Decomposition and Dynamic Cut Generation
in Integer Programming

Matthew V. Galati
Ted K. Ralphs
http://sagan.ie.lehigh.edu/mgalati

Department of Industrial and Systems Engineering
Lehigh University, Bethlehem, PA

IBM-Research Yorktown Heights (NY) and Rüschlikon (ZH)
The Swiss Operations Research Society
Outline

- Preliminaries, Traditional Decomposition Methods
 - Dantzig-Wolfe Decomposition
 - Lagrangian Relaxation
 - Cutting Plane Method

- Dynamic Decomposition Methods
 - Price and Cut
 - Relax and Cut
 - Decompose and Cut

- Applications/Examples

- DECOMP Library Framework
Consider the following pure integer linear program (PILP):

\[z_{IP} = \min_{x \in \mathcal{F}} \{ c^T x \} = \min_{x \in \mathcal{P}} \{ c^T x \} = \min_{x \in \mathbb{Z}^n} \{ c^T x : Ax \geq b \} \]

where

\[\mathcal{F} = \{ x \in \mathbb{Z}^n : A'x \geq b', A''x \geq b'' \} \]
\[\mathcal{F}' = \{ x \in \mathbb{Z}^n : A'x \geq b' \} \]
\[\mathcal{Q} = \{ x \in \mathbb{R}^n : A'x \geq b', A''x \geq b'' \} \]
\[\mathcal{Q}' = \{ x \in \mathbb{R}^n : A'x \geq b' \} \]
\[\mathcal{Q}'' = \{ x \in \mathbb{R}^n : A''x \geq b'' \} \]

Denote \(\mathcal{P} = \text{conv}(\mathcal{F}) \) and \(\mathcal{P}' = \text{conv}(\mathcal{F}') \).

Assume that optimization (separation) over \(\mathcal{P} \) is difficult.

Assume that optimization (separation) over \(\mathcal{P}' \) can be done effectively.
\(\mathcal{P} = \text{conv}(\{x \in \mathbb{Z}^n : A x \geq b\}) \)

\(\mathcal{P}' = \text{conv}(\{x \in \mathbb{Z}^n : A' x \geq b'\}) \)

\(\mathcal{Q}' = \{x \in \mathbb{R}^n : A' x \geq b'\} \)

\(\mathcal{Q}'' = \{x \in \mathbb{R}^n : A'' x \geq b''\} \)

\(\mathcal{Q} = \mathcal{Q}' \cap \mathcal{Q}'' \) (LP Bound)

\(\mathcal{P}' \cap \mathcal{Q}'' \) (LD/DW/CP Bound)
Bounding

- **Goal**: Compute a lower bound on z_{IP}.

- The most straightforward approach is to solve the initial LP relaxation

$$z_{LP} = \min_{x \in \mathcal{Q}} \{ c^T x \} = \min_{x \in \mathbb{R}^n} \{ c^T x : A' x \geq b', A'' x \geq b'' \}$$

- Decomposition approaches attempt to improve on this bound by utilizing our implicit knowledge of \mathcal{P}'.

- Express the constraints of \mathcal{Q}'' explicitly.

- Express the constraints of \mathcal{P}' implicitly through solution of a subproblem.
 - Dantzig-Wolfe Decomposition
 - Lagrangian Relaxation
 - Cutting Plane Method
The bound is obtained by solving the Dantzig-Wolfe LP:

\[
 z_{DW} = \min_{\lambda \in \mathbb{R}^F_+} \left\{ c^\top \left(\sum_{s \in F'} s \lambda_s \right) : A'' \left(\sum_{s \in F'} s \lambda_s \right) \geq b'', \sum_{s \in F'} \lambda_s = 1 \right\},
\]

Solution method: simplex algorithm with dynamic column generation

Subproblem: optimization over \(P' \)

Suppose \(\hat{\lambda} \) is an optimal solution to (1) - then

\[
 z_{IP} \geq z_{DW} = c^\top \hat{x} \geq z_{LP}, \text{ where}
\]

\[
 \hat{x} = \sum_{s \in F'} s \hat{\lambda}_s \in P'
\]
Lagrangian Relaxation

- The bound is obtained by solving the Lagrangian dual.

\[
 z_{LR}(u) = \min_{x \in \mathcal{P}'} \{(c^\top - u^\top A'')x + u^\top b''\} \tag{3}
\]

\[
 z_{LD} = \max_{u \in \mathbb{R}^m_+} \{z_{LR}(u)\} \tag{4}
\]

- Solution method: subgradient optimization

- Subproblem: optimization over \(\mathcal{P}'\)

