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Abstract

Classical facility location models like the P -median problem (PMP) and the uncapacitated

fixed-charge location problem (UFLP) implicitly assume that once constructed, the facilities

chosen will always operate as planned. In reality, however, facilities “fail” from time to time due

to poor weather, labor actions, changes of ownership, or other factors. Such failures may lead

to excessive transportation costs as customers must be served from facilities much farther than

their regularly assigned facilities. In this paper, we present models for choosing facility locations

to minimize cost while also taking into account the expected transportation cost after failures

of facilities. The goal is to choose facility locations that are both inexpensive under traditional

objective functions and also reliable. This reliability approach is new in the facility location

literature. We formulate reliability models based on both the PMP and the UFLP and present

an optimal Lagrangian relaxation algorithm to solve them. We discuss how to use these models

to generate a tradeoff curve between the day-to-day operating cost and the expected cost taking

failures into account, and use these tradeoff curves to demonstrate empirically that substantial

improvements in reliability are often possible with minimal increases in operating cost.
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1 Introduction

The uncapacitated fixed-charge location problem (UFLP) is a classical facility location

problem that chooses facility locations and assignments of customers to facilities to

minimize the sum of fixed and transportation costs. Once a set of facilities has been

constructed, however, one or more of them may from time to time become unavailable—

for example, due to inclement weather, labor actions, sabotage, or changes in ownership.

These facility “failures” may result in excessive transportation costs as customers pre-

viously served by these facilities must now be served by more distant ones. The models

presented in this paper choose facility locations to minimize day-to-day construction

and transportation costs while also hedging against failures within the system. We call

the ability of a system to perform well even when parts of the system have failed the

“reliability” of the system. Our goal, then, is to choose facility locations that are both

inexpensive and reliable.

Consider the 49-node data set described in Daskin (1995) consisting of the capitals

of the continental United States plus Washington, DC. Demands are proportional to

the 1990 state populations. The optimal UFLP solution for this problem is pictured

in Figure 1; this solution entails a fixed cost of $348,000 and a transportation cost

of $509,000. (Transportation costs are taken to be $0.00001 per mile per unit of de-

mand.) However, if the facility in Sacramento, CA becomes unavailable, the west-coast

customers must be served from facilities in Springfield, IL and Austin, TX (Figure 2),

resulting in a transportation cost of $1,081,000, an increase of 112%. The “failure costs”

(the transportation cost when a site fails) of the five optimal facilities, as well as their

assigned demands, are listed in Table 1, as is the transportation cost when no facilities

fail. Note that Sacramento serves a relatively small portion of the demand; its large

failure cost is due to its distance from good “backup” facilities. In contrast, Harrisburg,

PA is relatively close to two good backup facilities, but because it serves one-third of the

total demand, its failure, too, is very costly. Springfield, IL is the second-largest facility

in terms of demand served, but its failure cost is much smaller because it is centrally

located, close to good backup facilities. The reliability of a facility, then, can depend

either on the distance from other facilities (e.g., Sacramento, which is small but distant)

or on the demand served (Harrisburg, which is close but large), or on both (Springfield,
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Table 1: Failure costs and assigned demands for UFLP solution.

Location % Demand Served Failure Cost % Increase
Sacramento, CA 19% 1,081,229 112%
Harrisburg, PA 33% 917,332 80%
Springfield, IL 22% 696,947 37%
Montgomery, AL 16% 639,631 26%
Austin, TX 10% 636,858 25%
Transp. cost w/no failures 508,858 0%

which is reliable because it is neither excessively large nor excessively distant).

Figure 1: UFLP solution to 49-node data set.

A more reliable solution locates facilities in the capitals of CA, NY, TX, PA, OH,

AL, OR, and IA; in this solution, no facility has a failure cost of more than $640,000,

rivaling the smallest failure cost in Table 1. On the other hand, three additional facilities

are used in this solution, and these come at a cost. Few firms would be willing to choose

solutions with location and day-to-day transportation costs that are much greater than

optimal just to hedge against occasional and unpredictable disruptions in their supply

network. One of the goals of this paper is to demonstrate that substantial improvements

in reliability can often be obtained without large increases in day-to-day operating

cost—that by taking reliability into account at design time, one can find a near-optimal

UFLP solution that is much more reliable. This is demonstrated by examining the



1 INTRODUCTION 4

Figure 2: UFLP solution to 49-node data set, after failure of facility in Sacramento.

tradeoff between the operating cost and the expected failure cost of the system, given

a probability that each facility will fail and assuming that multiple facilities can fail

simultaneously. One may instead wish to consider the maximum failure cost among all

facilities, rather than the expected cost; this measure is treated by Snyder (2003).

This reliability approach is new in the logistics literature. It differs from traditional

approaches to optimization under uncertainty in which the goal is to choose a solution

that performs well with respect to uncertain future conditions (e.g., random demands or

costs). Our models seek solutions that perform well when parts of the system fail. In a

sense, we are hedging against uncertainty in the solution itself. Another way of viewing

these models is that unlike stochastic facility location models which seek demand-side

robustness (robustness to changes in demand or costs), these models seek supply-side

robustness (robustness to changes in the supply network itself).

We present reliability-based formulations of both the UFLP and the P -median prob-

lem, another classical facility location problem in which the number of facilities to be

located is fixed. The remainder of this paper is structured as follows. We review the

related literature in Section 2. In Section 3, we formulate a reliability model based on

the P -median problem. We solve this model using Lagrangian relaxation and show how

to use it to generate a tradeoff curve between operating cost and expected failure cost
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using the weighting method of multi-objective programming. In Section 4, we extend

this model to solve a reliability version of the UFLP and discuss a modification that

results in much better computational bounds with little loss of accuracy. We present

computational results in Section 5 and a summary in Section 6.

