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Abstract

This paper explores the differences between demand and supply uncertainty in
multi-echelon supply chains. Our central premise is that the insights gained from the
study of one type of uncertainty often do not apply to the other. In fact, the two
types of uncertainty are in a sense mirror images of each other, in that the optimal
strategy for coping with supply uncertainty may be exactly opposite to that for demand
uncertainty. We present several studies, each involving a fundamental question of order
frequency, inventory placement, or supply chain structure. In each study, we consider
a simple multi-echelon supply chain, first under demand uncertainty and then under
supply uncertainty in the form of disruptions. Using simulation, we demonstrate that
the optimal strategy is different under the two types of uncertainty and discuss reasons
for the differences.

We begin with a study demonstrating that the cost of failing to plan for disruptions
is greater than that of failing to plan for demand uncertainty. We conclude a with a
study that demonstrates that resiliency to disruptions is often inexpensive, in that
large improvements in service level can be achieved with only small increases in cost.
The remaining studies identify a number of important properties of supply chains
subject to disruptions that have not previously been discussed in the literature. For
example, we introduce the “risk-diversification effect,” which describes the benefit of
having multiple, decentralized stocking locations under supply uncertainty. This is the
opposite of the classical risk-pooling effect, which describes the reverse tendency under
demand uncertainty.
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1. Introduction

At first glance, supply and demand uncertainty in supply chain models seem like two

sides of the same coin. A toy store finding its supplier stocked out of a popular new

toy sees supply uncertainty, while the toy manufacturer sees the demand uncertainty

that caused the stockout in the first place. Moreover, similar strategies can be used to

cope with both types of uncertainty: safety stock inventory, dual sourcing, improved

forecasting, and so on.

Given this, it may seem that inventory and supply chain models that consider one

type of uncertainty may be easily adapted to the other. This may partly explain why

papers on demand uncertainty significantly outnumber those on supply uncertainty in

the inventory and supply chain literature.

With the growing attention paid in recent years to supply chain disruptions and

other types of supply uncertainty, it is worth examining in more detail the similarities

and differences between the two types of uncertainty. The central thesis of this paper

is that the two are quite different, and that the conventional wisdom gained from

decades of research on demand uncertainty models does not always apply under supply

uncertainty. In fact, the optimal strategy for dealing with supply uncertainty is, in

many cases, the exact opposite from that for demand uncertainty.

In this paper, we present the results of a number of simulation studies that demon-

strate these differences. Our simulations consider simple multi-echelon supply chains

under both demand uncertainty (DU) and supply uncertainty (SU). Each study exam-

ines two different strategies (for example, one-for-one vs. batch ordering or centraliza-

tion vs. decentralization). By examining the costs of each strategy, we can identify the

optimal strategy under each type of uncertainty. We simulate the systems for a range

of parameter values and, in many cases, find that the two types of uncertainty have

different optimal strategies. These studies are bracketed by Study 1, which explores the

cost of unreliability (i.e., the cost of not planning for uncertainty) and Study 8, which

explores the cost of reliability (the increase in cost required to improve the system’s

resiliency).

In order to isolate the effect of each type of uncertainty, we consider them each

separately. That is, when demand is uncertain, supply is deterministic, and vice-versa.

One overarching theme that emerges from these studies is that SU and DU appear to
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have a mirror-image relationship to one another, in the sense that the optimal strategy

for one may be diametrically opposed to that for the other.

To our knowledge, this is the first paper to systematically examine the difference

between these two types of uncertainty, and to highlight the different strategies that

are appropriate. In addition, ours is one of the first papers to consider disruptions in

multi-echelon models. We believe that it is important to examine disruptions in such

settings because disruptions are not local; rather, they tend to propagate downstream

through a supply chain.

We study these models using simulation because many of them are analytically

intractable and because our objective is to gain insights using realistic models rather

than to find optimal solutions to exact but vastly simplified models.

The remainder of this paper is structured as follows. In Section 2 we present a

brief review of the literature on SU. We describe our simulation methodology and

experimental design in detail in Section 3. In Sections 4–8, we present the results of

our simulation studies, grouped according to the underlying question being addressed.

We conclude in Section 9 with a summary of the insights gained from these studies.

2. Related Literature

In this paper, we consider supply uncertainty in the form of supply disruptions, during

which a portion of the supply chain is completely inoperative. Disruptions tend to

be infrequent and temporary but cause a significant change to the system when they

occur. In contrast, yield uncertainty refers to a form of supply uncertainty in which the

quantity produced or received differs from the quantity ordered by a random amount.

The effects of yield uncertainty are more frequent (possibly affecting every order) but

less severe than those of disruptions. See Yano and Lee (1995) for a review of yield

uncertainty.

Like this paper, the paper by Chopra et al. (2005) considers the relationship be-

tween two types of uncertainty—in particular, supply uncertainty in the form of both

disruptions and yield uncertainty. They focus on the importance of not “bundling” the

two forms of supply uncertainty by treating the entire supply distribution as though it

comes only from yield uncertainty. Schmitt and Snyder (2006) extend their results to

a multiple-period setting.
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A third form of supply uncertainty is lead time uncertainty, in which the lead

time for each order is a random variable. Lead time uncertainty may actually be the

result of a deterministic supply process; for example, a firm following a base-stock

policy will produce stochastic lead times for its customers since it will occasionally

experience stockouts, resulting in delays for the backordered units. See Çakanyildirim

and Bookbinder (1999) for a review of stochastic lead time models.

The threat of major supply chain disruptions has recently attracted the attention of

researchers and authors from a wide range of settings. For example, calls for increased

study of supply chain vulnerabilities have appeared in business journals (Sheffi 2001,

Simchi-Levi et al. 2002, Stauffer 2003), the popular press (Lynn 2005, Sheffi 2005),

academic research centers (Lee 2004, Rice et al. 2003), and the national academies

(Wein and Liu 2005). Empirical studies have reported the significant financial impact

of supply chain disruptions (Hendricks and Singhal 2003, 2005a,b) and firms’ lack of

preparedness for them (Hillman and Sirkisoon 2006, Poirier and Quinn 2006).

The majority of the research on supply disruptions considers a single-echelon sys-

tem with an unreliable supplier. The supplier’s failure and repair times are random,

usually exponentially or geometrically distributed. These models are often based on

classical models such as the EOQ (Berk and Arreola-Risa 1994, Gürler and Parlar 1997,

Parlar and Berkin 1991, Parlar and Perry 1995, 1996, Snyder 2006b), EPQ (Moinzadeh

and Aggarwal 1997), (R, Q) (Gupta 1996, Parlar 1997), and (s, S) (Arreola-Risa and

DeCroix 1998) models. More nuanced supply processes are considered by Dada et al.

(2003), Li et al. (2004), and Song and Zipkin (1996). Disruption models are generally

much less tractable than their deterministic-supply counterparts and require numeri-

cal optimization since closed-form solutions are rarely available. (An exception is the

approximation method of Snyder (2006b).)

While the papers cited above generally deal with tactical or operational decisions,

a few papers examine strategic questions. Tomlin (2006) considers strategies for miti-

gating disruptions, while Tomlin (2004) examines the supplier selection problem when

the reliability of each supplier is unknown and is revealed over time. Tomlin and Wang

(2004) examine the benefits of product mix flexibility and supply diversification in a

multi-product setting. Tomlin and Snyder (2006) consider optimal mitigation strate-

gies when the disruption risk evolves stochastically over time and the firm has some

advanced warning of imminent disruptions. They consider finite-horizon (as well as
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infinite-horizon) problems and examine the system behavior near the end of the time

horizon. Lewis et al. (2005) consider the impact of transportation disruptions (e.g.,

border closures) on lead times and show that policies and costs are more dependent on

the expected duration of a disruption than on its probability.

To date, very little research has considered disruptions in a multi-echelon setting.

Hopp and Yin (2006) study the optimal placement and extent of inventory buffers

and redundant capacity to protect a supply chain against disruptions. They consider

acyclic assembly networks. The show that, under certain assumptions, it is optimal

for at most one node on each path to the customer to hold additional inventory or

backup capacity, and they observe that the more severe the upstream disruptions may

be, the further upstream the inventory or capacity should be placed. Kim et al. (2005)

consider yield uncertainty in a three-echelon supply chain and, unlike most SU models,

consider risk-averse objective functions.

In addition, a growing body of literature considers disruptions in the context of

facility location (Berman et al. 2004, 2005, Church and Scaparra 2005, Scaparra and

Church 2005, Snyder and Daskin 2005, Snyder et al. 2006) or location-inventory mod-

els (Qi and Shen 2005, Qi et al. 2006). In general, these studies find that the optimal

number of facilities increases when the disruption risk increases, a result that is similar

to the tendency toward diversification discussed in Section 6.1. Whereas these studies

aim to choose optimal facility locations or network configurations, ours examines opti-

mal strategies for coping with disruptions within a network whose topology is already

established.

Finally, the mirror-image relationship between supply and demand was also dis-

cussed by Hariharan and Zipkin (1995) in the context of demand lead times. Their

study focuses on the relationship between supply and demand lead times rather than

between supply and demand uncertainty.

