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Unconstrained optimization

Consider unconstrained optimization problems of the form

min
x∈Rn

f(x).

Deterministic, smooth

I gradient → Newton methods

Stochastic, smooth

I stochastic gradient → batch Newton methods

Deterministic, nonsmooth

I subgradient → bundle / gradient sampling methods
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Balance between extremes

For deterministic, smooth optimization, a nice balance achieved by quasi-Newton:

xk+1 ← xk − αkWkgk,

where

I αk > 0 is a stepsize;

I gk ← ∇f(xk) (or an approximation of it);

I {Wk} is updated dynamically.

We all know:

I local rescaling based on iterate/gradient displacements

I only first-order derivatives required

I no linear system solves required

I global convergence guarantees (say, with line search)

I superlinear local convergence rate

How can we carry these ideas to other settings?
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Enhancements

Convex to nonconvex

I Positive definiteness not maintained automatically (?)

I Skipping or damping

I skipping or under-/over-damping

Deterministic to stochastic

I (?) and scaling matrices not independent from gradients (Wkgk)

I Skipping, damping, regularization

I under-/over-damping, over-regularization (say, adding δI to all updates)

Smooth to nonsmooth

I Scaling matrices necessarily(?) tend to singularity

I (Wolfe) line search, bundles or gradient sampling

I intertwined {xk}, {αk}, {gk}, and {Wk}

Self-Correcting Variable Metric Algorithms 6 of 31



Motivation Properties Stochastic, Nonconvex Convex, Nonsmooth Summary

Enhancements

Convex to nonconvex

I Positive definiteness not maintained automatically (?)

I Skipping or damping

I skipping or under-/over-damping

Deterministic to stochastic

I (?) and scaling matrices not independent from gradients (Wkgk)

I Skipping, damping, regularization

I under-/over-damping, over-regularization (say, adding δI to all updates)

Smooth to nonsmooth

I Scaling matrices necessarily(?) tend to singularity

I (Wolfe) line search, bundles or gradient sampling

I intertwined {xk}, {αk}, {gk}, and {Wk}

Self-Correcting Variable Metric Algorithms 6 of 31



Motivation Properties Stochastic, Nonconvex Convex, Nonsmooth Summary

Overview

Propose two methods for unconstrained optimization

I exploit self-correcting properties of BFGS-type updates; Byrd, Nocedal (1989)

I properties of Hessians offer useful bounds for inverse Hessians

I forget about superlinear convergence,

lim
k→∞

‖(Hk −H∗)sk‖2
‖sk‖2

= 0 (not relevant here!)

Stochastic, nonconvex:

I Proposal: Twist on updates, different than I have seen

I Result: More stable behavior than basic stochastic quasi-Newton

Deterministic, convex, nonsmooth:

I Proposal: Acceptance/rejection mechanism (no constrained QPs to solve)

I Result: Improved behavior over line search approach

Deterministic, nonconvex, nonsmooth (not this talk): see Curtis, Que (2015)
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BFGS-type updates

Inverse Hessian and Hessian approximation1 updating formulas (sTk vk > 0):

Wk+1 ←
(
I −

vks
T
k

sTk vk

)T
Wk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T
Hk

(
I −

sks
T
kHk

sTkHksk

)
+
vkv

T
k

sTk vk

I These satisfy secant-type equations

Wk+1vk = sk and Hk+1sk = vk,

but these are not very relevant for this talk.

I Choosing vk ← yk := gk+1 − gk yields standard BFGS update, but I choose

vk ← βksk + (1− βk)αkyk for some βk ∈ [0, 1].

This inverse damping is important to preserve self-correcting properties.

1“Hessian” and “inverse Hessian” used loosely in nonsmooth settings
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Geometric properties of Hessian update

Consider the matrices (which only depend on sk and Hk, not gk!)

Pk :=
sks

T
kHk

sTkHksk
and Qk := I − Pk.