2 Literature Review

There are three main bodies of literature that are similar in spirit, if not in modeling

approach, to the research presented in this paper. The first is the literature on network

reliability, most often applied to telecommunications or power transmission networks.

The second concerns expected or backup covering models, which are frequently used

in locating emergency services facilities or vehicles. Finally, our models can be seen

as an outgrowth of a small body of literature that discusses approaches for handling

disruptions to supply chains. We discuss each of these three research areas next.

The concept of reliability is borrowed from network reliability theory (Colbourn

1987, Shier 1991, Shooman 2002), which is concerned with computing, estimating, or

maximizing the probability that a network (typically a telecommunications or power

network, represented by a graph) remains connected in the face of random failures.

Failures may be due to disruptions, congestion, or blockages. Almost all of the research

on network reliability considers failures only on the edges, but occasional papers con-

sider node failures as well (e.g., Eiselt, Gendreau, and Laporte 1996). The network

reliability literature tends to focus either on computing reliability or on optimizing it;

i.e., either determining the reliability of a given system or designing a reliable system

from scratch. Computing the reliability of a given network is a non-trivial problem (see,

e.g., Ball 1979), and various performance measures and techniques for computing them

have been proposed. Because of the complications involved in computing reliability,

reliability optimization models rarely include explicit expressions for the reliability of

the network. Instead, they often attempt to find the minimum-cost network design

with some desired structural property, such as 2-connectivity (Monma and Shallcross

1989, Monma, Munson, and Pulleyblank 1990), k-connectivity (Bienstock, Brickell, and

Monma 1990, Grötschel, Monma, and Stoer 1995), or special ring structures (Fortz and

Labbé 2002). The key difference between network reliability models and the models that
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we present in this paper is that network models are concerned entirely with connectivity.

The only costs considered are those to construct the network, not the transportation

cost after rerouting, which is the primary concern of our reliability models.

Our models are also similar in spirit to the vector-assignment P -median problem

(VAPMP) by Weaver and Church (1985) in that we assign customers to facilities at

multiple levels. In the VAPMP, customers are assumed to be served by multiple facilities

based on preference and availability. For example, a given customer might receive 80% of

its demand from its nearest facility, 15% from its second-nearest, and 5% from its third-

nearest. These percentages are inputs to the model. In our models, the “higher-level”

assignments are only used when the primary facilities fail; there are no pre-specified

fractions of demand served by each facility. A similar model, based on the UFLP, is

presented by Pirkul (1989).

Several papers extend the maximum covering problem (Church and ReVelle 1974) to

handle the randomness inherent in locating emergency services vehicles. The classical

maximum covering problem assumes that a vehicle is always available when a call for

service arrives, but this fails to model the congestion in such systems when multiple

calls are received by a facility with limited resources. Daskin (1982) formulates the

maximum expected covering location model (MEXCLM), which assumes a constant,

system-wide probability that a server is busy when a call is received and maximizes the

total expected coverage; he solves the problem heuristically in Daskin (1983). ReVelle

and Hogan (1989) present the maximum availability location problem (MALP), which

allows the availability probability to vary among service areas, while Ball and Lin (1993)

justify the form of the coverage constraints in MEXCLM and MALP using a system

reliability approach.

Larson (1974, 1975) introduced queuing-based location models that explicitly con-

sider customers waiting for service in congested systems. His “hypercube model” is

useful as a descriptive model, but because of its complexity, researchers have had dif-

ficulty incorporating it into optimization models. Berman, Larson, and Chiu (1985)

incorporate the hypercube idea into a simple optimization model, presenting theoreti-

cal results about the trajectory of the optimal 1-median as the demand rate changes in

a general network.

Daskin, Hogan, and ReVelle (1988) compare various stochastic covering problems in
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which the objective is to locate facilities to maximize expected coverage or the degree

of backup coverage. Berman and Krass (2001) consolidate a wide range of approaches

to facility location in congested systems, presenting a complex model that is illustrative

but can be solved only for special cases. The key differences between the expected and

backup coverage models and our models are (1) the objective function (coverage versus

cost) and (2) the nature of the unavailability of a server (congestion versus failures).

Finally, we view our models as an outgrowth of the small body of literature, mainly

appearing in response to the terrorist attacks on September 11, 2001, calling for tech-

niques for designing and operating supply chains that are resilient to disruptions of all

sorts. Articles appearing in academic journals (Sheffi, 2001), business journals (Martha

and Vratimos, 2002; Simchi-Levi, Snyder, and Watson, 2002; Navas, 2003), and popular

magazines (Lynn, 2002) make compelling arguments that supply chains are particularly

vulnerable to intentional or accidental disruptions and suggest possible approaches for

making them less so, but they do not present any quantitative models. We view the

present work as beginning to fill this void.

To our knowledge, the only analytical models considering failures in a facility loca-

tion or supply chain design context are those of Krass, Berman, and Menezes (2003),

Menezes, Berman, and Krass (2003a, 2003b), and Bundschuh, Klabjan, and Thurston

(2003). The first references assume that customers travel from facility to facility in

search of an operational one (for example, when looking for an ATM); their models

minimize a non-linear objective representing the expected cost incurred by customers

as they travel along these paths. Bundschuh, et al. choose suppliers in an inbound sup-

ply chain so that the resulting systems are “reliable” (have a low probability that any

supplier fails) and/or “robust” (are able to maintain a high level of output even after

suppliers have failed). Note that their definition of reliability is somewhat different from

ours. Reliability is enforced by requiring the probability that all suppliers are opera-

tional to exceed a desired level; this is a multi-echelon version of the model proposed by

Vidal and Goetschalckx (2000). System-wide reliability can be improved by switching

to more reliable suppliers, but not by adding redundant suppliers: increasing the num-

ber of suppliers decreases the reliability of the system since it increases the likelihood

that one or more suppliers will fail. The robustness model allows nodes to keep emer-

gency stock on hand and to obtain extra material from operational suppliers when one
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supplier has failed (though it ignores the additional cost that such procurement would

entail). A joint reliability/robustness model combines the two approaches. The authors

test their models on two moderately sized instances using a standard MIP solver with

run-times of up to one hour. They discuss both qualitative (e.g., shifting supply from

Southeast Asia to North America) and quantitative (e.g., changes to the mean and

standard deviation of output, measured using simulation) empirical differences between

solutions from the different models.

