Decomposition-based Methods for Large-scale Discrete Optimization

Matthew V Galati
Ted K Ralphs

Department of Industrial and Systems Engineering
Lehigh University, Bethlehem, PA, USA

Département de Mathématiques
École Polytechnique Fédérale de Lausanne, Suisse

May 14, 2002
Setup and Definitions

For simplicity, we will only consider *combinatorial optimization problems* (COPs) defined by

- **Ground Set:** E
- **Feasible Set:** $\mathcal{F} \subseteq 2^E$

An *instance* of a given COP is defined by a cost vector $c \in \mathbb{Z}^E$.

For a given instance, the *cost* of $S \in \mathcal{F}$ is $c(S) = \sum_{e \in S} c_e$.

We wish to find an element of \mathcal{F} with minimum cost.

Associated ILP for finding $\min_{S \in \mathcal{F}} c(S)$

\[
\min \sum_{e \in E} c_e x_e \\
\text{s.t.} \quad Ax \geq b \\
\quad x_e \in \{0, 1\}, \forall e \in E
\]

Reinterpret $\mathcal{F} := \{ x \in \{0, 1\}^E : Ax \geq b \}$
More Setup and Definitions

Consider a COP \(CP = (E, F) \) called the base problem.

A restriction of \(CP \) is \(CP' = (E, F') \) where \(F' = \{ x \in F : Dx \geq d \} \).

Suppose \(CP \) is "easy" and \(CP' \) is "hard".

This means we can solve instances of \(CP \) effectively.

Notation:

\[P = \text{conv}(F) = \{ x \in \mathbb{R}^n : A^I x \geq b^I \} \text{ (base polytope)}. \]

\[P' = \text{conv}(F') = \{ x \in P : D^I x \geq d^I \} \text{ (restricted polytope)}. \]

Note that \(CP \) “easy” \(\Rightarrow \) we can separate over \(P \).
The base polytope \mathcal{P} and its restriction \mathcal{P}'
<table>
<thead>
<tr>
<th>Problem</th>
<th>Relaxation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveling Salesman</td>
<td>Assignment</td>
</tr>
<tr>
<td></td>
<td>1-Tree</td>
</tr>
<tr>
<td>Vehicle Routing</td>
<td>Multiple Traveling Salesman</td>
</tr>
<tr>
<td></td>
<td>k-Tree</td>
</tr>
<tr>
<td>Fixed-charge Network Flow</td>
<td>Minimum Cost Network Flow</td>
</tr>
<tr>
<td>Generalized Assignment</td>
<td>Assignment</td>
</tr>
</tbody>
</table>
Decomposition Methods

The goal is to capitalize on our ability to solve instances of CP in order to solve instances of CP'. Use branch and bound with a decomposition-based lower bounding scheme.

Three approaches to generating bounds:
- Dantzig-Wolfe Decomposition
- Lagrangian Relaxation
- Cutting Plane Algorithm
Dantzig-Wolfe Decomposition

\[
\begin{align*}
\min & \quad \sum_{f \in \mathcal{F}} c x^f \lambda^f \\
\text{s.t.} & \quad \sum_{f \in \mathcal{F}} D x^f \lambda^f \geq d \\
& \quad \sum_{f \in \mathcal{F}} \lambda^f = 1 \\
& \quad \lambda \in \mathbb{R}^\mathcal{F}_+
\end{align*}
\]

Solving the D-W LP yields a lower bound on \(OPT(CP')\).

We can do this using column generation.

The column generation subproblem is an instance of \(CP\) (easy).

We can recover the relaxed solution in terms of the original variables and branch by restricting column generation.
Lagrangian Relaxation

- Lagrangian Subproblem

\[LR(u) = \min_{x \in \mathcal{F}} \{ (c - uD)x + ud \} \]

- Lagrangian Dual

\[\max_{u \geq 0} LR(u) \]

- Again, the LD provides a lower bound on \(OPT(CP') \).
- We can solve this relaxation using subgradient optimization.
- The Lagrangian subproblem is an instance of \(CP \).
- Branching is not straightforward in this case.
An alternative to subgradient optimization is to write the Lagrangian dual as a linear program.

$$\max_{u \geq 0} \min_{x \in \mathcal{F}} \{(c - uD)x + ud\} = \max_{u_0, u \geq 0} \{u_0 : u_0 \leq (c - uD)x^f + ud, \forall f \in \mathcal{F}\}$$

This LP has a large number of constraints, but the separation problem is again an instance of \(CP \).
We can solve this LP effectively.
In fact, this is just the dual of the D-W LP.
We can again recover the primal solution and branching can be done by restricting cut generation.
Because of the equivalence of optimization and separation, separating over \mathcal{P} is also “easy.”