- Rewriting \(z_{LD}\) as an LP we see it is dual to the Dantzig-Wolfe LP

\[
 z_{LD} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}^m_+} \{\alpha + u^\top b'' : \alpha \leq (c^\top - u^\top A'')s \ \forall s \in \mathcal{F}'\} \tag{5}
\]

- So we have \(z_{IP} \geq z_{LD} = z_{DW} \geq z_{LP}\).
Cutting Plane Methods

- The bound is obtained by augmenting the initial LP relaxation with facets of \mathcal{P}'.
- This approach yields the bound

$$z_{CP} = \min_{x \in \mathcal{P}'} \{ c^T x : A'' x \geq b'' \}$$

- Solution method: simplex with dynamic cut generation
- Subproblem: separation from \mathcal{P}'
- Note that \hat{x} from (2) is an optimal solution to (6), so $z_{IP} \geq z_{CP} = z_{DW} \geq z_{LP}$.
All three decomposition methods compute the same quantity [Geoffrion74].

\[
z_{IP} \geq c^\top \hat{x} = z_{LD} = z_{DW} = z_{CP} \geq z_{LP}
\]

The basic ingredients are the same:
- the original polyhedron \(P\),
- an implicit polyhedron \(P'\), and
- an explicit polyhedron \(Q''\).

The essential difference is how the implicit polyhedron is represented:
- \(CP\) : as the intersection of half-spaces (the outer representation), or
- \(DW/LD\) : as the convex hull of a finite set (inner representation).
\[P = \text{conv}(\{ x \in \mathbb{Z}^n : Ax \geq b \}) \]

\[P_0 = \text{conv}(\{ x \in \mathbb{Z}^n : A_0 x \geq b_0 \}) \]

\[Q_0 = \{ x \in \mathbb{R}^n : A' x \geq b' \} \]

\[Q_0' = \{ x \in \mathbb{R}^n : A'' x \geq b'' \} \]

\[Q_0'' = \{ x \in \mathbb{R}^n : A''' x \geq b''' \} \]

\[Q = Q' \cap Q'' \] (LP Bound)

\[P' \cap Q'' \] (LD/DW/CP Bound)
Outline

- Preliminaries, Traditional Decomposition Methods
 - Dantzig-Wolfe Decomposition
 - Lagrangian Relaxation
 - Cutting Plane Method

- Dynamic Decomposition Methods
 - Price and Cut
 - Relax and Cut
 - Decompose and Cut

- Applications/Examples

- DECOMP Library Framework
Cutting Plane Method (CPM)

- **Goal:** Improve the bound \(\min_{x \in P'} \{ cx : A''x \geq b'' \} \) by dynamic tightening of the explicit polyhedron \((Q'') \).

- **Cutting Plane Method**
 1. Construct the initial LP relaxation \(\text{LP}^0 \) and set \(i \leftarrow 0 \).
 \[
 z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^T x : A'x \geq b', A''x \geq b'' \}
 \]
 2. Solve \(\text{LP}^i \) to obtain an optimal solution \(\hat{x}^i \) and lower bound \(z^i \leftarrow c^T \hat{x}^i \).
 3. Attempt to separate \(\hat{x}^i \) from \(P \), generating violated inequalities \([D^i, d^i]\).
 4. If \([D^i, d^i] \neq \emptyset\), set \([A'', b''] \leftarrow \left[A'' \\ D^i d^i\right], i \leftarrow i + 1\) and go to Step 2.
 5. If \([D^i, d^i] = \emptyset\), then output \(z^i \).

- **Step 3** may generate facets of any number of polyhedra \(\bar{P} \subseteq P \).

- In principle, there are analogs of this for DW and LR.
Dynamic Decomposition Method

1. Construct the initial bounding subproblem P^0 and set $i \leftarrow 0$.

 $z_{DW} = \min_{\lambda \in \mathbb{R}^+_+} \{c^T (\sum_{s \in \mathcal{F}'} s \lambda_s) : A'' (\sum_{s \in \mathcal{F}'} s \lambda_s) \geq b'', \sum_{s \in \mathcal{F}'} \lambda_s = 1\}$

 $z_{LD} = \max_{u \in \mathbb{R}^n_+} \min_{x \in P'} \{(c^T - u^T A'') x + u^T b''\}$

 $z_{CP} = \min_{x \in P'} \{c^T x : A'' x \geq b''\}$

2. Solve P^i to obtain a lower bound z^i.
3. Attempt to generate a set of improving inequalities $[D^i, d^i]$.
4. If $[D^i, d^i] \neq \emptyset$, set $[A'', b''] \leftarrow [A'' d_i, d_i^i]$, $i \leftarrow i + 1$ and go to Step 2.
5. If $[D^i, d^i] = \emptyset$, then output z^i.
I. Price and Cut (PC)