3 The Reliability P -Median Problem

In this section we discuss a P -median-based model that minimizes a weighted sum of

the operating cost (the day-to-day transportation cost when all facilities are operational)

and the expected failure cost (the expected transportation cost, taking into account ran-

dom facility failures). Each facility fails with a given probability, and multiple facilities

may fail simultaneously. Certain facilities may be designated as “non-failable.” In our

work with a major manufacturer of durable goods, the facilities that may fail repre-

sent warehouses owned by independent distributors who occasionally “defect” from the

company or go out of business. The non-failable warehouses are those owned by the

company; these are assumed to remain loyal to the firm and will not fail. In other

applications, the non-failable facilities may represent those located in favorable weather

areas, those served by unions with which the firm has a particularly strong relationship,

or other facilities deemed to have a negligible probability of failure.

3.1 Formulation

Let I be the set of customers, indexed by i, and J the set of potential facility locations,

indexed by j. Let NF be the set of candidate facilities that may not fail (we refer to

these as “non-failable” facilities) and let F be the set of candidate facilities that may

fail (“failable” facilities). Note that NF ∪ F = J . Each customer i ∈ I has a demand

hi. The cost per unit of demand to ship from facility j ∈ J to customer i ∈ I is given by

dij . Associated with each customer i is a cost θi that represents the cost of not serving

the customer, per unit of demand. (θi may be a lost-sales cost, or the cost of serving i

by purchasing product from a competitor on an emergency basis). This cost is incurred
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if all open facilities have failed (and thus no facilities are available to serve customer i),

or if θi is less than the cost of assigning i to any of the existing facilities that have not

failed. To model this, we add an “emergency” facility u that is non-failable (u ∈ NF )

and has transportation cost diu = θi to customer i ∈ I. We force Xu = 1 and replace P

with P + 1. From this point forward, we assume that the emergency facility has been

handled in this way, though for simplicity we continue to formulate the problem as a

P -median, rather than as a (P + 1)-median problem.

Each facility in F has a probability q of failing, which is interpreted as the long-

run fraction of time the facility is non-operational. In some cases, q may be estimated

based on historical data (e.g., for weather-induced failures), while in others q must be

estimated subjectively (e.g., for failures due to defection of third-party distributors).

Our model is most easily interpreted as an infinite-horizon model in which q represents

the fraction of time that a facility has failed. However, if the modeler has in mind

a particular time horizon T , then q may be used to capture probabilistic information

about the timing of the failures. For example, suppose each facility has a 0.1 probability

of failing, and that if it fails, it will fail during periods 1 through 5 with probability 0.3

and in periods 3 through T with probability 0.7. (Note that this means that if a facility

fails, it will surely be inoperable during periods 3, 4, and 5.) Then the expected fraction

of time the facility will be non-operational is given by (0.1×0.3×5+0.1×0.7×(T−2))/T .

The strategy behind our formulation is to assign each customer to a primary facility

that will serve it under normal circumstances, as well as to a set of backup facilities

that serve it when the primary facility has failed. Since multiple failures may occur

simultaneously, each customer needs a first backup facility in case its primary facility

fails, a second backup in case its first backup fails, and so on. However, if a customer

is assigned to a non-failable facility as its nth backup, it does not need any further

backups.

There are two sets of decision variables in the model, location variables (X) and

assignment variables (Y ):
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Xj =





1, if a facility is opened at location j

0, otherwise

Yijr =





1, if demand node i is assigned to facility j as a level-r assignment

0, otherwise

A “level-r” assignment is one for which there are r closer failable facilities that are

open. If r = 0, this is a primary assignment; otherwise, it is a backup assignment. Each

customer i has a level-r assignment for each r = 0, . . . , P − 1, unless i is assigned to a

level-s facility that is non-failable, where s < r. In other words, customer i is assigned

to one facility at level 0, another facility at level 1, and so on until i has been assigned

to all open facilities at some level or i has been assigned to a non-failable facility.

We formulate this problem as a multi-objective problem. The objectives are as

follows:

w1 =
∑

i∈I

∑

j∈J

hidijYij0

w2 =
∑

i∈I

hi


 ∑

j∈NF

P−1∑

r=0

dijq
rYijr +

∑

j∈F

P−1∑

r=0

dijq
r(1− q)Yijr


 .

Objective w1 computes the operating cost—the P -median cost of serving customers

from their primary facilities. Objective w2 computes the expected failure cost: each

customer i is served by its level-r facility (call it j) if the r closer facilities have failed

(this occurs with probability qr) and if j itself has not failed (this occurs with probability

1− q if j ∈ F and with probability 1 if j ∈ NF ). Note that by the definition of level-r,

all r closer facilities are failable.

Although we refer to w2 as the “expected failure cost,” we are careful to point out

that w2 also includes the transportation cost when no facilities have failed (i.e., the

level-0 assignments). Certainly, there are ways to define reliability other than that

given in w2. For example, if the desired tradeoff is between PMP cost and expected

transportation cost only after a failure, then the “primary” transportation cost can be

omitted from w2 by starting the summation indices at r = 1 rather than r = 0. It is also

possible that the transportation costs for backup assignments are different from those

for primary assignments because, for example, they are arranged with freight companies
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on an emergency basis; in this case, the coefficients for Yijr would be changed from dij

to some other cost for r > 0. Either of these modifications can be handled easily using

the solution method described below.