3. Model Assumptions and Experimental De-

sign

3.1 Model Assumptions

Each of our simulation studies involves a simple multi-echelon supply chain under

periodic review. Unless specified otherwise, all stages follow a base-stock policy. Each
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stage consists of a processing function and an output buffer that stores finished goods

inventory (though these “finished goods” may serve as raw materials for another stage).

A stage may represent a physical location (factory, warehouse), a processing activity

(production, assembly), or an SKU (raw material, component).

Unmet demands at each stage are backordered. Associated with each stage are the

parameters h (the holding cost per unit of inventory per period), p (the stockout cost

per unit of demand backordered, per period), and T (the processing time at the stage).

Note that lead times take the form of processing times rather than transportation times;

that is, they occur at the nodes rather than on the arcs of the network. However, the

two notions are equivalent, and a system with one type of lead time can be transformed

into a system with the other, whether or not disruptions are present. Other parameters

will be introduced below as needed.

Under demand uncertainty (DU), the stage (or stages) at the furthest echelon down-

stream face iid random demands that are normally distributed with a mean of µ and a

standard deviation of σ, denoted N(µ, σ2). Under supply uncertainty (SU), the supply

process at any stage that is subject to disruptions is governed by a two-state Markov

chain in which the UP and DOWN states represents the non-disrupted and disrupted

states, respectively. The process transitions from UP to DOWN with probability α

(called the failure probability) and from DOWN to UP with probability β (the repair

probability). Thus, failure and repair times are geometrically distributed with param-

eters α and β, respectively. One can easily show that the probability that the stage is

UP or DOWN in a given period is given by β/(α + β) and α/(α + β), respectively.

In each study, we test five pairs of values for (α, β):

(α, β) = (0.001, 0.1), (0.01, 0.3), (0.05, 0.5), (0.1, 0.7), (0.2, 0.9). (1)

The first pair (0.001, 0.1) describes disruptions that are infrequent but long, while the

last pair (0.2, 0.9) describes disruptions that are frequent but short. These character-

istics make up what Tomlin and Snyder (2006) call the disruption profile.

During a disruption, no processing can take place at the disrupted stage; the dis-

ruption effectively pauses the production at that stage. Thus, if an item is in process at

a stage whose processing time is T , and an m-period disruption occurs, then the item

requires a total of T + m periods to process. In addition, no inventory can be removed
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from the output buffer of a disrupted stage. However, inventory is not destroyed by a

disruption; it merely becomes unavailable until the disruption ends.

The simulations were performed using the software BaseStockSim v2.4 (Snyder

2006a). BaseStockSim is designed to simulate multi-echelon inventory systems and is

available for download at www.lehigh.edu/~lvs2/software.html.

3.2 Experimental Design

In each study below, we first describe a “base” model that demonstrates the main point

at issue in the study. We then simulate the model for a range of parameter values,

generally varying the parameters one at a time from the base model. For each instance

tested, we simulate the system for 10 trials, each of which consists of 10,000 periods.

Each simulation is initialized by setting the failure state to UP (not disrupted) and the

inventory level to S (the order-up-to level) at each stage. We use a 100-period warm-up

interval (during which the costs and other performance measures are ignored). Given

our initial conditions, the system tends to reach steady state rather quickly, which

justifies the length of our warm-up interval.

BaseStockSim reports both the mean total cost across the 10 trials and the standard

error of the mean (SEM)—i.e., the standard deviation of the mean cost across the

trials—for each set of parameters tested. From this, we compute a 95% confidence

interval as mean ± 1.96 × SEM, where 1.96 ≈ |z0.05/2|. (See, e.g., Fishman (2001),

Nelson (1995).) We say that one strategy is statistically better than another if its

mean cost is smaller than that of the other strategy and the two confidence intervals

are non-overlapping.

To evaluate a strategy accurately, the decision variables (e.g., base-stock levels)

must be set nearly optimally. For example, it is unfair to claim that a decentralized

inventory strategy outperforms a centralized one if the base-stock levels have not been

set to near-optimal values in the two systems. In a few cases below, analytical methods

are available for finding optimal levels. However, for most systems that we simulate,

no such results are available in the literature. In these cases, we find the optimal

base-stock levels approximately by performing a line search, simulating the system for

a range of base-stock values (e.g., 100, 110, . . . , 200) and choosing the one with the

smallest simulated total cost.
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Figure 1: Two-stage supply chain (Study 1).

2 - 1

This approach, of course, has two main drawbacks. The first is that the true op-

timal value may not equal one of our chosen values exactly but may fall in between.

The second is that a suboptimal solution may appear to be optimal due to simulation

randomness. However, we feel that this methodology is sufficient since our aim in this

paper is to derive qualitative insights rather than precise descriptions of optimal inven-

tory levels. Moreover, the cost function is often reasonably flat around its optimum,

suggesting some flexibility in the setting of decision variables.

In the sections that follow, we present seven studies, each of which addresses a

particular strategic question related to ordering frequency, inventory placement, supply

chain structure, and the cost of unreliability or reliability. Broadly speaking, these

sections consider supply chains of gradually increasing complexity, as the questions we

address become more complex.

4. The Cost of Unreliability

We begin with a study that evaluates the cost of not planning for uncertainty. We

demonstrate that failing to plan for SU is a more costly proposition than failing to

plan for DU.

4.1 Study 1: The Cost of Unreliability

4.1.1 Base Model

Consider a two-stage supply chain such as the one pictured in Figure 1. Stage 1 faces a

demand with a mean of µ = 20 per period and incurs a holding cost of h = 1 per unit

of on-hand inventory and a stockout cost of p = 20 for each unmet demand. Stage 2

acts like an external supplier that cannot hold inventory. Stage 2 has zero processing

time (when UP), while stage 1 has a 1-period processing time.

If either demand or supply is uncertain, a base-stock policy is optimal, and the

optimal base-stock level S∗ is greater than or equal to µ. (The optimality of a base-

stock policy under SU is established by Tomlin (2006). That under DU is well known.)
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Suppose, however, that the firm fails to plan for uncertainty; that is, it sets S = µ,

holding no safety stock. What is the cost of this policy?

To answer this question, we need a way of comparing DU and SU fairly. To this

end, we define the level of uncertainty (LOU) for either type of uncertainty as the

percentage of demands that are backordered (i.e., one minus the fill rate) when the

base-stock level is set to S = µ. We consider a DU process and an SU process to be

equivalent if they have the same LOU.

Under DU, it is well known (see, e.g., Nahmias (2005)) that the fill rate in a single-

period newsvendor-type system is given by 1−σL(z)/µ, where z = (S−µ)/σ and L(z)

is the standard normal loss function. Therefore, under DU the LOU is given by

LOUD =
σL(0)

µ
≈ 0.398942

σ

µ
. (2)

(To use (2) in a multi-period system with backorders, we are implicitly assuming that

on-hand inventory is used to satisfy current-period demands before backorders. This

is not the assumption made by our simulation, so the expression in (2) is only approx-

imate.)

Under SU, if S = µ, then the fill rate is exactly equal to the percentage of periods

in which the supplier is UP, and therefore the LOU is given by

LOUS = P (supplier DOWN) =
α

α + β
. (3)

For the system in Figure 1, we varied the LOU from 0.0 to 0.2 in increments of

0.01 and found the values of σ and α that yield each LOU. (Under SU, we kept β fixed

at 0.5.) We simulated the system with each value of σ under DU and α under SU.

In all cases, we set S = µ. The resulting mean total costs per period are displayed in

Figure 2(a). Clearly, a given level of SU results in higher costs than an equivalent level

of DU, and the mean total cost grows more quickly under SU than under DU. We can

report anecdotally that similar patterns occur when S is set to a value larger than µ,

although we did not test this finding rigorously.

Figure 2(b) breaks the total cost down into its two components, holding and stock-

out costs. Under DU, the holding cost increases slightly and the stockout cost increases

more sharply as the LOU increases. This is consistent with well known properties of

base-stock systems under DU. Under SU, however, the stockout cost increases sharply

with LOU while the holding cost decreases. The reason for the decrease in holding cost
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Figure 2: Mean (a) total costs and (b) holding and stockout costs, for each LOU under DU
and SU.
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as LOU increases is that the on-hand inventory can fall below the safety stock level,

S − µ, during a disruption. The greater the LOU, the smaller the expected on-hand

inventory. In contrast, under DU, the inventory level can fall either above or below the

safety stock level.

To confirm that the cost under SU is greater than that under DU in general, we

perform a more extensive computational test in the next section.

4.1.2 Extended Study

We generated 13 new instances of the system depicted in Figure 1 by varying the

holding and stockout costs, as well as β for the SU tests. For each instance, we found

the values of σ and α that resulted in LOUs equal to 0.00, 0.01, 0.02, . . . , 0.20. As in

Section 4.1.1, we set S = µ and simulated the system under each LOU.

The results are displayed in Figure 3, which plots the difference in cost (SU cost

minus DU cost) for varying values of the holding cost (h), stockout cost (p), and

recovery probability (β), respectively, as the LOU changes.1 In nearly all cases, this

difference is strictly positive and is statistically significant, confirming that the cost

under a given level of SU is greater than that under an equivalent level of DU. In the

few cases in which the SU cost is smaller than the DU cost, the magnitude of the

difference is small and is likely a result of simulation randomness.