- **Price and Cut**: use DW as the bounding subproblem and attempt to separate \hat{x}

$$
z_{DW} = \min_{\lambda \in \mathbb{R}^F_+} \{ c^T \left(\sum_{s \in F'} s \lambda_s \right) : A'' \left(\sum_{s \in F'} s \lambda_s \right) \geq b'', \sum_{s \in F'} \lambda_s = 1 \}$$

Theorem 1
Let F be the face of optimal solutions to the cutting plane LP. Then $(a, \beta) \in \mathbb{R}^{n+1}$ is an improving inequality if and only if $a^T y < \beta$ for all $y \in F$.

Corollary 1
If $(a, \beta) \in \mathbb{R}^{n+1}$ is an improving inequality and \hat{x} is an optimal solution to the current LP relaxation, then $a^T \hat{x} < \beta$.

- Generation of the cuts takes place in original space - which maintains the structure of the column generation subproblem.

- **PC and CPM**: Corollary 1 means if we cut off \hat{x} we will probably improve the bound.

- **PC vs CPM**: empirical, optimization over \mathcal{P}' vs separation over \mathcal{P}'
Relax and Cut (RC)

- **Relax and Cut**: use LD as the bounding subproblem and attempt to separate \hat{s}.

$$z_{LD} = \max_{u \in \mathbb{R}^n_+} \min_{x \in \mathcal{P}'} \{(c^\top - u^\top A'')x + u^\top b''\}$$

- Solving LD with subgradient optimization - no access to original primal solution \hat{x}.
- Limited information from optimal primal solution to LD: $\hat{s} \in \mathcal{F}'$.

- **Advantage**: It is often much easier to separate a member of \mathcal{F}' from \mathcal{P} than an arbitrary real vector.

- **Disadvantage**: There is no way to verify the condition in Corollary 1.

- **Questions**:
 - What are the chances of generating an improving inequality?
 - Can we characterize the relationship between \hat{s} and \hat{x}?
Some Useful Results

The set of alternative optimal primal solutions to LD is \(S \cap \mathbb{Z}^n \), where \(S \) is the face of \(\mathcal{P}' \) defined as

\[
S = \{ x \in \mathcal{P}' : (c^T - \hat{u}^T A') x = (c^T - u^T A') \hat{s} \}
\]

and \(\hat{s} \) is any optimal primal solution to the Lagrangian dual.

Theorem 2 \(D = \{ s \in \mathcal{F}' : \hat{\lambda}_s > 0 \} \subseteq S \cap \mathbb{Z}^n \)

If \(\hat{\lambda} \) is an optimal solution the DW-LP, any \(s \in \mathcal{F}' \) such that \(\hat{\lambda}_s > 0 \) is an optimal primal solution for the Lagrangian dual. Also \(\hat{x} \in S \).

Theorem 3 *If \(\hat{x} \) is an inner point of \(\mathcal{P} \), then \(S = \mathcal{P}' \).*

If \(\hat{x} \) is an inner point of \(\mathcal{P}' \), then \(\hat{\alpha} = 0 \) (dual of DW-LP convexity constraint) and all members of \(\mathcal{F}' \) are optimal for LD.
Illustration of Results

(a) \(z_{DW} = z_{LD} = z_{LP} \)

(b) \(z_{DW} = z_{LD} > z_{LP} \)

(c) \(z_{DW} = z_{LD} > z_{LP} \)

\[S = \{ x \in \mathcal{P}' : (c^T - \hat{u}^T A')x = (c^T - \hat{u}^T A')\hat{s} \} \]

\[s \in \mathcal{F}' : \hat{\lambda}_s > 0 \]
Theorem 4 If \((a, \beta) \in \mathbb{R}^{(n+1)}\) is an improving inequality, then there must exist an \(s \in \mathcal{F}'\) with \(\hat{\lambda}_s > 0\) such that \(a^\top s < \beta\).

- **PC vs CPM**: Theorem 4 tells us that knowledge of the optimal decomposition \(D\) should help us generate improving inequalities.
- **Idea**: Rather than (or in addition to) separating \(\hat{x}\), we separate each \(s \in D\).
- **Recall**: It is often much easier to separate a member of \(\mathcal{F}'\) from \(\mathcal{P}\) than an arbitrary real vector.
- **PC vs RC**: RC only gives us one member \(S\), while PC gives us \(D \subseteq S\).
Decompose and Cut (DC)

- **Idea**: Using a standard CPM framework - given a fractional point \(\hat{x} \) compute the decomposition \(\hat{\lambda} \), then separate each \(s \in D \) as in PC (inverse DW).

\[
z_{CP} = \min_{x \in D'} \{c^T x : A''x \geq b''\}
\]

- **PC and DC**: Both allow us to take advantage of the information we gain from \(D \) and the fact that separation of members of \(\mathcal{F}' \) is easy.