Our model minimizes a weighted sum αw1 + (1− α)w2 of the two objectives, where

0 ≤ α ≤ 1. By solving the problem for various values of α, one can generate a tradeoff

curve between the operating cost and the expected failure cost using the weighting

method of multi-objective programming (see Section 3.3). The decision maker can

then choose a solution from the tradeoff curve in accordance with his or her preference

between the two objectives. Furthermore, the tradeoff curve can indicate the degree to

which one objective must be sacrificed to improve the other. In our empirical results,

we show that the tradeoff curve for the RPMP is “steep”—that large reductions in

objective w2 can be attained with only small increases in w1.

The reliability P -median problem is formulated as follows:

(RPMP) minimize αw1 + (1− α)w2 (1)

subject to
∑

j∈J

Yijr +
∑

j∈NF

r−1∑
s=0

Yijs = 1 ∀i ∈ I, r = 0, . . . , P − 1 (2)

Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . , P − 1 (3)
∑

j∈J

Xj = P (4)

P−1∑
r=0

Yijr ≤ 1 ∀i ∈ I, j ∈ J (5)

Xu = 1 (6)

Xj ∈ {0, 1} ∀j ∈ J (7)

Yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . , P − 1 (8)

The objective function (1) is straightforward. Constraints (2) require that for each

customer i and each level r, either i is assigned to a level-r facility or it is assigned to

a level-s facility (s < r) that is non-failable. (By convention we take
∑r−1

s=0 Yijs = 0 if

r = 0.) Constraints (3) prohibit an assignment to a facility that has not been opened.

Constraint (4) requires P facilities to be opened. Constraints (5) prohibit a customer

from being assigned to a given facility at more than one level. Constraint (6) requires

the emergency facility u to be opened. Constraints (7) and (8) are standard integrality

constraints. (In fact, it is sufficient to require Yijr ≥ 0 in place of (8). We use integrality
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constraints to emphasize the binary nature of the assignment decision; doing so does

not affect our solution procedure.)

For notational convenience, we can write the objective function as

∑

i∈I

∑

j∈J

P−1∑

r=0

ψijrYijr, (9)

where

ψijr =





αhidij + (1− α)hidij = hidij , if r = 0 and j ∈ NF

αhidij + (1− α)hidij(1− q), if r = 0 and j ∈ F

(1− α)hidijq
r, if r > 0 and j ∈ NF

(1− α)hidijq
r(1− q), if r > 0 and j ∈ F

One might suspect that for small α, the weight on the backup assignments may

be larger than that on the primary assignments, in which case it may be optimal to

assign customers to primary facilities that are farther than their backup facilities, a

situation we would want to prohibit. The next theorem, however, demonstrates that

such a situation cannot occur.

Theorem 1 In any optimal solution to (RPMP), if Yijr = Yik,r+1 = 1 for i ∈ I,

j, k ∈ J , 0 ≤ r < P − 1, then dij ≤ dik.

Proof. Suppose, for a contradiction, that (X,Y ) is an optimal solution to (RPMP) in

which Yijr = Yik,r+1 = 1 but dij > dik. We will show that by “swapping” j and k, the

objective function will decrease. Since i has a level-(r+1) facility (k), its level-r facility

(j) must be failable.

Suppose first that k ∈ F . These two assignments contribute ψijr + ψik,r+1 to the

objective function. If we assigned i to j at level r + 1 and to k at level r, the objective

function would change by (ψikr + ψij,r+1)− (ψijr + ψik,r+1). If r = 0, then

(ψikr + ψij,r+1)− (ψijr + ψik,r+1) =αhidik + (1− α)hidik(1− q) + (1− α)hidijq(1− q)

− αhidij − (1− α)hidij(1− q)− (1− α)hidikq(1− q)

=αhi(dik − dij) + (1− α)hi(dik − dij)(1− q)2

<0
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since dij > dik and 0 ≤ α ≤ 1. On the other hand, if r > 0, then

(ψikr + ψij,r+1)− (ψijr + ψik,r+1) =(1− α)hidikq
r(1− q) + (1− α)hidijq

r+1(1− q)

− (1− α)hidijq
r(1− q)− (1− α)hidikq

r+1(1− q)

=(1− α)hi(dik − dij)qr(1− q)2

<0.

Either way, the objective function is smaller for the revised solution. The case in which

k ∈ NF is similar, except that in this case, Yij,r+1 = 0 since i’s level-r facility is non-

failable, resulting in an even larger decrease in cost. This contradicts the assumption

that (X, Y ) is optimal.

We note briefly that if the level-0 assignments are excluded from w2 as discussed on

page 10, then Theorem 1 holds when α ≥ 1
2 , which is generally the range of interest to

decision makers. In this case, the algorithm given below may still be valid for particular

instances, even if α < 1
2 . If the algorithm returns a solution for which the distance

ordering is obeyed, it is optimal; but the algorithm cannot enforce the distance ordering

if it is not naturally optimal to do so.