From Figure 3(a), it is evident that the magnitude of the difference between SU and

1We omit detailed results of our computational experiments in table form due to space considerations.
They are available from the authors upon request.
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Figure 3: Mean total cost vs. LOU for varying values of (a) h, (b) p, and (c) β.
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DU is greater when h is smaller. This is because, as discussed in Section 4.1.1, there is

more inventory on-hand under DU than under SU; therefore, the DU cost increases as

h increases and the difference between SU and DU decreases. From Figure 3(b), the

cost difference increases as p increases, since backorders tend to linger longer under SU

than under DU. Finally, from Figure 3(c), the cost difference increases as β decreases,

since smaller β means longer disruptions.

Most firms already plan for DU, but this analysis suggests that it is even more

critical to plan for SU. If SU is present, it is likely to represent a substantial portion of

the firm’s inventory-related costs (holding and stockout costs). Although the strategies

described in subsequent sections of this paper are effective in reducing the cost under

SU, they generally cannot eliminate it completely, or even reduce it to the levels of the

DU cost. Additional research is warranted to explore alternate strategies for coping

with SU, such as dual sourcing (Tomlin 2006) or product-mix flexibility (Tomlin and

Wang 2004) that can reduce this cost further.

11



We summarize our findings from this study in the following remark.

Remark 1 If the base-stock level is set to the mean demand (no safety stock), the cost

of a system under a given level of SU is greater than that under an equivalent level of

DU. The difference in cost is greater when the holding cost is smaller, the stockout cost

is larger, or the recovery probability is smaller.

5. Order Frequency

In the study that follows, we consider the following question: Would a firm prefer a

large holding cost but zero fixed ordering cost or a small holding cost but a non-zero

fixed cost? The firm follows a one-for-one replenishment policy under the first option

and a batch-ordering policy under the second. Roughly speaking, the firm may be

indifferent to the two options under DU. However, we show that batch ordering is

preferable under SU since disruptions only have an impact during periods in which

orders are placed.

5.1 Study 2: One-for-One vs. Batch Ordering

5.1.1 Base Model

Consider again the two-stage supply chain pictured in Figure 1. Now we assume that

p = 100, and the 1-period processing time occurs at stage 2 rather than at stage 1.

First consider the case of DU. In this case, demand is normally distributed with a

standard deviation of σ = 5. The question is, would the firm prefer a holding cost of

h = 0.1 and a fixed order cost (per order placed to stage 2) of K = 250, or a holding

cost of h = 2.85 and fixed cost of K = 0?

In the first option, the optimal policy at stage 1 is an (s, S) policy. We can find

near-optimal values for s and S using the well known heuristic of first finding the

optimal values of R and Q for an (R, Q) policy under the same parameters, and then

setting s = R, S = R + Q (Axsäter 2000). Using this approach, we get R = 31,

Q = 318, and therefore s∗ = 31, S∗ = 349. The expected cost of this policy is 32.8 per

period, calculated using equation (8.16) of Simchi-Levi et al. (2005).
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Under the second option, the optimal policy is a base-stock policy with

S∗ = µ + σΦ−1

(
p

p + h

)
(4)

= 20 + 5Φ−1(0.9723) ≈ 30, (5)

where Φ−1 is the inverse of the standard normal cumulative distribution. Using the

fact that the expected cost of this policy is given by

E[optimal cost] = (h + p)σφ

(
Φ−1

(
p

p + h

))
, (6)

where φ is the standard normal pdf (Porteus 2002, Zipkin 2000), the expected cost of

this policy is 32.8 per period. Thus, under DU, the firm is indifferent between these

two cost structures: h = 0.1, K = 250 or h = 2.85, K = 0.

Now consider SU with disruptions possible at the supplier (stage 2). The failure

and repair probabilities at stage 2 are α = 0.05 and β = 0.5, respectively. If there is

no fixed cost, then a base-stock policy is optimal, and the base-stock level for stage 1

can be set using the following formula, due to Tomlin (2006):

S∗ = µ

[
1 + F−1

(
p

p + h

)]
, (7)

where F is the cumulative distribution of a random variable X defined as the number of

consecutive DOWN periods (or 0 if the period is an UP period). Omitting the details

of this calculation, we get S∗ = 60 if h = 2.85. Simulating this system, we find a mean

cost of 497.7 per period.

The literature provides no guidance on setting s and S under SU if the fixed cost

is non-zero, though we do know that both should be multiples of the demand, µ.

Therefore, in the case in which h = 0.1 and K = 250, we find approximate values for

s and S by setting S = 340 (obtained from the DU case) and testing s = 0, 20, 40, 60.

Simulating the system for each value of s, we find that the minimum cost occurs

when s = 40, with a mean cost of 391.1. Therefore, batch ordering is preferred to

one-for-one ordering in the case of SU. The mean cost for all four cases (batch vs.

one-for-one ordering under SU and DU) and the SEM of the costs for the SU cases are

summarized in Table 1. (The DU costs were computed analytically, rather than by

simulation, so SEMs are not required.) Under SU, the difference in cost is significant at

the 95% level, since the confidence intervals are non-overlapping (391.1+1.96×29.6 <

497.7− 1.96× 23.4).
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Table 1: Summary of inventory parameters and mean and SEM of costs (Study 2).
Type of Uncertainty Measure Batch Ordering One-for-One Ordering
DU s 31 —

S 349 30
Mean Costa 32.8 32.8

SU s 40 —
S 340 60
Mean Costb 391.1 497.7
SEM of Costc 29.6 23.4

aMean total cost per period, obtained analytically.
bMean total cost per period, across all trials and all periods period in each trial, obtained by simulation.
cSD (across all trials) of average total cost per period (across periods), obtained by simulation.

The reason that batch ordering is preferred under SU but not under DU is that,

the less frequent the orders are, the less likely it is that a disruption will have an effect.

If s = 40, S = 340, then orders are placed roughly every 15 periods. Many of stage

2’s disruptions will start after an order and end before the next order, and stage 1 will

suffer no ill effects from these disruptions. In contrast, in the base-stock policy, stage

1 places an order in every period, so it suffers from every one of stage 2’s disrupted

periods.

Moreover, if stage 2 is disrupted when stage 1 places an order, stage 1 incurs µ

stockouts per period once the safety stock runs out until the disruption ends, whether

it uses batch or one-for-one ordering. The optimal safety stock levels—S − µ under

the one-for-one policy, s−µ under the batch policy—tend to be roughly equal to each

other. Once the disruption ends, all outstanding orders are filled, and the backlog

clears. Therefore, the severity of a disruption’s impact is the same under both policies,

but the likelihood of stage 1 feeling a given disruption is smaller under the batch policy.

Thus, the batch policy is preferred.

5.1.2 Extended Study

We now consider a range of values for the cost and disruption parameters to demon-

strate that the effect discussed in Section 5.1.1 holds more broadly than for just the

specific instance given. We generated 100 instances for the DU case by setting K = 250,

p = 10, 20, . . . , 100 and h = 0.01, 0.02, . . . , 0.1. For each combination of these values,

we first calculated a near-optimal (s, S) policy using the method described in Sec-

tion 5.1.1. We then set K = 0 and found the value of h (call it ĥ) that results in the
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Figure 4: Mean costs for (s, S) and base-stock policies under (a) DU and (b) SU.
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same expected cost when the base-stock level is set optimally using (4). Therefore,

for each of the 100 instances, we have an (s, S) policy and a corresponding base-stock

policy with the same expected cost under DU.

We simulated each of these instances under both policies (even though analytical

expressions for the expected cost are available for DU). The resulting mean costs are

plotted in Figure 4(a). The x-axis plots the cost of the base-stock policy while the y-

axis plots that of the (s, S) policy. Notice that the points are clustered tightly along the

line y = x, confirming that the two policies produce approximately the same expected

cost for each set of the parameter values.

Next, we set (α, β) to the five pairs of values in (1). For each of the resulting

100×5 = 500 instances, we simulated a batch policy and a one-for-one ordering policy.

In the one-for-one policy, we used holding costs ĥ and set the base-stock level set

optimally using (7). In the batch policy, we used holding costs h and K = 250; we set

S equal to the S from the DU case and chose the value of s = 0, 20, 40, 60 that resulted

in the lowest mean cost per period.

The resulting mean costs for the SU simulations are plotted in Figure 4(b). It is

apparent from the figure that the batch policy tends to be preferable to the one-for-one

policy. Indeed, the batch policy has a smaller cost for 286 out of 500 instance (57.2%).

The cost difference is only statistically significant for 40 of the 500 instances (8%). The

one-for-one policy tends to be preferred when the ratio of h to p is large (Figure 5); in

these cases, the high holding cost incurred in the batch policy outweighs the benefit,

since disruptions and the resulting stockouts are not particularly costly.
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Figure 5: Percentage difference in cost between (s, S) and base-stock policies vs. h/p.
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We summarize our findings from this study in the following remark.

