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Motivation



Unconstrained optimization

Consider unconstrained optimization problems of the form

min f(z).

zER™

Deterministic, smooth

> gradient — Newton methods
Stochastic, smooth

> stochastic gradient — batch Newton methods
Deterministic, nonsmooth

» subgradient — bundle / gradient sampling methods



Balance between extremes

For deterministic, smooth optimization, a nice balance achieved by quasi-Newton:
Tp41 < Tk — 0 Wigk,

where
> ap > 0 is a stepsize;
> g < Vf(xk) (or an approximation of it);
> {W} is updated dynamically.
We all know:
> local rescaling based on iterate/gradient displacements
> only first-order derivatives required
> no linear system solves required
> global convergence guarantees (say, with line search)
> superlinear local convergence rate

How can we carry these ideas to other settings?



Enhancements

Convex to nonconvex
» Positive definiteness not maintained automatically (*)

» Skipping or damping

Deterministic to stochastic
» (%) and scaling matrices not independent from gradients (Wgy)

» Skipping, damping, regularization
Smooth to nonsmooth

> Scaling matrices necessarily(?) tend to singularity

> (Wolfe) line search, bundles or gradient sampling



Enhancements

Convex to nonconvex
» Positive definiteness not maintained automatically (*)
» Skipping or damping
» skipping or under-/over-damping
Deterministic to stochastic
> (%) and scaling matrices not independent from gradients (Wpygy,)
» Skipping, damping, regularization
» under-/over-damping, over-regularization (say, adding 67 to all updates)
Smooth to nonsmooth
> Scaling matrices necessarily(?) tend to singularity
> (Wolfe) line search, bundles or gradient sampling
> intertwined {x}, {ar}, {9k}, and {Wy}



Overview

Propose two methods for unconstrained optimization
» exploit self-correcting properties of BEGS-type updates; Byrd, Nocedal (1989)
» properties of Hessians offer useful bounds for inverse Hessians

» forget about superlinear convergence,

lim [(Hi = Hy)sill2

=0 (not relevant here!)
koo llskll2

Stochastic, nonconvex:

» Proposal: Twist on updates, different than I have seen

> Result: More stable behavior than basic stochastic quasi-Newton
Deterministic, convex, nonsmooth:

» Proposal: Acceptance/rejection mechanism (no constrained QPs to solve)

> Result: Improved behavior over line search approach

Deterministic, nonconvex, nonsmooth (not this talk): see Curtis, Que (2015)
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Geometric and Self-Correcting Properties of BEGS-type Updating



BFGS-type updates

Inverse Hessian and Hessian approximation! updating formulas (ska > 0):

T
T T T
VS VS Sk
Wipr e | I= o | Wi (1= 2= |+ 5k
S, Vk i, Vk S, Vk

T
skngk skngk vkvlz
s, Hisk s, Hisk Sj. Vk

> These satisfy secant-type equations
Wit1vg = s, and Hpyq5, = vg,

but these are not very relevant for this talk.

> Choosing vy < Yk := gr+1 — gk yields standard BFGS update, but I choose
v < Brsk + (1 — Br)aryx for some By € [0,1].

This inverse damping is important to preserve self-correcting properties.

1 “Hessian” and “inverse Hessian” used loosely in nonsmooth settings



Geometric properties of Hessian update

Consider the matrices (which only depend on s and Hy, not gi!)

T

sksi H

Ppi= 2k and Qp =1 Py
Sk Hksk

Both are Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).

> Py yields Hy-orthogonal projection onto span(sg).

> Q}, yields Hy-orthogonal projection onto span(sk)LHk .



Geometric properties of Hessian update

Consider the matrices (which only depend on s and Hy, not gi!)

T

sksi H

Ppi= 2k and Qp =1 Py
Sk Hksk

Both are Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
> Py yields Hy-orthogonal projection onto span(sg).

> Q}, yields Hy-orthogonal projection onto span(sk)LHk .

Returning to the Hessian update:

T
T T T
sis: Hy, Sisi Hy, Vv
Hyyr < (1— R0 ) gy (- SRRk ) TkTk
sy, Hi sk sy, Hr sk Sj, Vk
N——

rank 1

rank n — 1

» Curvature projected out along span(sy)

kv _ ( vkvi llv I3 - ~
» Curvature corrected by —% = - (inverse Rayleigh).
Sp Vk v We1vk

[EAH



Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?
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Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 1 (Byrd, Nocedal (1989))
Suppose that, for all k, there exists {n,0} C R, , such that

Sk Uk llvw 113

< an <é. (KEY)
lIskI2 stvg

Then, for any p € (0,1), there exist constants {¢,k, \} C R, such that, for any
K > 2, the following relations hold for at least [pK| values of k € {1,...,K}:

T
sy, Hy sk

- | Hi sl
= Tswll2lHsilz

and k< ——= < A
llskll2

Proof technique.

Building on work of Powell (1976), involves bounding growth of

v(Hy) = tr(Hy) — In(det(Hy)).
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Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.
Corollary 2

Suppose the conditions of Theorem 1 hold. Then, for any p € (0, 1), there exist
constants {u, v} C R, | such that, for any K > 2, the following relations hold for
at least [pK'| values of k € {1,...,K}:

wllgrll3 < g Wigr and |[Wigkll3 < vligell3

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using
the facts that s = —apWigr and Wy = H;l for all k.
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Stochastic, Nonconvex Optimization



Stochastic, nonconvex optimization

Consider unconstrained optimization problems of the form

min f(z),

where, in an open set containing {xx},
> f is continously differentiable and bounded below and
» Vf is Lipscthiz continuous with constant L > 0,

but

» neither f nor Vf can be computed exactly.
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What has been done?