3.2 Lagrangian Relaxation

3.2.1 Lower Bound

(RPMP) could be solved using an off-the-shelf IP solver, but in general such an ap-

proach will yield excessive run times, even for moderately sized problems. (See Section

5.3.) This motivates the development of a Lagrangian relaxation algorithm. Relaxing

constraints (2) with Lagrange multipliers λ yields the following Lagrangian subproblem:
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(RPMP-LRλ)

minimize z(λ) =
∑

i∈I

∑

j∈J

P−1∑
r=0

ψijrYijr +
∑

i∈I

P−1∑
r=0

λir


1−

∑

j∈J

Yijr −
∑

j∈NF

r−1∑
s=0

Yijs


 (10)

subject to Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . , P − 1 (11)
∑

j∈J

Xj = P (12)

P−1∑
r=0

Yijr ≤ 1 ∀i ∈ I, j ∈ J (13)

Xu = 1 (14)

Xj ∈ {0, 1} ∀j ∈ J (15)

Yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . , P − 1 (16)

The objective function (10) can be re-written as follows:

∑

i∈I

∑

j∈J

P−1∑

r=0

ψijrYijr +
∑

i∈I

P−1∑

r=0

λir −
∑

i∈I

∑

j∈J

P−1∑

r=0

λirYijr −
∑

i∈I

P−1∑

r=0

∑

j∈NF

r−1∑

s=0

λirYijs

=
∑

i∈I

∑

j∈J

P−1∑

r=0

ψijrYijr +
∑

i∈I

P−1∑

r=0

λir −
∑

i∈I

∑

j∈J

P−1∑

r=0

λirYijr −
∑

i∈I

∑

j∈NF

P−1∑

s=0

s−1∑

r=0

λisYijr

(by swapping the indices r and s in the last term)

=
∑

i∈I

∑

j∈J

P−1∑

r=0

ψijrYijr +
∑

i∈I

P−1∑

r=0

λir −
∑

i∈I

∑

j∈J

P−1∑

r=0

λirYijr −
∑

i∈I

∑

j∈NF

∑
r=0,...,P−1
s=0,...,P−1

r<s

λisYijr

=
∑

i∈I

∑

j∈J

P−1∑

r=0

ψijrYijr +
∑

i∈I

P−1∑

r=0

λir −
∑

i∈I

∑

j∈J

P−1∑

r=0

λirYijr −
∑

i∈I

∑

j∈NF

P−1∑

r=0

(
P−1∑

s=r+1

λis

)
Yijr

Therefore, the objective function can be written as

∑

i∈I

∑

j∈J

P−1∑

r=0

ψ̃ijrYijr +
∑

i∈I

P−1∑

r=0

λir, (17)

where

ψ̃ijr =





ψijr − λir, if j ∈ F

ψijr − λir −
(∑P−1

s=r+1 λis

)
= ψijr −

∑P−1
s=r λis, if j ∈ NF

(18)
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For given λ, problem (RPMP-LRλ) can be solved easily. Since the assignment con-

straints (2) have been relaxed, customer i may be assigned to zero, one, or more than

one open facility at each level, but it may not be assigned to a given facility at more

than one level r. Suppose that facility j is opened. Customer i will be assigned to

facility j at level r if ψ̃ijr < 0 and ψ̃ijr ≤ ψ̃ijs for all s = 0, . . . , P − 1. Therefore,

the benefit of opening facility j (i.e., the contribution to the objective function if j is

opened) is given by

γj =
∑

i∈I

min
{

0, min
r=0,...,P−1

{ψ̃ijr}
}

. (19)

Once the benefits γj have been computed for all j, we set Xj = 1 for the emergency

facility u and for the P − 1 remaining facilities with the smallest γj ; we set Yijr = 1 if

(1) facility j is open, (2) ψ̃ijr < 0, and (3) r minimizes ψ̃ijs for s = 0, . . . , P − 1. The

optimal objective value for (RPMP-LRλ) is z(λ) =
∑

j∈J γjXj +
∑

i∈I

∑P−1
r=0 λir, and

this provides a lower bound on the optimal objective value of (RPMP).

The benefit γj can be computed for a single j in O(nP ) time, where n = |I|, so

all of the benefits can be computed in O(mnP ) time, where m = |J |. Determining

Xj requires sorting the facilities, which takes O(m log m) time, and determining Yijr

requires O(nP ) time, assuming that assignments are stored as a single index j for each

i, r rather than as a list of m 0/1 variables. Therefore, the Lagrangian subproblem can

be solved for a given λ in O(mnP + m log m + nP ) = O(mnP ) time.

3.2.2 Upper Bound

At each iteration of the Lagrangian process, we obtain both a lower and an upper bound.

The solution to (RPMP-LRλ) provides a lower bound. If it is feasible for (RPMP),

then it provides an upper bound as well, and is in fact optimal for (RPMP): since the

constraint violations in (10) equal 0, the lower and upper bounds are equal. If the

solution to (RPMP-LRλ) is not feasible for (RPMP), as is the case in most iterations,

then we construct a feasible solution by opening the facilities that are open in the

solution to (RPMP-LRλ) and assigning customers to the open facilities level by level

in increasing order of distance, until a non-failable facility is assigned. (By Theorem 1,

this is an optimal strategy for assigning customers to a given set of facilities, though the

facilities themselves may not be optimal.) Anecdotally, we can report that the heuristic
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as described here has performed well in our computational tests, finding the optimal

solution very quickly (generally within the first 100 Lagrangian iterations), though we

have not explicitly recorded the iteration at which the optimal solution is found.

3.2.3 Multiplier Updating

Each value of λ provides a lower bound z(λ) on the optimal objective value of (RPMP).