Remark 2 Under DU, a firm is indifferent between a batch and a one-for-one ordering

policy, provided that the parameters are chosen such that the expected costs of the two

policies are the same. However, under SU, the batch ordering policy is preferable, since

the severity of a disruption’s impact is roughly the same under both policies, but the

likelihood of the disruption affecting a given order is smaller under the batch policy.

6. Inventory Placement

In this section we present two studies that examine fundamental questions of inventory

placement in multi-echelon supply chains. In Study 3, we consider the question of

centralization in a one-warehouse, multi-retailer (OWMR) system. Under DU, we

know that centralization is optimal, but we show that decentralization is preferable

under SU. Study 4 examines whether it is preferable to hold inventory upstream or

downstream in a serial system. Again, we show that the conventional wisdom from

DU does not hold under SU.

6.1 Study 3: Centralization vs. Decentralization

6.1.1 Base Model

Figure 6 depicts a one-warehouse, multi-retailer (OWMR) system with three retailers.

Eppen (1979) proves that, if the demand is iid random at each retailer and the holding

costs are equal at the two echelons, then it is optimal to store inventory at the warehouse

(stage 4) rather than at the individual retailers (stages 1–3). This is the classical risk-

pooling effect: The centralized system (in which all inventory is held at the warehouse)
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Figure 6: OWMR system (Study 3).
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Table 2: Summary of base-stock levels and mean, SEM, and SD of costs (Study 3).
Type of Uncertainty Measure Decentralized System Centralized System
DU S 30 77

Mean Costa 51.29 29.61
SU S 40 180

Mean Costb 785.30 793.10
SEM of Costc 38.08 45.28
SD of Costd 2549.21 4031.98

aMean total cost per period, obtained analytically.
bMean total cost per period, across all trials and all periods period in each trial, obtained by simulation.
cSD (across all trials) of average total cost per period (across periods), obtained by simulation.
dSD of total cost per period, across all trials and all periods in each trial, obtained by simulation.

is cheaper than the decentralized one (in which inventory is held only at the retailers)

since centralization causes a pooling of the demand variance across retailers.

Suppose that h = 1.5 at all stages and p = 50 at the retailers. Demands at the

retailers are iid N(20, 52). The warehouse has a processing time of T = 1 while the

processing time at the retailers equals 0. A base-stock policy is optimal in both the

centralized and decentralized systems. The optimal base-stock level can be calculated

using (4), with µ = 20, σ = 5 in the decentralized system and µ = 60, σ =
√

3× 52 =

8.66 in the centralized system. The costs of these solutions, obtained using (6), are

51.29 and 29.61, respectively, confirming that centralization is optimal for this instance.

Table 2 summarizes these findings.

Now consider the case of SU. We assume that σ = 0 and that disruptions are possible

at the stage(s) that hold inventory (that is, at the warehouse in the centralized system

and at the retailers in the decentralized system), with failure and repair probabilities

α = 0.05 and β = 0.5, respectively. We assume that all stages follow a base-stock

policy. Unfortunately, the form of the optimal policy is not known, nor are the optimal

base-stock levels. (Equation (7) no longer applies because it assumes that disruptions

occur upstream from the site holding inventory, while we assume that the disruption
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occurs at the site.) One can show, however, that the optimal base-stock level is a

multiple of µ = 20.

Therefore, we simulated this system using S = 0, 20, 40, 60 in the decentralized

system and S = 60, 120, 180, 240 in the centralized system. The optimal values of S

and the corresponding mean, SEM, and standard deviation of the cost per period are

listed in Table 2. The mean costs are quite close; since the confidence intervals are

overlapping, no conclusions can be drawn about which system has the lower mean

cost. On the other hand, the SD of the cost per period is significantly smaller in the

decentralized system.

These findings can be explained as follows. The retailers experience disruptions

in the same percentage of periods in the two systems, though the disruptions orig-

inate from the warehouse in the centralized system. Therefore, the mean costs are

approximately equal in the two systems. In the centralized system, disruptions are less

frequent (because there is one site to be disrupted rather than three) but more severe

(since each disruption affects all three retailers), hence the centralized system produces

greater variance in the cost.

From this preliminary example, we conclude that centralization is preferred under

DU due to the risk-pooling effect, but that under SU, decentralization produces roughly

the same mean cost but less variability in cost than centralization. In the following

section, we perform a more extensive computational study to verify that these results

hold under a broader range of parameters.

6.1.2 Extended Study

We created a number of new data sets based on the base case described in Section 6.1.1

by varying h1, . . . , h4 and p1, . . . , p3. For the SU tests, we also varied the failure and

repair probabilities (α, β) using the values in (1). This resulted in 21 instances for

DU and 105 for SU, since each of the parameter settings is tested under five values of

(α, β). In all tests, h4 ≤ h1 = h2 = h3 (warehouse holding costs are no greater than

retailer ones).

Optimal base-stock levels for both the centralized and decentralized systems are

available analytically for DU (see Section 5.1.1). For SU, the optimal base-stock level

is a multiple of the demand per period; therefore, we simulated the decentralized system

using S1, . . . , S3 = 0, 20, 40, 60 and the centralized system using S4 = 60, 120, 180, 240.

18



Figure 7: Mean optimal costs for decentralized and centralized systems under (a) DU and
(b) SU.
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The optimal costs for the DU tests are displayed in Figure 7(a). Each point in the

figure represents one of the 21 tests. The horizontal axis represents the optimal cost

of the decentralized system while the vertical axis represents that of the centralized

system with the same input parameters. These costs are generated via simulation for

consistency with other studies, even though analytical formulas are available. (The

simulated costs differed from the analytical costs by an average of 0.27%.)

As expected, the centralized system always outperforms the decentralized one under

DU. This is evident from the fact that all points in Figure 7(a) lie below the line y =

x. On average, the centralized system is 58.1% less expensive than the decentralized

one, and all confidence intervals are non-overlapping (so each of the differences is

statistically significant). For instances in which upstream holding costs are strictly less

than downstream ones, the savings come from both the smaller inventory requirements

and the lower holding cost per unit under centralization.

The SU results are displayed in Figure 7(b). (Note that the axes are drawn using a

logarithmic scale.) The tight clustering of the points along the line y = x suggests that

the mean cost under the centralized and decentralized strategies are roughly equal, as

in the example in Section 6.1.1. Indeed, of the 105 instances tested, only 12 (11.5%)

resulted in non-overlapping confidence intervals for the mean cost. In all of these

instances, the upstream holding costs are strictly less than downstream ones, which

tends to bias the costs in favor of centralization because of holding costs rather than

because of uncertainty.

Figure 8 displays the standard deviation of the cost per period (across all trials and
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Figure 8: Standard deviation of costs for decentralized and centralized systems under SU.
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periods per trial) under the decentralized and centralized systems. The SD is greater for

the centralized system for 102 out of 105 instances (97.1%), confirming our suggestion

from Section 5.1.1 that decentralization results in less variability in cost. The three

instances for which the SD is smaller under centralization all have α = 0.001, β = 0.1,

which results in the least frequent (but longest) disruptions, the greatest amounts of

simulation variability overall, and the least statistically significant results.

We summarize our findings from these experiments in the following remarks.

Remark 3 Under DU, centralization is always the preferred strategy in an OWMR

system. This is due to the classical risk-pooling effect and to smaller (or equal)

holding costs at the upstream stage.

Remark 4 Under SU, decentralization is the preferred strategy in an OWMR system

with equal holding costs at upstream and downstream stages. By “preferred,” we mean

that decentralization results in an approximately equal mean cost but less cost variability

than decentralization does. This is due to what we call the risk-diversification effect,

which says that disruptions are equally frequent in either a centralized or decentralized

system but less severe in a decentralized one. If the holding costs are strictly less

upstream than downstream, the preferred strategy depends on the balance between the

difference in holding costs and the magnitude of the risk-diversification effect.

6.2 Study 4: Inventory Placement

6.2.1 Base Model

Consider the three-stage serial supply chain pictured in Figure 9. Stage 3 represents a

factory, stage 1 represents a retailer, and stage 2 represents an intermediate facility that
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Figure 9: Serial system (Study 4).
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Table 3: Summary of base-stock levels and mean and SEM of costs (Study 4).
Type of Uncertainty Measure Upstream Downstream
DU S 31 29

Mean Costa 12.24 21.57
SEM of Costb 0.17 0.15

SU S 20 60
Mean Costa 188.62 126.56
SEM of Costb 17.94 8.6

aMean total cost per period, across all trials and all periods period in each trial, obtained by simulation.
bSD (across all trials) of average total cost per period (across periods), obtained by simulation.

performs some operation (like packaging or cross-docking) but cannot store inventory.

The question we address in this section is whether it is preferable to hold inventory at

the upstream stage (3) or the downstream stage (1).

Under DU, the conventional wisdom is that, lead times aside, it is preferable to hold

inventory upstream since holding costs generally increase as one moves downstream.

On the other hand, suppose that disruptions are possible at stage 2—say, because it is

located in an area with poor weather, or because its workforce is prone to strikes. In

this case, it may be preferable to hold inventory downstream since such inventory can

protect against disruptions at stage 2, while upstream inventory is ineffective in that

regard.