- **PC vs DC**: DC can be more efficient than PC since we only compute the decomposition when standard CPM separation fails.
Separation in Decompose and Cut

1. **Attempt to decompose** \hat{x} into a convex combination of members of \mathcal{F}' by solving the LP:

 $$\max_{\lambda \in \mathbb{R}^{\mathcal{F}'}} \left\{ 0^T \lambda : \sum_{s \in \mathcal{F}'} s \lambda_s = \hat{x}, \sum_{s \in \mathcal{F}'} \lambda_s = 1 \right\}, \quad (7)$$

2.1 If (7) is feasible, set $D = \{ s \in \mathcal{F}' : \hat{\lambda}_s > 0 \}$

2.2 Else, return a **Farkas Cut** (a, β) valid for $\mathcal{P}' \subseteq \mathcal{P}$ which violates \hat{x}.

3. Separate each $s \in D$ and return any cuts that also violate \hat{x}.

![Diagram](image)
Column Generation in Decompose and Cut

1.0 Generate an initial subset G of \mathcal{F}'.

1.1 Solve (7) over G using the dual simplex algorithm.

1.2a If (7) is feasible, return $D = \{s \in \mathcal{F}' : \hat{\lambda}_s > 0\}$.

1.2b Else, optimize over \mathcal{P}' using the resulting Farkas inequality (row of B^{-1}). If the result has negative reduced cost, add it to G and go to Step 1.1, else return the Farkas inequality.
Outline

• Preliminaries, Traditional Decomposition Methods
 • Dantzig-Wolfe Decomposition
 • Lagrangian Relaxation
 • Cutting Plane Method

• Dynamic Decomposition Methods
 • Price and Cut
 • Relax and Cut
 • Decompose and Cut

• Applications/Examples

• DECOMP Library Framework
ILP Formulation:

\[
\begin{align*}
\sum_{e \in \delta(0)} x_e &= 2k \\
\sum_{e \in \delta(i)} x_e &= 2 \quad \forall i \in V \setminus \{0\} \\
\sum_{e \in \delta(S)} x_e &\geq 2b(S) \quad \forall S \subset V \setminus \{0\}, |S| > 1
\end{align*}
\]

\[b(S) = \text{lower bound on the number of trucks required to service } S\]

\[= \left\lfloor \frac{(\sum_{i \in S} d_i)}{C} \right\rfloor \text{ (normally)}\]

- **Relaxations:**
 - **Multiple Traveling Salesman Problem:** Set \(C = \sum_{i \in S} d_i\).
 - **k-Tree:** Set \(C = \sum_{i \in S} d_i\). Relax (2) but leave \(\sum_{e \in E} x_e = n + k\).

- **Facets of VRP (under certain conditions):** GSECs (3), Combs, Multistars

Optimization over $kTSP$ can be done efficiently - TSP
Separation of \hat{x} for GSECs \mathcal{NP}-Complete
Separation of a $kTSP \in \mathcal{F}'$ for GSECs in $O(n)$
Example of Decomposition VRP/k-Tree

- Optimization over $kTree$ in $O(n^2 \log n)$ [Wei and Yu]
- Separation of \hat{x}
 - for GSECs \mathcal{NP}-Complete
 - for Combs and Multistars is difficult
- Separation of a $kTree \in \mathcal{F}'$
 - for GSECs in $O(n)$
 - for Combs and Multistars can be done efficiently [Martinhon, et al.]

![Diagrams: (a) \hat{x}, (b) $\hat{\lambda}^1 = \frac{1}{2}$, (c) $\hat{\lambda} = \frac{1}{2}$]
Axial Assignment Problem

PILP Formulation:

\[
\begin{align*}
\min & \quad \sum_{(i,j,k)\in T} c_{ijk} x_{ijk} \\
\sum_{(j,k)\in J \times K} x_{ijk} & = 1 \quad \forall i \in I \\
\sum_{(i,k)\in I \times K} x_{ijk} & = 1 \quad \forall j \in J \\
\sum_{(i,j)\in I \times J} x_{ijk} & = 1 \quad \forall k \in K \\
x_{ijk} & \in \{0, 1\} \forall (i, j, k) \in T = I \times J \times K
\end{align*}
\]