To find the best possible lower bound, we need to solve

maximize
λ∈RnP

z(λ). (20)

This problem is solved approximately using subgradient optimization, applied in a

straightforward manner as described by Fisher (1981, 1985) and Daskin (1995). In

particular, at each iteration n we compute a step-size tn as

tn =
βn(UB− Ln)

∑
i∈I

P−1∑
r=0

(
1− ∑

j∈J

Yijr −
∑

j∈NF

r−1∑
s=0

Yijs

)2 , (21)

where βn is a constant at iteration n, initialized to 2 and halved when 30 consecutive

iterations fail to improve the lower bound; Ln is the value of z(λ) found at iteration n;

and UB is the best known upper bound. The multipliers are updated by setting

λn+1
ir ← λn

ir + tn


1−

∑

j∈J

Yijr −
∑

j∈NF

r−1∑

s=0

Yijs


 . (22)

The Lagrangian process terminates when any of the following criteria are met:

• (UB− Ln)/Ln < ε, for some optimality tolerance ε specified by the user

• n > nmax, for some iteration limit nmax

• βn < βmin, for some β limit βmin

3.2.4 Initial Multipliers

Our algorithm, like many Lagrangian relaxation algorithms, is somewhat sensitive to

the choice of the initial Lagrange multipliers. To develop a strategy for computing good

starting multipliers, we first examined the final multipliers for problems that had been

solved to optimality. We discovered that the final multipliers for k = 0 were roughly on

the order of magnitude of 0.01 times the demand-weighted distance from each customer
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to its assigned facility, and that the optimal multipliers decreased roughly by an order

of magnitude as k increased. Therefore, we settled on the following formula for the

initial multipliers:

λir = hid̄/10r+2,

where d̄ =
∑

i∈I

∑
j∈J dij/|I||J | is the average distance between pairs of customers and

facilities.

3.2.5 Branch and Bound

If the Lagrangian process terminates with the lower and upper bounds equal (to within

ε), an ε-optimal solution has been found and the algorithm terminates. Otherwise, we

use branch-and-bound to close the optimality gap. We branch on the Xj (location)

variables. At each branch-and-bound node, the facility selected for branching is the

unfixed open facility with the greatest assigned demand. Xj is first forced to 0 and

then to 1. Branching is done in a depth-first manner. The tree is fathomed at a given

node if the lower bound at that node is within ε of the objective function value of the

best feasible solution found anywhere in the tree, if P facilities have been forced open,

or if |J |−P facilities have been forced closed. The final Lagrange multipliers at a given

node are passed to its child nodes and are used as initial multipliers at those nodes.

3.2.6 Variable Fixing

Suppose that the Lagrangian procedure terminates at the root node of the branch-

and-bound tree with the lower bound strictly less than the upper bound. Assume for

notational convenience that the facilities in J \ {u} are sorted in increasing order of

benefit so that γj ≤ γj+1, under a particular set of Lagrange multipliers λ. Let LB

be the lower bound (the objective value of (RPMP-LRλ)) under the same λ, and let

UB be the best upper bound found. Suppose further that Xj = 0 in the solution to

(RPMP-LRλ). If

LB + γj − γP−1 > UB (23)

then candidate site j cannot be part of the optimal solution, so we can fix Xj = 0.

This is true because if j were forced into the solution, another facility would be forced

out; this facility would be the open facility (other than u) with the largest benefit, i.e.,
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facility P − 1. Clearly LB + γj − γP−1 is a valid lower bound for the “Xj = 1” node (it

would be the first lower bound found if we use λ as the initial multipliers at the new

child node), so we would fathom the tree at this new node and never again consider

setting Xj = 1.

Similarly, suppose Xj = 1 in the solution to (RPMP-LRλ). If

LB− γj + γP > UB (24)

then candidate site j must be part of the optimal solution since swapping j out and

the best closed facility in will result in a solution whose lower bound exceeds the upper

bound; therefore, we can fix Xj = 1.

We perform these variable-fixing checks twice after processing has terminated at

the root node, once using the optimal multipliers λ and once using the most recent

multipliers. This procedure is quite effective in forcing variables open or closed because

the Lagrangian procedure tends to produce tight lower bounds, making (23) or (24)

hold for many facilities j. The time required to perform these checks is negligible.

Variable-fixing tends not to result in substantial improvements if performed at lower

levels of the branch-and-bound tree, so we perform the procedure only at the root node.

3.3 Tradeoff Curve

By systematically varying the objective function weight α and re-solving (RPMP) for

each value, one can generate a tradeoff curve between the two objectives using the

weighting method of multi-objective programming (Cohon 1978). The method is as

follows:

0. Solve (RPMP) for α = 1 (the pure PMP problem) and for α = 0. Add both points

to the tradeoff curve.

1. Identify a pair of adjacent solutions on the tradeoff curve that has not yet been

considered. Let the objective values of these two solutions be (w1
1, w

1
2) and (w2

1, w
2
2).

Set α ← −(w1
2 − w2

2)/(w1
1 − w2

1 − w1
2 + w2

2).

2. Solve (RPMP) for the current value of α. If the resulting solution is not already

on the tradeoff curve, add it.

3. If all pairs of adjacent solutions on the tradeoff curve have been explored, stop.

Else, go to 1.
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4 The Reliability Fixed-Charge Location Problem

The RPMP can improve reliability only by choosing a different set of P facilities, not

by opening additional ones. In this section, we formulate the Reliability Fixed-Charge

Location Problem (RFLP), which is based on the UFLP. Since the UFLP does not

contain a limit on the number of facilities that can be built, the RFLP adds an additional

degree of freedom for improving reliability, namely, constructing additional facilities.

4.1 Formulation

The RFLP is formulated in a manner similar to the RPMP. We need one additional

parameter: fj is the fixed cost to construct a facility at location j ∈ J , amortized to the

time units used to express demands. Since the number of facilities is not known a priori

as it is in the RPMP, we must create assignment variables for levels r = 0, ..., m − 1,

where m ≡ |J |. The objectives are given by

w1 =
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

hidijYij0

w2 =
∑

i∈I

hi


 ∑

j∈NF

m−1∑

r=0

dijq
rYijr +

∑

j∈F

m−1∑

r=0

dijq
r(1− q)Yijr




The emergency facility u is handled as in the RPMP, described in Section 3.1; it has no

fixed cost (fu = 0).