In our base instance, we set the processing time (T ) at stages 1 and 2 to 0 and

at stage 3 to 1. Holding costs are given by h1 = 2, h3 = 1, and the stockout cost is

p = 50. Consider the DU case first. Demands are normally distributed with mean

µ = 20 and SD σ = 5. It is well known that a base-stock policy is optimal whether we

hold inventory upstream or downstream (Clark and Scarf 1960), and since only stage 3

has a non-zero processing time, we can set the base-stock level at either location using

(4). The optimal base-stock levels and costs are listed in Table 3. As expected, it is

optimal to hold inventory upstream at stage 3, and the cost difference is statistically

significant.

Under SU, we set the disruption and repair probabilities at stage 2 to (α, β) =

(0.05, 0.5) and find the corresponding optimal base-stock levels for both the upstream
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and downstream strategies by simulation. The results are also reported in Table 3. In

this case, the cost to hold inventory downstream is (statistically significantly) smaller

than that to hold inventory upstream, since downstream inventory can help to buffer

against disruptions. That also explains why the base-stock level is 60 downstream

(versus only 20 upstream)—the additional 40 units serve as safety stock inventory to

use during disruptions, whereas there is no reason to hold additional inventory under

the upstream strategy.

In the next section, we conduct similar experiments on a broader set of instances.

6.2.2 Extended Study

We created several additional tests sets based on the instance in Section 6.2.1 by varying

h1 and p1. For the SU tests, we tested the five values of α and β from (1) at stage 2,

resulting in 9 instances for DU and 45 for SU. Optimal base-stock levels under DU were

set using (4), while those for SU were set by testing S = 20, 40, 60, 80. (The optimal

base-stock level under SU is a multiple of the demand per period.)

The results of the DU experiment are displayed in Figure 10(a), in which the hori-

zontal axis represents the cost under the upstream strategy and the vertical axis repre-

sents that under the downstream strategy. (The stacked points at x ≈ 10.5 represent

five instances in which h3 = 1 and p = 20, each of which yields the same cost for the

upstream strategy.) From the figure it is evident that the upstream strategy dominates

the downstream one. Except for the one instance in which h1 = h3 = 1 (in which the

two strategies have equal costs), the upstream strategy is statistically better than the

downstream one for every instance.

The results for SU are given in Figure 10(b). The downstream strategy dominates

in this case, in the sense that no instance has a lower upstream cost than downstream.

In 10 of the 45 cases (22.2%), the upstream strategy is strictly cheaper, and in 8 of

those 10 cases, the difference is statistically significant.

However, the two strategies produce equal costs for the majority of instances. At

first this seems puzzling, since the holding costs may be different at stages 1 and 3. To

explain these results, we first note that the optimal base-stock level in the upstream

strategy is always 20, i.e., the demand per period, since additional inventory will not

help during a disruption. Therefore, under the upstream strategy, stage 3 ends every

period with an inventory level of at most 0, so it incurs no holding costs, only stockout
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Figure 10: Mean optimal costs for upstream and downstream strategies under (a) DU and
(b) SU.
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costs. Under the downstream strategy, if the optimal base-stock level at stage 1 also

happens to be 20, then it, too, will incur no holding costs. In this case, neither the

upstream nor the downstream strategy holds safety stock inventory—both strategies

simply accept the disruption risk without protecting against it. Indeed, this is the case

for all of the instances that lie on the line y = x in Figure 10(b).

The optimal base-stock level under the downstream strategy tends to increase as

α increases. That is, as disruptions become more frequent, it becomes preferable to

hold safety stock to protect against them, rather than simply accepting the disruption

risk. This trend is evident from Figure 11, which plots the percentage savings from

holding inventory downstream on the vertical axis and α2 on the horizontal one. As α2

increases, we find more instances for which the optimal base-stock level downstream is

greater than 20, and consequently more instances for which the downstream strategy

is strictly better than the upstream one. In addition, the magnitude of the savings

tends to increase as α2 increases.

We acknowledge that the uniform dominance of the downstream strategy over the

upstream one under SU is a result of our assumptions that disruptions only occur at

stage 2 and that inventory cannot be used by a stage while it is disrupted. If stage

3 could experience disruptions and could use its inventory while disrupted—in other

words, if safety stock at stage 3 had some value—then the upstream strategy would

sometimes be optimal, depending on the disruption characteristics and on the relative

holding costs between stages 1 and 3.

We summarize our findings from these experiments in the following remarks.
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Figure 11: Relative savings from the downstream strategy under SU vs. failure probability
at stage 2.
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Remark 5 In a serial supply chain under DU, it is optimal to hold inventory upstream

rather than downstream, assuming that there is zero lead time between the upstream

inventory point and the customer. If this assumption does not hold, the upstream

strategy will tend to be less attractive as the lead time between the upstream inventory

point and the customer increases and to be more attractive as the ratio between the

upstream and downstream holding costs decreases.

Remark 6 In a serial supply chain under SU, it is optimal or equivalent to hold

inventory downstream rather than upstream, regardless of the holding costs at each

site, assuming that upstream inventory has no value in protecting against disruptions.

If this assumption does not hold, the downstream strategy will tend to be less attractive

as the ratio between the upstream and downstream holding costs decreases and to be

more attractive as the lead time between the upstream inventory point and the customer

increases.

7. Supply Chain Structure

The three studies that follow each consider a question of supply chain structure. Study

5 compares “hub-and-spoke” and “point-to-point” networks (i.e., networks with an

intermediate warehouse echelon and those in which plants ship directly to retailers). It

examines the preferred network under each type of uncertainty and relates the results

to risk pooling and risk diversification (Section 6.1).

Studies 5 and 6 examine the benefit of multiple sourcing. Study 6 considers a

single retailer with one or more suppliers, examining the value of “backup” suppliers
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Figure 12: (a) Hub-and-spoke (H-S) and (b) point-to-point (P-P) networks (Study 5).
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under both DU and SU. Study 7 considers multiple retailers and an equal number

of suppliers, varying the number of suppliers that may serve each retailer. Borrowing

from the notion of process flexibility (Jordan and Graves 1995), we evaluate the change

in cost as additional links are added to the warehouse–retailer network.

7.1 Study 5: Hub-and-Spoke vs. Point-to-Point Networks

7.1.1 Base Model

In this section we consider a question of supply chain design—in particular, the appro-

priate number of echelons for a distribution system. Figure 12 depicts two potential

designs, which we refer to as “hub and spoke” (H-S; Figure 12(a)) and “point to point”

(P-P; Figure 12(b)). In the H-S design, the factory (stage 9) distributes product to

two warehouses (stages 7 and 8), which hold inventory and, in turn, distribute product

to the retailers (stages 1–6). In the P-P design, the factory bypasses the intermediate

warehouse level, distributing product directly to the retailers, which hold the inventory.

The factory does not hold inventory in either system.

The H-S approach is a popular one for a number of reasons, primarily related

to economies of scale and reduced holding costs that arise from holding inventory at

warehouses rather than at individual retailers. Therefore, we expect that this design is

optimal under DU. On the other hand, we have seen in Study 3 that decentralization

may be optimal under SU due to the risk-diversification effect, which leads us to suspect

that the P-P design may be optimal under SU.

Our initial test of these hypotheses involves the following parameters. In the H-S

network, the processing time at the factory is T9 = 4 and that at the warehouses is
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Table 4: Summary of base-stock levels and mean and SEM of costs (Study 5).
Type of Uncertainty Measure H-S Network P-P Network
DU S 320 110

Mean Costa 116.90 135.83
SEM of Costb 0.80 1.81

SU S 540 150
Mean Costa 778.07 437.81
SEM of Costb 24.38 13.4

aMean total cost per period, across all trials and all periods period in each trial. Values for DU
were obtained analytically; values for SU were obtained by simulation.
bSD (across all trials) of average total cost per period (across periods), obtained by simulation.

T7 = T8 = 1. In the P-P network, the factory takes on the processing function that

the warehouses perform in the H-S system, so the processing time at the factory is

T9 = 5. The holding cost at the warehouses (in the H-S network) and at the retailers

(in the P-P network) is h = 1, and the stockout cost is p = 10. Each stage follows

a base-stock policy. Demand per period is N(20, 52) at each retailer under DU (and

equals 20 under SU). Disruptions can occur at both the plant and the warehouses (if

they exist) under SU, with α = 0.05 and β = 0.5.

The optimal base-stock levels and the mean and SEM of the total cost for each

network design and for both types of uncertainty are listed in Table 4. As expected,

the H-S design is optimal under DU, while the P-P design is optimal under SU. Both

differences in cost are statistically significant. As in Study 3, under DU the savings

from centralization (holding inventory at two warehouses rather than six retailers)

comes from the risk-pooling effect, while the savings from decentralization under SU

comes from the risk-diversification effect. We perform a more extensive numerical

experiment in the next section to confirm these results.