Both are Hk-orthogonal projection matrices (i.e., idempotent and Hk-self-adjoint).

I Pk yields Hk-orthogonal projection onto span(sk).

I Qk yields Hk-orthogonal projection onto span(sk)⊥Hk .

Returning to the Hessian update:

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T
Hk

(
I −

sks
T
kHk

sTkHksk

)
︸ ︷︷ ︸

rank n− 1

+
vkv

T
k

sTk vk︸ ︷︷ ︸
rank 1

I Curvature projected out along span(sk)

I Curvature corrected by
vkv

T
k

sT
k
vk

=

(
vkv

T
k

‖vk‖22

)(
‖vk‖22

vT
k
Wk+1vk

)
(inverse Rayleigh).
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Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 1 (Byrd, Nocedal (1989))

Suppose that, for all k, there exists {η, θ} ⊂ R++ such that

η ≤
sTk vk

‖sk‖22
and

‖vk‖22
sTk vk

≤ θ. (KEY)

Then, for any p ∈ (0, 1), there exist constants {ι, κ, λ} ⊂ R++ such that, for any
K ≥ 2, the following relations hold for at least dpKe values of k ∈ {1, . . . ,K}:

ι ≤
sTkHksk

‖sk‖2‖Hksk‖2
and κ ≤

‖Hksk‖2
‖sk‖2

≤ λ.

Proof technique.

Building on work of Powell (1976), involves bounding growth of

γ(Hk) = tr(Hk)− ln(det(Hk)).
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Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.

Corollary 2

Suppose the conditions of Theorem 1 hold. Then, for any p ∈ (0, 1), there exist
constants {µ, ν} ⊂ R++ such that, for any K ≥ 2, the following relations hold for
at least dpKe values of k ∈ {1, . . . ,K}:

µ‖gk‖22 ≤ gTkWkgk and ‖Wkgk‖22 ≤ ν‖gk‖22

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using
the facts that sk = −αkWkgk and Wk = H−1

k for all k.
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Stochastic, nonconvex optimization

Consider unconstrained optimization problems of the form

min
x∈Rn

f(x),

where, in an open set containing {xk},
I f is continously differentiable and bounded below and

I ∇f is Lipscthiz continuous with constant L > 0,

but

I neither f nor ∇f can be computed exactly.
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What has been done?

Hk+1sk = yk

w0 −1 x1
*

1

yk ← ∇f(xk+1, ξk)−∇f(xk, ξk) or yk ←

 ∑
ξk+1∈Ξk+1

∇2f(xk+1, ξk+1)

 sk

false consistency?
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Algorithm VM-DS : Variable-Metric Algorithm with Diminishing Stepsizes

1: Choose x1 ∈ Rn.
2: Set g1 ≈ ∇f(x1).
3: Choose a symmetric positive definite W1 ∈ Rn×n.
4: Choose a positive scalar sequence {αk} such that

∞∑
k=1

αk =∞ and
∞∑
k=1

α2
k <∞.

5: for k = 1, 2, . . . do
6: Set sk ← −αkWkgk.
7: Set xk+1 ← xk + sk.
8: Set gk+1 ≈ ∇f(xk+1).
9: Set yk ← gk+1 − gk.

10: Set βk ← min{β ∈ [0, 1] : vk ← βsk + (1− β)αkyk satisfies (KEY)}.
11: Set vk ← βksk + (1− βk)αkyk.
12: Set

Wk+1 ←
(
I −

vks
T
k

sTk vk

)T
Wk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk
.

13: end for
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Global convergence theorem

Theorem 3 (Bottou, Curtis, Nocedal (2016))

Suppose that, for all k, there exists a scalar constant ρ > 0 such that

−∇f(xk)TEξk [Wkgk] ≤ −ρ‖∇f(xk)‖22,

and there exist scalars σ > 0 and τ > 0 such that

Eξk [‖Wkgk‖22] ≤ σ + τ‖∇f(xk)‖22.