The RFLP is formulated as follows:

(RFLP)

minimize αw1 + (1− α)w2 (25)

subject to
∑

j∈J

Yijr +
∑

j∈NF

r−1∑
s=0

Yijs = 1 ∀i ∈ I, r = 0, . . . , m− 1 (26)

Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . , m− 1 (27)
m−1∑
r=0

Yijr ≤ 1 ∀i ∈ I, j ∈ J (28)

Xu = 1 (29)

Xj ∈ {0, 1} ∀j ∈ J (30)

Yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . , m− 1 (31)

The formulation is identical to that of (RPMP) except:
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• Fixed costs are included in objective w1

• Constraint (4) is omitted

• The “level” index r is extended to m − 1 instead of P − 1 in summations and

constraint indices

Constraint (29) is not strictly necessary since facility u has 0 fixed cost, but including

the constraint in the formulation tightens the Lagrangian relaxation. As in (RPMP),

contstraints (31) could be relaxed to Yijr ≥ 0. Note that Theorem 1 applies to the

RFLP as well.

4.2 Solution Method

To solve (RFLP), we relax constraints (26) to obtain the following Lagrangian subprob-

lem:

(RFLP-LRλ)

minimize z(λ) = α
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

m−1∑
r=0

ψ̃ijrYijr +
∑

i∈I

m−1∑
r=0

λir (32)

subject to Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . ,m− 1 (33)
m−1∑
r=0

Yijr ≤ 1 ∀i ∈ I, j ∈ J (34)

Xu = 1 (35)

Xj ∈ {0, 1} ∀j ∈ J (36)

Yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . ,m− 1 (37)

In the objective function (32),

ψ̃ijr =





ψijr − λir, if j ∈ F

ψijr − λir −
(∑m−1

s=r+1 λis

)
= ψijr −

∑m−1
s=r λis, if j ∈ NF

(38)

The benefit γj of opening facility j is computed as

γj = αfj +
∑

i∈I

min
{

0, min
r=0,...,m−1

{ψ̃ijr}
}

. (39)

Xu is set to 1, and for j 6= u, Xj is set to 1 if γj < 0 (or if γk ≥ 0 for all k ∈ J but

is smallest for j, since at least one “real” facility (excluding u) must be open in any
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feasible solution to the problem); Yijr is set following the criteria described in Section

3.2.1.

At each Lagrangian iteration, we find an upper bound by opening the facilities that

are open in the solution to (RFLP-LRλ) and greedily assigning customers to them. In

addition, we perform an “add” and a “drop” heuristic on each solution whose objective

value is less than 1.2×UB, where UB is the best known upper bound. The add (drop)

heuristic considers opening (closing) facilities if doing so decreases the objective value.

Each heuristic is performed until no further adds or drops will improve the solution.

The subgradient optimization and branch-and-bound procedures are exactly as de-

scribed for the RPMP, except that branch-and-bound nodes are fathomed if the lower

bound at that node is within ε of the best known upper bound, if |J | (rather than P )

facilities have been forced open, or if |J | − 1 (rather than |J | − P ) facilities have been

forced closed.

4.3 A Modification

In our preliminary computational testing, we found that the subgradient optimization

procedure had difficultly converging to a tight lower bound for the RFLP. We believe

the problem results from the large number of multipliers that must be updated (nm

of them, as opposed to nP in the RPMP). To counteract this effect, we propose the

following modification of our model and algorithm. Since the probability of many facil-

ities failing simultaneously is small, ignoring the simultaneous failure of more than, say,

5 facilities may result in a very small loss of accuracy. At the same time, the reduction

in the number of multipliers may result in a very large improvement in computational

performance. Customers would only be assigned to facilities at levels 0 through 4, and

higher-level assignments would not be included either in the objective function or in

the constraints. In fact, if we interpret m as the number of levels to be assigned, rather

than as the cardinality of J , then the objective functions w1 and w2 and the formula-

tion of (RFLP) remain intact under this new modeling scheme, as does the Lagrangian

relaxation (RFLP-LRλ) and the algorithm for solving it. The emergency facility may

become irrelevant in this case, since it is generally used only when all open facilities

have failed, but it may still play a role in the solution if the emergency cost is smaller

than the cost of serving a given customer from, say, its fourth nearest facility when the
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first three have failed.

We observed similar convergence problems in the RPMP when P was large. The

same modification may be made to (RPMP) by replacing P with m (except in constraint

(4)). We have found this modification to be very effective for both problems; our

computational experience with this modification is presented in Section 5.5.

5 Computational Results

5.1 Experimental Design

We tested our algorithms on five data sets with up to 150 nodes.1 The first three

(see Daskin 1995) are derived from 1990 census data: a 49-node set consisting of the

state capitals of the continental United States plus Washington, DC; an 88-node set

consisting of the 49-node set plus the 50 largest cities in the U.S., minus duplicates; and

a 150-node set consisting of the 150 largest cities in the U.S. Demands hi are set to the

state population divided by 105 for the 49-node set and to the city population divided

by 104 for the other two. The fixed cost fj is set to the median home value in the city

for the 49- and 88-node sets and to 105 for all j in the 150-node set. The transportation

cost dij is set equal to the great-circle distance between i and j. The emergency cost θi

is set to 104 for all i.

The remaining two data sets were generated randomly. One data set consists of

50 nodes, the other consists of 100 nodes. In both cases, demands hi were drawn

from U [0, 1000] and rounded to the nearest integer, fixed costs fj were drawn from

U [500, 1500] and rounded to the nearest integer, and x and y coordinates were drawn

from U [0, 1]. Transportation costs dij are set equal to the Euclidean distance between

i and j. The emergency cost θi is set to 10 to model the situation in which losing a

customer is extremely costly.