7.1.2 Extended Study

We modified the base instance described in Section 7.1.1 to create a number of addi-

tional test instances by varying the stockout cost at the retailers and the holding cost

at the warehouses in the H-S network and at the retailers in the P-P network. In all

instances, stages of a given type (warehouse, retailer) have identical parameters. For

the SU tests, we tested the five values of the failure and repair probabilities given in

(1) at the warehouses (stages 7 and 8) in the H-S network, and at the plant (stage

9) in both networks. This resulted in 12 tests for DU and 60 for SU. Under DU, we
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Figure 13: Mean optimal costs for P-P and H-S networks under (a) DU and (b) SU.
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tested base-stock levels 240, 260, . . . , 360 at the warehouses in the H-S network and

50, 70, . . . , 170 at the retailers in the P-P network. Under SU, we tested base-stock

levels 460, 500, . . . , 700 in the H-S network and 70, 90, . . . , 190 in the P-P network.

The results for DU are displayed in Figure 13(a). As is evident from the figure,

the mean cost for the H-S network is less than that for the P-P network for every

instance, and this difference is statistically significant for every instance. The opposite

result holds in the SU case, displayed in Figure 13(b), in which the P-P network is

preferred for every instance. The cost difference is statistically significant for 47 out of

60 (78.3%) of the instances. The percent difference in cost between the two networks

exhibited no clear trend with respect to h, p, h/p, or the disruption parameters.

As suggested in Section 7.1.1, these results can be viewed as an extension of those

in Study 3: centralization of inventory is optimal under DU, while decentralization is

optimal under SU. Note that, unlike in Section 7.1.1, in this section we assumed that

the holding cost is equal at either echelon (warehouse or retailer). We summarize the

results from this section in the following remarks.

Remark 7 In a distribution network under DU, a hub-and-spoke network (in which

plants ship to warehouses, which hold inventory and ship to retailers) is preferred to

a point-to-point network (in which plants bypass the warehouses and ship directly to

retailers, which hold the inventory). This is because of the risk-pooling effect, which

encourages consolidation of inventory stocking points.

Remark 8 In a distribution network under SU, a point-to-point network is preferred

to a hub-and-spoke network because of the risk-diversification effect, which encourages
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Figure 14: One retailer with one or more suppliers (Study 6).

2

3

4

4

@
@@R-

¡
¡¡µ

decentralization of inventory stocking points.

7.2 Study 6: Supplier Redundancy

7.2.1 Base Model

In this section, we investigate the benefit that arises from multiple sourcing. Consider

a single retailer with one or more suppliers (Figure 14). The suppliers are identical in

terms of cost and other parameters. The value of having multiple suppliers arises from

the fact that each supplier has a fixed processing capacity (defined as the maximum

number of units that may begin production in a single period), so additional suppliers

can fill in when the primary supplier is maxed out or disrupted.

Under DU, the second supplier (stage 3 in Figure 14) is used only when the demand

exceeds the capacity of the primary supplier, and the third supplier (stage 4) is used

only when the demand exceeds the sum of the capacities of stages 2 and 3. The

savings that results from the backup suppliers should therefore decrease as the capacity

increases. Moreover, assuming that the capacity is strictly greater than the mean

demand, we should expect to see a moderate savings from the first backup supplier

but virtually no savings from the second backup supplier, since the probability that

the demand is more than twice the mean is essentially 0.

Under SU, the backup suppliers play two roles. The first is to step in when the

primary supplier fails. The second is to provide additional capacity to help recover

after a total disruption in which all suppliers fail simultaneously. In our tests, we

assume that each supplier’s capacity (when UP) is sufficient to meet the demand per

period. Therefore, the backup suppliers’ ability to perform their first role is largely

independent of the supply capacity, while it is critically dependent for the second role.

In our base case, the mean demand per period is 20, with a standard deviation of

5 under DU. The costs at the retailer are given by h = 1 and p = 20. We simulated

the DU systems with one, two, and three suppliers, with the base-stock level at stage
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Figure 15: Mean optimal costs for retailer with one, two, and three suppliers as a function
of capacity under (a) DU and (b) SU.
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1 set to 20, 24, 28, and 32, then chose the base-stock level that resulted in the lowest

mean cost per period. The results are displayed in Figure 15(a), which plots the mean

optimal cost per period as a function of the capacity per supplier. As expected, the

cost for the single-supplier system decreases as the capacity increases. However, the

two- and three-supplier costs remain flat as the capacity increases, since those systems

have ample capacity even at the lowest capacity level. In addition, the benefit from

the second supplier is substantial when the capacity equals 25 but is much smaller for

greater capacity values, since a capacity of 30 or greater is sufficient to meet the entire

demand with 98% probability (30 = µ+2σ). Finally, the third supplier provides essen-

tially no benefit since a two-supplier system is more than adequate to meet demand.

(The difference in cost between the two- and three-supplier systems is not statistically

significant, nor is that between the one- and two-supplier systems with capacity 30 or

greater.)

In contrast, the same tests performed under SU, with the failure and repair prob-

abilities at each supplier set to (α, β) = (0.05, 0.5), indicate that the second supplier

continues to provide some benefit even as the capacity continues to increase (Fig-

ure 15(b)). This is due to the fact that the second supplier is used whenever there is

a disruption, and the disruption risk is independent of the supplier capacity. (In these

trials, we tested values of 20, 30, 40, 50, and 60 for the base-stock level at the retailer.

Note that the optimal base-stock level is not necessary a multiple of the demand under

SU because of the finite supplier capacity.)

Similarly, the single-supplier cost continues to decrease as the capacity increases
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because the additional capacity helps the system recover quickly after a disruption.

The cost when the capacity equals 35 is 13.3% smaller than that when capacity equals

30, and the cost when capacity equals 40 is 13.2% smaller again than that when capacity

equals 35. Under DU, on the other hand, the corresponding cost differences are 1.4%

and 0.6%, respectively. (The differences are not statistically significant under either

DU or SU.)

As in the DU case, the two- and three-supplier curves in Figure 15(b) are flat. This

is because the benefit of the backup suppliers comes less from the additional capacity

they provide and more from their simple presence during disruptions. In other words,

as long as a backup supplier’s capacity is sufficient to meet the demand (in this case,

20), it can provide adequate supply during a disruption to the primary supplier.

Unlike under DU, the third supplier does provide some benefit over and above that

from the second supplier. The cost of the three-supplier system is (averaging over the

four capacity levels) 21.8% less expensive than that of the 2-supplier system, and the

cost difference is statistically significant for each of the four capacity levels. In contrast,

the corresponding differences for the DU case are negligible.

Evidently, at least under these settings, redundant supply is a much more important

tool under DU than under SU. We investigate this finding for a broader range of

instances in the next section.

7.2.2 Extended Study

We simulated the system described in Section 7.2.1 with varying values of the holding

cost h at stage 1. For each value of h, we tested systems with one, two, and three

suppliers, and for each we tested values of the processing capacity equal to 25, 30, 35,

and 40. For the SU tests, we tested the five pairs of values of (α, β) from (1). (Each

supplier has the same failure and repair probabilities.) This resulted in 60 instances

for DU and 180 for SU. For each problem instance, we tested base-stock levels at stage

1 equal to 20, 24, 28, 32 under DU and 20, 30, 40, 50, 60 under SU.

The results from the DU tests are summarized in Figure 16, which reports the

average percent savings due to the second supplier and the average additional savings

due to the third supplier for each capacity level. (Note that, whereas Figure 15 plots

the cost, Figure 16 plots the savings, that is, the difference in cost.) The figure indicates

that the second supplier provides a modest benefit (7.3%) for tight capacity and little
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Figure 16: Average percent savings due to second and third suppliers under DU.
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benefit otherwise. The third supplier provides essentially no benefit in either case, for

reasons discussed in the previous section. (The values in Figure 16 with slight negative

savings are due to simulation randomness.)

Figures 17(a) and (b) report the average percent savings under SU for the second

and third suppliers, respectively, as a function of the supplier capacity. Each curve in

the figures represents a given value of (α, β), or the overall average. From Figure 17(a)

it is evident that the second supplier provides a substantial benefit, with an overall av-

erage savings of 75.3% over the single-supplier cost. The savings generally decreases as

the capacity increases (since a single supplier with large capacity can recover quickly af-

ter disruptions). The exception is the curve for (α, β) = (0.001, 0.1), which is quite flat.

The reason for this is that, since the probability of two suppliers failing simultaneously

is negligible, the backup supplier’s role is only to provide supply during disruptions,

and never to help recover after them (see Section 7.2.1). Since the capacity is sufficient

to meet the demand per period, the size of this benefit is independent of the capacity.

The savings also tends to decrease as the failure probability increases, since the backup

suppliers become less beneficial as they become less reliable.2

The differences in cost are statistically significant for all of the instances with

α ≥ 0.01 but for only 10% of the instances with (α, β) = (0.001, 0.1). Although

the percentage savings are greatest when (α, β) = (0.001, 0.1), those savings are the

least statistically significant because failures are quite rare, and rarer disruptions result

in larger SEMs in the simulation.

2Strictly speaking, a supplier’s reliability is dictated not by its failure probability alone but by the proba-
bility that it is in the DOWN state. For our two-state failure process, this probability is given by α/(α+β),
which equals 0.01, 0.03, 0.09, 0.13, and 0.18 for (α, β) = (0.001, 0.1), (0.01, 0.3), (0.05, 0.5), (0.1, 0.7), (0.2, 0.9),
respectively. Therefore, as α increases in our instances, so does the DOWN probability.
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Figure 17: Average percent savings due to (a) second and (b) third supplier under SU.
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Figure 17(b) indicates that the third supplier, too, is beneficial, providing an av-

erage additional savings of 14.7%. As with the second supplier, the savings tends

to decrease as the capacity or the failure probability increase. In addition, the sta-

tistical significance of the savings increases as α increases: For (α, β) = (0.001, 0.1),

the cost difference is not statistically significant (and is in fact negative for a few in-

stances due to simulation randomness), but it is significant for 90% of instances with

(α, β) = (0.2, 0.9).