Thus, a third approach to bounding is to solve the LP relaxation

$$\min\{cx : A^I x \geq b^I, D x \geq d\}$$

This bounding scheme can also be embedded into branch and bound.

In this case, we could branch on fractional variables or any other disjunction.
Comparing the Bounds

We have three methods of computing bounds based on our ability to solve a relaxation.

How do the bounds compare?

\[
\begin{align*}
\max_{u \geq 0} \min_{x \in \mathcal{F}} \{ (c - uD)x + ud \} & \quad (LR) \\
= \max_{u_0, u \geq 0} \{ u_0 : u_0 \leq (c - uD)x^f + ud, f \in \mathcal{F} \} \\
= \min_{\lambda^f \geq 0} \left\{ \sum_{f \in \mathcal{F}} c x^f \lambda^f : \sum_{f \in \mathcal{F}} D x^f \lambda^f \geq d, \sum_{f \in \mathcal{F}} \lambda^f = 1 \right\} & \quad (DW) \\
= \min\{ c x : D x \geq d, x \in \mathcal{P} \} \\
= \min\{ c x : A^I x \geq b^I, D x \geq d \} & \quad (CP)
\end{align*}
\]

All three bounds are the same.
\[
\text{conv}(\mathcal{F})
\]
\[
\text{conv}(\mathcal{F}')
\]
\[
\{ x \in \mathbb{R}^n \mid Ax \geq b, Dx \geq d \}
\]
$\text{conv}(\mathcal{F})$

$\{x \in \mathbb{R}^n \mid Ax \geq b\}$

$\text{conv}(\mathcal{F}')$

$\{x \in \mathbb{R}^n \mid Ax \geq b, Dx \geq d\}$

DW/LDBound
Improving the Bounds

We have the bound \(\min \{ cx : A^I x \geq b^I, Dx \geq d \} \).

This bound may not be good enough to solve difficult instances of \(CP' \).

One way to improve the bound is to add inequalities from \(D^I x \geq d^I \).

Problem: Separation over \(\mathcal{P}' \) is "hard".

How do we do this?

- The **template approach** is to separate these inequalities into classes and derive separation algorithms for individual classes.
- This is still difficult for most interesting classes.
- Suppose that separating members of \(\mathcal{F} \) from \(\mathcal{P}' \) is "easy".
- Does this situation occur in practice? Yes.
The Vehicle Routing Problem

The VRP is a combinatorial problem whose ground set is the edges of a graph $G(V, E)$. Notation:

- V is the set of customers and the depot (0)
- d is a vector of the customer demands
- k is the number of routes
- C is the capacity of a truck

A feasible solution is composed of:

- a partition $\{R_1, \ldots, R_k\}$ of V such that $\sum_{j \in R_i} d_j \leq C$, $1 \leq i \leq k$;
- a permutation σ_i of $R_i \cup \{0\}$ specifying the order of the customers on route i.

![Diagram of a vehicle routing network]
Classical Formulation for the VRP

IP Formulation:

\[
\sum_{i=1}^{n} x_{0i} = 2k \quad (1)
\]
\[
\sum_{i=1}^{n} x_{ij} = 2 \quad \forall i \in V \setminus \{0\} \quad (2)
\]
\[
\sum_{\substack{i \in S \\ j \notin S}} x_{ij} \geq 2b(S) \quad \forall S \subset V \setminus \{0\}, \ |S| > 1. \quad (3)
\]

\[
b(S) = \text{lower bound on the number of trucks required to service } S
\]
\[
= \left\lceil \frac{\sum_{i \in S} d_i}{C} \right\rceil \text{ (normally)}
\]

- Relaxations:
 - **Multiple Traveling Salesman Problem**: Set \(C = \sum_{i \in S} d_i \).
 - **k-Tree**: Relax constraints (2) but leave \(\sum_{(i,j) \in E} x_{ij} = n + k \).

Separation of the capacity inequalities (3) in this formulation is \(NP \)-hard.

Given the incidence vector of an MTSP or a k-Tree, we can easily determine whether it satisfies all of these inequalities.
Branch and cut is designed specifically to easily incorporate additional strong cutting planes.

This is one reason why it has been so effective for such a wide range of problems.