Then, {E[f(xk)]} converges to a finite limit and

lim inf
k→∞

E[∇f(xk)] = 0.

Proof technique.

Follows from the critical inequality

Eξk [f(xk+1)]− f(xk) ≤ −αk∇f(xk)TEξk [Wkgk] + α2
kLEξk [‖Wkgk‖22].
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Reality

The conditions in this theorem cannot be verified in practice.

I They require knowing ∇f(xk).

I They require knowing Eξk [Wkgk] and Eξk [‖Wkgk‖22]

I . . . but Wk and gk are not independent!

I That said, Corollary 2 ensures that they hold with gk = ∇f(xk); recall

µ‖gk‖22 ≤ gTkWkgk and ‖Wkgk‖22 ≤ ν‖gk‖22.

End of iteration k, loop over (stochastic) gradient computation until

ρ‖ĝk+1‖22 ≤ ĝTk+1Wk+1gk+1

and ‖Wk+1gk+1‖22 ≤ σ + τ‖ĝk+1‖22.

Recompute gk+1, ĝk+1, and Wk+1 until these hold.
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Numerical Experiments

quadratic with noisy gradients
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Numerical Experiments

sum of quadratics, stochastic gradients
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Numerical Experiments

UCI (breast cancer), stochastic gradients
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Numerical Experiments

UCI (mnist), stochastic gradients
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Convex, nonsmooth optimization

Consider unconstrained optimization problems of the form

min
x∈Rn

f(x),

where

I f is convex and nonsmooth.

The following algorithm

I maintains self-correcting property in “outer” algorithm while

I “inner” iterations lift curvature until sufficient decrease holds.
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Algorithm VM-AR : Variable-Metric Algorithm with Acceptance/Rejection

1: Choose x1 ∈ Rn.
2: Set g1 ∈ ∂f(x1).
3: Choose a symmetric positive definite W1 ∈ Rn×n.
4: for k = 1, 2, . . . do
5: Set sk (next page).
6: Set xk+1 ← xk + sk.
7: Set gk+1 ∈ ∂f(xk+1).
8: Set yk ← gk+1 − gk.
9: Set βk ← min{β ∈ [0, 1] : vk ← βsk + (1− β)yk satisfies (KEY)}.

10: Set vk ← βksk + (1− βk)yk.
11: Set

Wk+1 ←
(
I −

vks
T
k

sTk vk

)T
Wk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk
.

12: end for
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Algorithm VM-AR-step : VM-AR step computation

1: Set Wk,1 ←Wk.
2: for l = 1, 2, . . . do
3: Set sk,l ← −Wk,lgk.
4: Set xk,l ← xk + sk,l.

5: if f(xk,l) ≤ f(xk)− ηgTkWk,lgk then
6: break
7: else
8: Set

Mk,l ← I − φ
(
sk,ls

T
k,l

sTk,lsk,l

)
then

Wk,l+1 ←MT
k,lWk,lMk,l.

9: end if
10: end for
11: Set sk ← sk,l.
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Global convergence theory

If xk suboptimal, then Algorithm VM-AR-step terminates finitely:

I finite number of lifts until sufficient decrease is attained.

If f has a minimizer, then xk converges to a minimizer.

I (Or so I believe! Proof is on-going. Strategy is...)

I Either finite termination or infinite descent steps;

I self-correcting properties of updates yield “nice” initial matrices for all k;

I recall strategy of bundle methods.
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Numerical Experiments

quadratic plus polyhedral (function evaluation limit)
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Numerical Experiments

quadratic plus polyhedral (more function evaluations)
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Contributions

Proposed two methods for unconstrained optimization

I one for stochastic, nonconvex problems

I one for deterministic, convex, nonsmooth problems

I exploit self-correcting properties of BFGS-type updates; Byrd, Nocedal (1989)
which builds on work of Powell (1976)

? F. E. Curtis.

Self-Correcting Variable Metric Algorithms.

Working Paper, 2016.
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