We summarize our findings from this section in the following remarks.

Remark 9 Under DU, a second supplier provides moderate savings if each supplier’s

capacity is tight (less than 2 SDs above the mean demand) and little benefit otherwise.

A third supplier provides essentially no benefit, regardless of capacity, assuming that

the combined capacity of the first two suppliers is sufficient to meet the demand with

high probability.

Remark 10 Under SU, multiple sourcing provides a substantial benefit since it pro-

vides both emergency capacity during and ramp-up capacity after disruptions. The

savings tends to decrease as each supplier’s capacity increases and as the suppliers’

reliability decreases. A third supplier still provides some benefit, though less so than

the second supplier.
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Figure 18: Four retailers with four suppliers, partially linked (Study 7).
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7.3 Study 7: Supplier Flexibility

7.3.1 Base Model

Consider a supply chain with four retailers and four suppliers, as in Figure 18. As

in Study 6 (Section 7.2.1), the suppliers are identical in terms of cost and reliability,

and we are interested in the question of how many suppliers should serve each retailer.

Unlike in Study 6, however, in this study the retailers compete for the suppliers’ limited

capacity, reducing the benefit that each additional supplier provides. In Figure 18,

each supplier serves two retailers, but we will also consider the cases in which each

supplier serves one, three, or all four retailers. In essence, we are asking how dense

the supplier–retailer graph should be. Our analysis is motivated in part by the work

on process flexibility by Jordan and Graves (1995), in which the question is how many

tasks each worker should be trained in—i.e., how dense the graph linking workers and

tasks should be.

As in Study 6, supplier flexibility provides a retailer with additional capacity to

meet excess demand under DU, while under SU the additional suppliers play two roles:

to provide product when the primary supplier has failed, and to help recover more

quickly after a disruption in which all suppliers that serve a given retailer have failed.

We simulated the system under DU and SU with one through four arcs (i.e., suppli-

ers) per retailer. For the SU tests, we used (α, β) = (0.01, 0.3).3 The other parameter

values are the same as those described in Section 7.2.1, as are the ranges of base-stock

levels tested. Figure 19 plots the mean cost as a function of the supplier capacity for

DU (Figure 7.2.1(a)) and SU (Figure 7.2.1(b)). As in Study 6, we find that the second

link provides a modest savings for the tightest capacity value (25), but essentially none

for looser capacity levels, and no benefit from the third or fourth links. In addition,

3We used (α, β) = (0.01, 0.3) rather than (0.05, 0.5) as in other studies because the larger α values resulted
in an unstable system for capacity level 25. See Section 7.3.2 for more details.
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Figure 19: Mean optimal costs for supply chain with one through four suppliers per retailer,
as a function of capacity under (a) DU and (b) SU.
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the costs generally remain flat as the capacity increases, since a total capacity of 30 or

more is sufficient to meet all of the demand in a period with 98% probability. Except

under capacity 25, the differences in cost between the one- and two-link systems are

not statistically significant, nor are those between the two- and three-link or three- and

four-link systems under any capacity level.

In contrast, the second link provides a substantial benefit, and the third link pro-

vides a modest benefit, at all capacity levels under SU. (The cost differences are sta-

tistically significant for the second link, and for two of the four capacity levels for the

third link.) These savings result from the critical role that backup suppliers can play

during and immediately after disruptions. Moreover, each of the four cost curves con-

tinue to decline slightly as the capacity increases. This is a difference from Study 6, in

which the costs remained flat for capacity levels of 30 or greater, even under SU. The

reason for this difference is that here, the retailers compete for the suppliers’ capacity,

and therefore additional capacity continues to provide additional savings.

These findings suggest that supply flexibility provides only minimal benefit under

DU but provides substantial benefit under SU. This mirrors the findings from Study

6, in which we studied supplier redundancy rather than supplier flexibility. We repeat

these experiments for a broader range of instances in the next section.

7.3.2 Extended Study

We simulated the system described in Section 7.3.1 with varying values of the holding

cost at the retailers, keeping the stockout cost fixed at p = 20. For each value of
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Figure 20: Average percent savings due to second, third, and fourth links under DU.
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h, we simulated the system with one through four links per retailer, and for each we

tested capacity values of 25, 30, 35, and 40. For the SU tests, we used the values of

(α, β) from (1). This resulted in 80 instances for DU and 400 for SU. However, for

capacity = 25 and α ≥ 0.05, the total expected system capacity (after accounting for

disruptions) was less than 20, resulting in an unstable system. Therefore, we omitted

these 60 instances (3 values of α × 5 h × 4 graph densities) from our results.

Figure 20 summarizes the average percent savings from the second, third, and fourth

links under DU, for each capacity level. The results confirm our findings from the base

case in Section 7.3.1 that the second link provides only a modest benefit (4.7%, which

is statistically significant) if the capacity equals 25, but no benefit otherwise; and that

the third and fourth links provide essentially no benefit.

Figures 21(a) and (b) display the average percent savings due to the second and

third links (resp.) under SU. Clearly, the second link provides a substantial benefit

for all disruption profiles and capacity levels, with an overall average savings of 60.9%.

Unlike in the corresponding graph in Study 6 (Figure 17(a)), in Figure 21(a) the

relative savings increases as the capacity increases. Additional units of capacity provide

increasing marginal savings (for the capacity values tested) when the retailers compete

for supplier capacity but decreasing marginal savings when there is only a single retailer

(as in Study 6). As in Study 6, the savings decrease as the failure probability (and the

DOWN percentage) increases.

The savings from the second link is statistically significant for all instances in which

α > 0.001, and for 8 of the 20 instances (40%) for which α = 0.001. As in Study 6,

although the mean savings are greatest when α = 0.001, so is the variability, making
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Figure 21: Average percent savings due to (a) second and (b) third link under SU.
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the differences less statistically significant.

Figure 21(b) suggests that, under SU, the third link continues to provide a benefit,

with an average savings of 29.2% over and above that provided by the second link.

The savings initially increases with capacity but begins to decrease when the capacity

equals 35. The statistical significance of the savings decreases with α: the savings are

significant for all instances in which (α, β) = (0.1, 0.7) or (0.2, 0.9), for 13 out of 15

(87%) of instances with (α, β) = (0.05, 0.5), for 8 out of 20 (40%) of instances with

(α, β) = (0.01, 0.3), and for 1 out of 20 (5%) of instances with (α, β) = (0.001, 0.1).

We omit detailed results for the fourth link. In general, the fourth link provides a

modest benefit at the smallest capacity level (25), and essentially no benefit otherwise.

Comparing Figures 17 (Study 6) and 21 (Study 7), one can see that the average

savings from each additional supplier is smaller in the supplier flexibility case than

in the supplier redundancy case. For example, if the capacity is 25 and (α, β) =

(0.001, 0.1), the second supplier in Study 6 provides a 97% savings but the second link

in Study 7 provides only a 53% savings. This is because the single retailer gains all the

benefit of the second supplier in Study 6, but multiple retailers share each supplier in

Study 7, so the benefit is dampened.

We summarize our findings from this study in the following remarks.

Remark 11 Under DU, supplier flexibility (in which multiple retailers share multiple

suppliers) provides little or no benefit versus a system in which each retailer has a single

dedicated supplier, assuming that the capacity of each supplier is sufficient to meet the

demand most of the time. A second link (i.e., supplier) per retailer provides moderate
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savings if each supplier’s capacity is tight (less than 2 SDs above the mean demand) and

little benefit otherwise. A third or fourth link provides essentially no benefit, regardless

of capacity.

Remark 12 Under SU, supplier flexibility provides a substantial benefit since it pro-

vides both emergency capacity during and ramp-up capacity after disruptions. The

marginal savings tends to increase as each supplier’s capacity increases and to decrease

as the suppliers’ reliability decreases. A third link still provides some benefit, though

less so than the second link, and a fourth link provides little benefit unless capacity is

very tight.

Remark 13 Supplier flexibility provides less benefit than supplier redundancy (Study

6), since additional suppliers must be shared by multiple retailers.

8. The Cost of Reliability

Most firms have designed their supply chains primarily with DU in mind, and many

use strategies similar to the optimal strategies for DU discussed in the studies above.

These firms may be reluctant to make large strategic changes to their supply chains to

protect against SU—nor would such changes necessarily be advisable, since firms face

a mix of SU and DU. However, we argue in this study that firms can greatly improve

their reliability with respect to disruptions without large increases in cost.

Using the serial system from Study 4, we examine the tradeoff between the cost of

a given solution under DU only and the service level of that solution under DU and

SU. In other words, if a firm is accustomed to thinking about an objective function

that considers DU only, how much of that objective does it need to sacrifice in order

to achieve a given improvement in reliability when SU is considered? We find that the

answer is usually “not much,” since the tradeoff curve between these two measures is

generally “steep.”