However, it is generally difficult to solve the separation problem for an arbitrary fractional solution.

We can use decomposition to take advantage of our ability to separate members of \mathcal{F} from \mathcal{P}'.
Consider branch and bound based on Lagrangian relaxation. The solution to the Lagrangian dual is a member of \mathcal{F}. If it is a member of \mathcal{F}', then it is optimal. Otherwise, we can attempt to separate it from \mathcal{P}'. We then “dualize” the newly generated inequality on the fly by adding them to the matrix D of side constraints. This (not so well-known) technique has been called relax and cut.
Now consider branch and bound based on D-W decomposition.

Consider the fractional point $\hat{x} = \sum_{f \in F} \lambda_f x^f$.

Key Observation: If an inequality is violated by \hat{x}, then it must be violated by some x^f such that $\lambda_f > 0$.

Idea: Generate inequalities violated by some x^f such that $\lambda_f > 0$.

Add only those that are also violated by \hat{x}.

Adding such inequalities should result in improvement of the bound.
Decomposition-Based Separation Algorithm

Input: \(\hat{x} \in \mathbb{R}^E \)

Output: A valid inequality for \(\mathcal{P}' \) which is violated by \(\hat{x} \), if one is found.

- **Step 0.** Apply separation algorithms and heuristics for \(\mathcal{P} \) and \(\mathcal{P}' \). If one of these returns a violated inequality, then STOP and output the violated inequality.

- **Step 1.** Otherwise, attempt to decompose \(\hat{x} \) into a convex combination of members of \(\mathcal{F} \) by solving the LP

\[
\min \{ 0^T \lambda \mid \sum_{f \in \mathcal{F}} \lambda^f x^f = \hat{x}, \sum_{f \in \mathcal{F}} \lambda^f = 1, \lambda^f \geq 0 \}.
\]

- **Step 2a.** If a decomposition \(\hat{\lambda} \) exists, separate each extreme point \(x^f \) such that \(\hat{\lambda}_f > 0 \) from \(\mathcal{P}' \). Return any generated inequalities that are also violated by \(\hat{x} \).

- **Step 2b.** If a decomposition does not exist, return a Farkas cut \((a, \beta)\) for \(\mathcal{P} \) that is violated by \(\hat{x} \).

Note: If we separate over \(\mathcal{P} \) exactly, we can always find a decomposition.
Column Generation Algorithm

Input: \(\hat{x} \in \mathbb{R}^E \)
Output: Either (1) a valid inequality for \(\mathcal{P} \) violated by \(\hat{x} \);
 or (2) a decomposition of \(\hat{x} \) into members of \(\mathcal{F} \).

Step 1.0. Generate a matrix \(T' \) containing a small subset of promising columns.

Step 1.1. Solve the LP using the dual simplex algorithm over \(T' \). If this LP is feasible, then STOP.

Step 1.2. Otherwise, let \(r \) be the row in which the dual unboundedness condition was discovered, and let \((a, -\beta)\) be the \(r^{th} \) row of \(B^{-1} \). Solve \(CP \) with cost vector \(a \). Let \(t \) be the incidence vector of the result. If \(at < \beta \), then \(t \) is a column eligible to enter the basis. Add \(t \) to \(T' \) and go to 1.1.

Step 1.3. Otherwise, the LP is infeasible and \(\hat{x} \) does not lie in the convex hull of the (implicitly defined) column set, usually \(\mathcal{P} \). In this case, we can still separate \(\hat{x} \) from \(\mathcal{P} \) by imposing the appropriate Farkas inequality.
fractional point

\(P \)

valid inequality for \(P' \)

\(P' \)

Fractional point

Farkas inequality
Note that we may be able increase efficiency by restricting column generation or projection.

Only generate columns that "conform" to \hat{x}.

- If $\hat{x}_i = 1$ and $\hat{x} = \sum_{f \in \mathcal{F}} \lambda_f x^f$, then $\hat{x}_i^f = 1, \forall f \in \mathcal{F} \text{ s.t. } \lambda_f > 0$.
- If $\hat{x}_i = 0$ and $\hat{x} = \sum_{f \in \mathcal{F}} \lambda_f x^f$, then $\hat{x}_i^f = 0, \forall f \in \mathcal{F} \text{ s.t. } \lambda_f > 0$.

