)$ is supermodular. Let $K_1, K_2 \subset S$ be extreme points on the concave envelope of the efficient frontier of model (1). Then either $K_1 \subset K_2$ or $K_2 \subset K_1$. Moreover, if $c(K_1) = c(K_2)$ then $K_1 = K_2$.
Geometry and Nestedness under Supermodularity

\[
\begin{align*}
\max_{K \subset S} & \quad g(K) \\
\text{s.t.} & \quad c(K) \leq b
\end{align*}
\]

- Assume \(c(\cdot)\) is submodular and increasing and \(g(\cdot)\) is supermodular
- Extreme points of concave envelope of efficient frontier are nested
- Obtain those solutions in strongly polynomial time via

\[
\max_{K \subset S} \quad g(K) - \lambda c(K)
\]
Okay. But, how do we solve the graph clustering problem?

\[
\begin{align*}
\max_{K \subset S} & \quad g(K) \\
\text{s.t.} & \quad c(K) \leq b \\
\text{or} & \quad \max_{K \subset S} \quad g(K) - \lambda c(K)
\end{align*}
\]
LP for Minimum Spanning Tree

\[
\begin{aligned}
\min & \quad \sum_{e \in E} c_e x_e \\
\text{s.t.} & \quad \sum_{e \in E} x_e = |V| - 1 \\
& \quad \sum_{e=(i,j) \in E, \ i,j \in S} x_e \leq |S| - 1, \ S \subset V, \ S \neq \emptyset \\
& \quad 0 \leq x_e \leq 1, \ e \in E.
\end{aligned}
\]
LP for Maximum Number of Edges in a Forest

\[
 r(E) = \max_x \sum_{e \in E} x_e
\]

s.t.

\[
 \sum_{e=(i,j) \in E} x_e \leq |S| - 1, S \subset V, S \neq \emptyset
\]

\[
 0 \leq x_e \leq 1, e \in E,
\]

Recall:

- Let \(r(K) \) be the rank of \(G' = (V, E \setminus K) \), where rank is the largest number of edges that can participate in a forest

- Then \(g(K) = |V| - r(K) \)
LP for $g(K)$

\[
g(K) = |V| - \max_x \sum_{e \in E \setminus K} x_e \\
\text{s.t.} \sum_{e = (i, j) \in E \setminus K, i, j \in S} x_e \leq |S| - 1, S \subset V, S \neq \emptyset \\
0 \leq x_e \leq 1, e \in E \setminus K
\]

\[
ge(K) = |V| + \min_x \sum_{e \in E \setminus K} -x_e \\
\text{s.t.} \sum_{e = (i, j) \in E \setminus K, i, j \in S} x_e \leq |S| - 1, S \subset V, K \neq \emptyset \\
0 \leq x_e \leq 1, e \in E \setminus K
\]
LP for $g(y)$

Let $K = \{e : y_e = 1, e \in E\}$

$$g(y) = |V| + \min_x \sum_{e \in E} -x_e$$

subject to

$$\sum_{e = (i,j) \in E_{i,j \in S}} x_e \leq |S| - 1, S \subset V, S \neq \emptyset$$

$$0 \leq x_e \leq 1 - y_e, e \in E$$

$$= |V| + \min_x \sum_{e \in E} (y_e - 1)x_e$$

subject to

$$\sum_{e = (i,j) \in E_{i,j \in S}} x_e \leq |S| - 1, S \subset V, S \neq \emptyset : \pi_S$$

$$0 \leq x_e \leq 1, e \in E : \gamma_e$$

$$= |V| + \max_{\pi, \gamma} \sum_{S \subset V} (|S| - 1)\pi_S + \sum_{e \in E} \gamma_e$$

subject to

$$\sum_{S:i,j \in S} \pi_S + \gamma_e \leq y_e - 1, e = (i, j) \in E$$

$$\pi_S \leq 0, S \subset V, S \neq \emptyset$$

$$\gamma_e \leq 0, e \in E.$$
MIP for Knapsack-constrained Graph Clustering

A MIP for model (1) is then:

\[
\begin{align*}
\text{max} & \quad \sum_{S \subset V} (|S| - 1)\pi_S + \sum_{e \in E} \gamma_e \\
\text{s.t.} & \quad \sum_{S:i,j \in S} \pi_S + \gamma_e \leq y_e - 1, e = (i, j) \in E \\
& \quad \sum_{e \in E} c_e y_e \leq b \\
& \quad \pi_S \leq 0, S \subset V, S \neq \emptyset \\
& \quad \gamma_e \leq 0, e \in E \\
& \quad y_e \in \{0, 1\}, e \in E
\end{align*}
\]

Pricing problem for column generation is well-known max-flow problem on an auxiliary graph with \(|V| + 2\) nodes, just like in MST problem.
No, really. How do we solve the graph clustering problem?

$$\max_{K \subseteq S} g(K) - \lambda c(K)$$
Solving Sequence of Max-Flow Problems Solves Graph Clustering Problem

1. Cunningham (1985) solves $|E|$ max-flow problems on a graph with $|V| + 2$ nodes

2. Barahona (1992) solves at most $|V|$ max-flow problems on a graph with $|V| + 2$ nodes

3. Baïou, Barahona and Mahjoub (2000) solve at most $|V|$ max-flow problems on a graph with $|k| + 2$ nodes at iteration k

4. Preissmann and Sebó (2008) solve $|V|$ max-flow problems on a graph with at most $|k| + 2$ nodes at iteration k

Max-flow problems are the same as in the MST problem.
How do we solve the *nested* graph clustering problem?

\[
\max_{K \subset S} g(K) - \lambda c(K) \quad \forall \lambda > 0
\]
Solving Sequence of *Parametric* Max-Flow Problems Solves *Nested* Graph Clustering Problem

1. Cunningham (1985)
2. Barahona (1992)

- Each algorithm works for fixed $\lambda > 0$
- We modify each, solving a parametric max-flow problem in λ
- This yields family of nested (hierarchical) clusters on the concave envelope of the efficient frontier
Parametric Max Flow

- In general, parametric LP and parametric max flow can have exponentially many break points.
- But, we have nested property, and hence, at most $|V|$ break points.
- Parametric push-relabel algorithm has same complexity as for fixed λ: Gallo, Grigoriadis and Tarjan (1989).
- Ditto for pseudo-flow algorithm (Hochbaum 2008) and others.

We have preliminary implementation of Preissmann and Sebó (2008) with parametric max-flow in Python/Gurobi.
Relaxed Caveman Graph
Relaxed Caveman Graph: $g(K) = 2$
Relaxed Caveman Graph: $g(K) = 3$
Relaxed Caveman Graph: \(g(K) = 20 \)
Relaxed Caveman Graph: $g(K) = 160$
Summary: Nested Clustering on a Graph

- Bicriteria model
 - maximize gain: number of clusters
 - minimize cost: weight of edges removed
- Gain is supermodular and cost is submodular, increasing
- Pareto efficient solutions on concave envelope of efficient frontier
 - computed in polynomial time
 - nested
- Proposed algorithm
 - combines Preissmann and Sebó (2008) and parametric max flow
 - solves nested clustering problem in same complexity as for fixed λ
- Value of, and connections to, MIP formulation?