8.1 Study 8: The Cost of Reliability

8.1.1 Base Model

Consider the serial system from Study 4 (Section 6.2). We have argued that it is

preferable to hold inventory upstream under DU but downstream under SU. Even if
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the firm is committed to holding inventory upstream, however, it may still benefit from

holding a small amount of inventory downstream, since this inventory can be used to

protect against both SU and DU.

We simulated this system, keeping the base-stock level set to S3 = 20 upstream

and varying the base-stock level S1 downstream, first considering DU only. In this

case, the optimal base-stock level downstream (assuming S3 = 20) is 8, with a mean

cost of 19.9 per period if only DU is present. Now suppose that SU is present, as well,

with (α, β) = (0.05, 0.5) at stage 2. Under the optimal DU solution (S1 = 8), 13.3%

of demands are backordered (i.e., the fill rate is 86.7%). By holding just a bit more

inventory, however, we can achieve substantial reductions in the percentage of demands

backordered. For example, if we increase S1 from 8 to 10, the backorder rate decreases

to 10.5% (a 21% reduction), while the cost increases only to 20.3 (a 2% increase in

cost). If S1 = 12, the backorder rate decreases 31% from its original level, with a cost

increase of 14%.

The complete tradeoff curve is pictured in Figure 22. The horizontal axis displays

the mean cost per period assuming DU only, while the vertical axis displays the percent

of demands backordered assuming SU is present as well. Therefore, the graph displays

the required change in the cost the firm is used to optimizing (the DU-only cost) in

order to achieve a given change in the backorder rate. For example, the left-most point

represents the optimal DU solution: S1 = 8. This solution has a DU cost of 19.9 per

period and a backorder rate (under DU and SU) of 13.3%. The next point represents

the solution S1 = 10, which has a DU cost of 20.3 and a backorder rate of 10.5%. In

general, the steepness of the left-most part of the curve suggests that, if we start at the

optimal DU solution, large improvements in reliability (measured by backorder rate)

are possible with only small increases in DU cost. We demonstrate that this result

tends to hold in general in the next section.

8.1.2 Extended Study

We generated tradeoff curves for a number of additional test instances, created from

the base case in Section 8.1.1 by varying h1, p1, σ, and (α2, β2). Note that, unlike in

previous tests, (α, β) were varied independently of the other parameters, rather than

testing five values of (α, β) for each set of parameters. This resulted in a total of 17

instances.
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Figure 22: Tradeoff curve: backorder rate vs. DU cost (Study 8).
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For each instance, we first simulated the system under DU only (α = β = 0) with

S3 = 20 and S1 = 0, 2, 4, . . . , 70. We then selected the value S∗3 that minimized the

mean cost per period (typically, 0 < S∗3 < 10) and simulated the system under both

DU and SU for S3 = S∗3 , S∗3 + 2, . . . , 70 in order to evaluate the change to the DU cost

and the DU–SU backorder rate as S3 increases from its optimal value under DU.

The results are displayed in Figure 23. Each graph contains several tradeoff curves,

one for each value of the changing parameter. Figure 23(a) contains tradeoff curves for

varying values of h1, Figure 23(b) contains curves for p1, and so on.

In general, the tradeoff curves are steep, indicating that large improvements in

backorder rate are possible with only small increases in cost. On average, the second

solution represents a 21.1% decrease in backorder rate versus the left-most solution,

with only a 4.4% increase in expected DU cost per period. (These averages are taken

across all tradeoff curves in all figures.) The third solution represents an average 33.3%

decrease in backorder rate with a 20.4% increase in cost, while the fourth represents an

average 40.9% decrease in backorder rate with a 42.3% increase in cost. This suggests

that the benefit from increasing inventory at stage 1 is large at first but decreases

quickly.

From Figure 23(a), it is evident that the first few points in the tradeoff curves

represent larger improvements in backorder rate when h is large. This is because when

h is large, the optimal DU solution results in a large backorder rate, so small increases in

inventory result in large service level improvements. On the other hand, these changes

also result in larger cost increases for larger values of h. The right-hand portions of

the curves remain quite steep for smaller values of h and flatten out more quickly for
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Figure 23: Tradeoff curve (backorder rate vs. DU cost) for varying values of (a) h1, (b) p1,
(c) σ, and (d) (α2, β2).
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larger values.

Similarly, from part (b), the first few solutions represent larger improvements in

backorder rate when p is small, because these solutions, too, have poor service levels in

the optimal DU solution. On the other hand, the percent cost increase is larger when

p is smaller, because when p is large, inventory increases provide additional protection

against costly stockouts even under DU. As the inventory level increases, the curves for

differing values of p coincide, because these solutions all generate very few stockouts, so

p becomes irrelevant. The same effect does not happen as h increases: these solutions

still involve holding some inventory, because h < p in all instances.

The tradeoff curves in Figure 23(c) are quite flat for small values of σ. When

σ = 0, extra inventory provides no benefit, only cost, under DU, so the DU cost

increases are sharper and the SU-DU backorder improvements are more modest. Sharp

improvements in backorder rate occur when S1 is a multiple of µ = 20: If S1 < 20,

then any disruption incurs some backorders, while if S1 ≥ 20, only disruptions lasting

2 periods or more cause backorders. Similar effects occur at larger multiples of 20.

This effect is still visible, though less pronounced, when σ = 2. For σ > 2, the DU

smoothes out the SU effects; increases in inventory have a smaller impact on cost and

a large impact on service level.

As α increases in Figure 23(d), so does the backorder rate. As we stated earlier, for

our values of (α, β), the DOWN probability increases as α increases. Therefore, the

curves for larger α values result in more disrupted periods and more stockouts. These

curves remain steeper longer, suggesting that inventory is a more valuable tool for

protecting against frequent, short stockouts than against rare, long ones. This finding

echoes those from Study 4 (Section 6.2.2) suggesting that the optimal base-stock levels

increase for large values of α, whereas for smaller values, the optimal strategy is simply

to accept the disruption risk without increasing inventory.

We summarize our findings from this study in the following remark:

Remark 14 In a serial system, a small increase in inventory levels from the optimal

DU solution can provide substantial improvements in the service level when SU is con-

sidered with only small increases in DU cost. This effect is more pronounced when h is

small (because inventory increases are less costly), when p is small (because the opti-

mal DU solution generated a low service level), when σ is large (because extra inventory
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Table 5: Summary of results.
Study Conclusion

1 The cost of not protecting against uncertainty is greater under SU than DU.
2 Batch ordering is preferred under SU, even when batch and one-for-one

ordering are equivalent under DU.
3 Diversification of inventory sites is preferred under SU, while consolidation

is preferred under DU.
4 It is preferable to hold inventory downstream under SU but upstream under SU.
5 Point-to-point networks are preferred under SU, while hub-and-spoke networks

are preferred under DU.
6 Backup suppliers are significantly more valuable under SU than under DU.
7 Supplier flexibility is significantly more valuable under SU than under DU.
8 Supply chain resilience can be improved significantly without large increases in cost.

helps alleviate DU, too) and when α is large (since inventory is a more valuable tool

for mitigating SU when disruptions are more frequent).

9. Conclusions

In this paper we investigate the differences between DU and SU using simulation. We

consider SU in the form of supply disruptions, during which a portion of the supply

chain is completely inoperative. To the best of our knowledge, this is the first paper

to systematically examine the difference between these two types of uncertainty, and

to highlight the different strategies that are appropriate. In addition, ours is one of

the first papers to consider disruptions in multi-echelon models, which we believe is

important because disruptions are not local, but rather tend to propagate downstream

through a supply chain.

Our main findings are summarized in Table 5; please refer to the individual studies

above for details of the assumptions that led to these conclusions and a more thorough

explanation of why they hold.

Our simulation results show that the two types of uncertainty have different opti-

mal strategies in terms of ordering frequency, inventory placement, and supply chain

structure. In fact, the optimal strategy for dealing with supply uncertainty is, in many

cases, the exact opposite from that for demand uncertainty. However, we are not argu-

ing that firms should radically change their systems and their strategies to deal with

these uncertainties. Rather, we are trying to point out these two competing tendencies.
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In practice, both DU and SU exist, and the optimal strategy should be determined by

considering the mix of DU and SU.

We demonstrate that the cost of unreliability is greater under SU than under DU,

in the sense that, if the firm fails to plan for uncertainty, the cost under a given level of

SU is greater than that under the equivalent level of DU. This suggests that planning

for SU is crucial. The strategies discussed in this paper can reduce the cost under SU,

but this cost may still be substantial. Further research should explore strategies for

mitigating SU in multi-echelon supply chains.

We also analyze the trade-off between cost and reliability, and show that it is impor-

tant for a company to find the right trade-off between cost and reliability. The cost dif-

ference between the reliability-minimization solution and the reliability-maximization

solution can be quite large. We also show that significant improvements in reliability

can often be achieved at relatively low cost.

We believe it is an interesting research problem to consider both SU and DU in the

same model and determine the optimal strategy to deal with overall uncertainty. We

also plan to derive theoretical results confirming some claims in this paper.
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