Difficulty: Farkas inequalities must be lifted in this case. Can be as difficult as as the original column generation subproblem (an instance of "easy" CP).
Using a big-M method we define the vector a' to be

$$a'_e = \begin{cases}
 M & \text{if } e \in E_0 = \{e : \hat{x}_e = 0\}; \\
 -M & \text{if } e \in E_1 = \{e : \hat{x}_e = 1\}; \\
 a_e & \text{otherwise}
\end{cases}$$

where (a, β) is the original inequality.

Then the inequality $a' x \geq \beta - M |E_1|$ is valid for P' and is violated by \hat{x} as long as $M \geq \max \{\beta - ax : x \in P'\}$. Any lower bound for CP' obtained with cost vector a can hence be used to derive a suitable constant.

To get stronger coefficients, one can use a sequential lifting procedure based on the same idea (can be expensive).
We can also restrict column generation in other ways, for instance we can limit to only columns whose cost does not exceed the current upper bound.

By restricting column generation, we reduce our chances of finding a decomposition, but strengthen the resulting Farkas inequality.

Idea: Intentionally restrict column generation in order to generate strong Farkas inequalities.

For instance, we might try only generating columns corresponding to extreme points of \mathcal{P}'!

This makes it impossible to get a decomposition, but the Farkas inequalities are much stronger.

However, the column generation subproblem is then an instance of CP'.

Applegate, Bixby, Chvátal and Cook ’01, *TSP Cuts Which Do Not Conform to the Template Paradigm*
Solving the VRP using MTSP

- We can use this separation algorithm for the capacity constraints with the Multiple Traveling Salesman Problem as the relaxation.
- The MTSP is not polynomial, but can be solved “effectively.”
Solving the VRP using k-Tree

Another possibility is to use the k-Tree relaxation.

The k-Tree problem is polynomially solvable (Fisher ’94).

We can separate extreme points of the k-Tree polytope using both capacity constraints and combs.

Combs can be separated heuristically in polynomial time (Martinhon, Lucena and Maculan - unpublished).
Computational Experiments

- We implemented this algorithm and used it to solve instances of the VRP using the MTSP relaxation.
- The algorithm was implemented using the SYMPHONY branch, cut, and price library.

Column Generation
- If the fractional graph was sparse, we tried to generate all conforming columns by brute force.
- If this failed, we switched over to column generation.
- We also put an overall time limit on the algorithm.

- Several experiments on different branching rules (on cuts and variables).
- Various methods of projection and lifting of the Farkas inequalities.
SYMPHONY and COIN/BCP

SYMPHONY (C) and COIN/BCP (C++) are parallel frameworks for branch, cut, and price developed by Ted Ralphs and Laci Ladanyi.

The user supplies:
- the initial LP relaxation,
- separation subroutines,
- feasibility checker, and
- other optional subroutines.

The framework handles everything else.
Some Computational Results

- Ralphs, Kopman, Pulleyblank and Trotter ’02, *On the Capacitated Vehicle Routing Problem*

- The decompositions were found in a small number of iterations and usually involved a small number of columns.
- We observe a significant reduction in the number of search tree nodes examined.
- However, the column generation subroutine and lifting the Farkas inequalities added to the running times.
- In several instances the fractional solution is always outside the MTSP polytope. We might apply MTSP separation directly.
- The MTSP relaxation is too difficult in some cases (k-Tree).
Conclusions

- Overall, these methods seem to retain the advantages of classical decomposition-based methods, but can produce tighter bounds than LR and DW.
- Theoretically, these methods are generally applicable to a wide-range of difficult COPs.
- Computationally, we know little about the performance of these methods. However, it has shown great potential in some settings (VRP/mTSP).
We are currently designing an abstract branch and bound framework for implementing these algorithms.

The user supplies

- The solver for the relaxation.
- The separation routine for members of \mathcal{F} (optional).

The framework will make it easy to switch between any of these decomposition-based algorithms.

This will enable more extensive computational studies and allow us to gain important knowledge about these methods.

All this will be available an open source through the COIN-OR project repository (www.coin-or.org).
Common Optimization INterface for Operations Research

- An initiative to spur the development of open source software for the operations research community.

- Current projects in the COIN repository www.coin-or.org:
 - **BCP**: a parallel branch-cut-price framework
 - **CGL**: a cut generation library
 - **DFO**: a package for solving general nonlinear optimization problems when derivatives are unavailable
 - **VOL**: the volume algorithm
 - **OSI**: an open solver interface layer
 - **OTS**: an open framework for tabu search
 - **IPOPT**: an interior point algorithm for general large-scale nonlinear optimization