- Relaxation: Assignment Problem - relax (1)
- Facets of AAP: \(Q_1(u)\) and \(P_1(u, v)\) - cliques of the intersection graph of \(K_{n,n,n}\)
- Let \(C(u) = \{w \in T : |u \cap w| = 2\}, C(u, v) = \{w \in T : |u \cap w| = 1, |w \cap v| = 2\}\)

\[
\begin{align*}
x_u + \sum_{w \in C(u)} x_w & \leq 1 \quad \forall u \in T \\
x_u + \sum_{w \in C(u, v)} x_w & \leq 1 \quad \forall u, v \in T, u \cap v = \emptyset
\end{align*}
\]

- Relax and Cut - AP3/AP for \(Q_1\) [Balas and Saltzman, *An Algorithm for the Three-Index Assignment Problem* Operations Research 91]
Example of Decomposition AAP/AP

- Optimization over AP in $O(n^{5/2} \log(nC))$
- Separation of \hat{x} for Clique Facets in $O(n^3)$
- Separation of an $AP \in F'$ for Clique Facets in $O(n)$

\[\sum_{w \in C(0,0,1)} \hat{x}_w = 1 \frac{1}{3} > 1 \] (e) $Q_1(0, 0, 1)$

\[\sum_{w \in C((0,0,3),(1,3,1))} \hat{x}_w = 1 \frac{1}{3} > 1 \] (f) $P_1((0, 0, 3), (1, 3, 1))$
Outline

- Preliminaries, Traditional Decomposition Methods
 - Dantzig-Wolfe Decomposition
 - Lagrangian Relaxation
 - Cutting Plane Method

- Dynamic Decomposition Methods
 - Price and Cut
 - Relax and Cut
 - Decompose and Cut

- Applications/Examples
 - DECOMP Library Framework
DECOMP Library Framework

- **Goal**: Framework to allow for direct comparison of all three dynamic decomposition methods.

- **COIN-or**: Computational INfrastructure for Operations Research

- **BCP**: Parallel Branch, Price and Cut (LP-based Bounding) [Ladányi, Ralphs]

- **ALPs**: Abstract Library for Parallel Search [Ladányi, Ralphs, Saltzman]
 - **BiCePS**: Branch, Constrain and Price Software (Generic Bounding)
 - **BLIS**: BiCePS Linear Integer Solver = BCP

- **DECOMP** provides
 - CGL-like full implementation of *Decompose and Cut*
 - BiCePS *plug-and-play* for *Price and Cut* and *Relax and Cut*

- **DECOMP** user simply derives two methods:
 - `solve_relaxed_problem` *(includes several built-in solvers)*
 - `separate_relaxed_point`
Decompose and Cut Implementation Details

- Initialization of G: solve over P' with $c = -\hat{x}^e$.

- Active LP column management - reduced cost fixing.

- Lifting the Farkas inequality ($\hat{x} \not\in P'$).

- Consistency Condition - restriction of column generation search
 - $\hat{x}_i = 0 \Rightarrow s_i = 0, \forall s \in D$
 - $\hat{x}_i = 1 \Rightarrow s_i = 1, \forall s \in D$

- Is it necessary to be exact in solving the column generation subproblem?
 - Try optimizing over P' heuristically first - need negative reduced cost.
 - Do we necessarily want extreme points of P'?

- Decomposition into members of F [Kopman 99]
 - Column generation subproblem is an optimization problem over P!!
Applications Under Development

- **Vehicle Routing Problem**
 - k-Traveling Salesman Problem : GSECs
 - k-Tree : GSECs, Combs, Multistars

- **Axial Assignment Problem**
 - Assignment Problem : Clique-Facets

- **Steiner Problem in Graphs**
 - Minimum Spanning Tree : Lifted SECs

- **Knapsack Constrained Circuit Problem**
 - Knapsack Problem : Maximal-Set Inequalities

- **Edge-Weighted Clique Problem**
 - Tree Relaxation : Trees, Cliques

- **Traveling Salesman Problem [Labonte/Boyd]**
 - Fractional 2-Factor Problem : SECs
Provided some insight into the relationship between: the optimal LP face F, the optimal DW solution \hat{x}, the optimal LD solution \hat{s} and the knowledge gained from the optimal decomposition $\hat{\lambda}$.

Alternative (and often much easier) methods for separation: over F' vs Q.
- Incorporated this idea into traditional *Price and Cut*.
- Introduced a promising new paradigm for separation *Decompose and Cut*.

Presented a unifying framework for dynamic cut generation in traditional decomposition methods.
- We are currently in the process of developing a software framework DECOMP to implement and directly compare each of these methods.