Hy 186 = Yk

AN

Yk < VI(@pt1, &) = Vi(xg, &) or ok ( > V2f($k+1~,§k+1)> Sk

Ek+1€EK4+1

false consistency?




Algorithm VM-DS : Variable-Metric Algorithm with Diminishing Stepsizes

Choose 1 € R™.
Set g1 = Vf(z1).
Choose a symmetric positive definite W, € R?*",
Choose a positive scalar sequence {ay} such that

oo o0
Zak:oo and Zai<oo.
k=1 k=1

=W N =

for k=1,2,... do

Set s +— —arWigk.

Set xp41 < T + 5k

Set gp+1 = VI (Tpt1)-

Set yr < gr+1 — gk-
10: Set B < min{B € [0,1] : vg < Bsk + (1 — B)ayyk satisfies (KEY)}.
11: Set vg < Brsk + (1 — Br)aryk-

12: Set
vksT T vksT sksT
Wigr < (T — 2 | Wi [ T— 5 |+ 5.
Sk Vi Sk Vk Sk Vi

© ® 3>

13: end for




Global convergence theorem

Theorem 3 (Bottou, Curtis, Nocedal (2016))

Suppose that, for all k, there exists a scalar constant p > 0 such that
—V f(zr) B, [Wrgr] < —pl V£ (k)3
and there exist scalars o > 0 and 7 > 0 such that
Eg, [IWigr|l3] < o + 7|V f (k)3
Then, {E[f(zk)]} converges to a finite limit and

l}cni)gréfE[Vf(ack)} =0.

Proof technique.

Follows from the critical inequality

Ee, [f(zr+1)] — flzn) < —axV (k) Ee, [Wig] + af LEe, [||[Wigrl|3]-




Reality

The conditions in this theorem cannot be verified in practice.
» They require knowing V f(zg).
» They require knowing E¢, [Wigi] and E¢, [||Wkgsll3]
> ...but Wi and g are not independent!
» That said, Corollary 2 ensures that they hold with g = V f(zx); recall

pllgrlld < g Wigr and [Wiegells < vligell3-




Reality

The conditions in this theorem cannot be verified in practice.
» They require knowing V f(zg).
» They require knowing E¢, [Wigi] and E¢, [||Wkgsll3]
> ...but Wi and g are not independent!
» That said, Corollary 2 ensures that they hold with g = V f(zx); recall

pllgrlld < g Wigr and [Wiegells < vligell3-

End of iteration k, loop over (stochastic) gradient computation until

pllars1l3 < i Wir19k41
and [[Wiy1gk113 < o+ 7lldrsall3-

Recompute gi41, gr+1, and Wi 1 until these hold.



Numerical Experiments
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Numerical Experiments
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Numerical Experiments
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Deterministic, Convex, Nonsmooth Optimization



Convex, nonsmooth optimization

Consider unconstrained optimization problems of the form

min f(z),

where
> f is convex and nonsmooth.
The following algorithm
> maintains self-correcting property in “outer” algorithm while

» “inner” iterations lift curvature until sufficient decrease holds.



Algorithm VM-AR : Variable-Metric Algorithm with Acceptance/Rejection

1: Choose z1 € R™.

2: Set g1 € Of(x1).

3: Choose a symmetric positive definite W; € R™**X™,

4: for k=1,2,... do

Set s (next page).

Set Tpy1 + Tk + Sk

Set gr4+1 € 8f(xk+1).

Set yk < gk+1 — 9k-

Set B < min{B € [0,1] : vg + Bsk + (1 — B)yx satisfies (KEY)}.
10: Set vy, < Brsk + (1 — Bk)yk

11: Set
v st T vpsT sksf
k k
Witi < (1=~ | Will- 5 7
51, Vk ), Uk 53, Vk

© @3>

12: end for




Algorithm VM-AR-step : VM-AR step computation

1: Set Wk,l — Wg.

2: forl=1,2,... do

3: Set Sk, _Wk,lgk-

4: Set T, < T + Sk 1-

50 if f(@k,) < f(@r) — ngf Wigr then
6: break

7 else

8 Set

o
— Sk,lSk,1
Mk:,l —I-— ¢ - = then
Sk,15Kk,1
_ NP
Wiiy1 < Mj (Wi 1My

9: end if
10: end for
11: Set sp Sk,l-




Global convergence theory

If zj suboptimal, then Algorithm VM-AR-step terminates finitely:
> finite number of lifts until sufficient decrease is attained.
If f has a minimizer, then zj converges to a minimizer.
> (Or so I believe! Proof is on-going. Strategy is...)
» Either finite termination or infinite descent steps;
» self-correcting properties of updates yield “nice” initial matrices for all k;

> recall strategy of bundle methods.
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Contributions

Proposed two methods for unconstrained optimization
» one for stochastic, nonconvex problems
» one for deterministic, convex, nonsmooth problems
> exploit self-correcting properties of BEGS-type updates; Byrd, Nocedal (1989)
which builds on work of Powell (1976)

* F. E. Curtis.
Self-Correcting Variable Metric Algorithms.
Working Paper, 2016.
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