In all five data sets, the set I of customers and the set J of facilities are equal

(i.e., every customer may become a DC). q was set to 0.05. We tested the RPMP

algorithm for P = 5, 10, and 20, as well as the RFLP algorithm, using six different

values of α. (We did not use the weighting method described in Section 3.3 in these

initial tests; see Section 5.4 for results using the weighting method.) We executed the
1All data sets may be obtained from the lead author’s web site.
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Table 2: Parameters for Lagrangian relaxation procedure.

Parameter Value

Optimality tolerance (ε) 0.001
Maximum number of iterations (nmax) at root node 1200
Maximum number of iterations (nmax) at child nodes 600
Initial value of β 2
Number of non-improving iterations before halving β 30
Minimum value of β (βmin) 10−8

Initial value for λis µid̄/10k+2

Lagrangian relaxation/branch-and-bound process to an optimality tolerance of 0.1%, or

until 600 seconds (10 minutes) of CPU time had elapsed. The algorithm was coded in

C++ and tested on a Gateway Profile 4MX desktop computer with a Pentium IV 3.2

GHz processor and 1.0 GB RAM, running under Windows XP. Parameter values for

the Lagrangian relaxation algorithm are given in Table 2. (The notation d̄ in the last

line stands for
∑

i∈I

∑
j∈J dij/|I||J |.) The number of levels included in the objective

function and constraints (m; see Section 4.3) was set to 5; the choice of m is explored

further in Section 5.5.

5.2 Algorithm Performance

Table 3 summarizes the results for the RPMP, Table 4 for the RFLP. The Overall

LB, UB, and Gap columns give the lower and upper bounds and the percentage gap,

while the columns marked Root LB, UB, and Gap give the lower and upper bounds

and the gap at the root node. The column marked # Lag Iter gives the total number

of Lagrangian iterations, # BB Nodes gives the total number of branch-and-bound

nodes, and CPU Time gives the total number of CPU seconds required. In Table 4,

the column marked # Open indicates the number of facilities opened in the optimal

solution (excluding the “emergency” facility u).

The algorithm solved 112 out of the 120 problems tested (93%) to optimality within

the 600-second limit. The algorithm produced sufficiently tight bounds at the root node

and required no branching to prove optimality for 51 (43%) of the problems. For 99 of

the problems (83%), the optimal solution was found at the root node, even if optimality

could not be proved without branching for some of these. Of the 112 problems solved

to optimality, the average percentage difference between the root-node UB and the final

UB is 0.19%, suggesting that even without branching, the Lagrangian procedure can be
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Table 3: Algorithm results: RPMP.

Overall Overall Overall Root Root Root # Lag # BB CPU
Nodes P α LB UB Gap LB UB Gap Iter Nodes Time

49 5 1.0 502233 502732 0.10% 502233 502732 0.10% 893 1 3.6
49 5 0.8 517694 518210 0.10% 517694 518210 0.10% 149 1 0.7
49 5 0.6 533158 533687 0.10% 533158 533687 0.10% 175 1 0.8
49 5 0.4 547760 548279 0.09% 547760 548279 0.09% 308 1 1.3
49 5 0.2 561877 562437 0.10% 561877 562437 0.10% 139 1 0.6
49 5 0.0 575577 576153 0.10% 575577 576153 0.10% 87 1 0.4

49 10 1.0 275430 275701 0.10% 274143 275701 0.57% 2557 7 10.8
49 10 0.8 283320 283601 0.10% 283320 283601 0.10% 592 1 2.5
49 10 0.6 291215 291501 0.10% 291215 291501 0.10% 471 1 2.0
49 10 0.4 299109 299402 0.10% 299109 299402 0.10% 776 1 3.2
49 10 0.2 306996 307302 0.10% 306996 307302 0.10% 416 1 1.7
49 10 0.0 314889 315202 0.10% 314889 315202 0.10% 334 1 1.4

49 20 1.0 113225 113330 0.09% 82862 113852 37.40% 31018 87 139.6
49 20 0.8 119543 119663 0.10% 106923 122780 14.83% 11183 27 51.6
49 20 0.6 125870 125995 0.10% 120449 128150 6.39% 15099 37 70.2
49 20 0.4 132203 132328 0.09% 128782 133784 3.88% 5454 15 24.8
49 20 0.2 138523 138661 0.10% 127997 138704 8.37% 8170 19 37.2
49 20 0.0 144783 144926 0.10% 140842 145767 3.50% 8450 21 39.3

88 5 1.0 873996 874859 0.10% 873996 874859 0.10% 436 1 4.7
88 5 0.8 900827 901706 0.10% 900827 901706 0.10% 389 1 4.2
88 5 0.6 927662 928554 0.10% 927662 928554 0.10% 103 1 1.3
88 5 0.4 954455 955402 0.10% 954455 955402 0.10% 198 1 2.2
88 5 0.2 981308 982249 0.10% 981308 982249 0.10% 269 1 3.0
88 5 0.0 1003250 1004250 0.10% 1003250 1004250 0.10% 122 1 1.5

88 10 1.0 511663 512174 0.10% 508454 512174 0.73% 4232 11 45.1
88 10 0.8 525170 525694 0.10% 524923 525694 0.15% 1349 3 13.0
88 10 0.6 538678 539215 0.10% 538376 539215 0.16% 1279 3 12.7
88 10 0.4 552186 552735 0.10% 552186 552735 0.10% 286 1 2.9
88 10 0.2 565700 566256 0.10% 565700 566256 0.10% 839 1 8.0
88 10 0.0 579190 579761 0.10% 579137 579761 0.11% 1369 3 13.5

88 20 1.0 233427 250125 7.15% 176156 263303 49.47% 55552 132 > 600.0
88 20 0.8 259784 260039 0.10% 254057 271712 6.95% 38714 93 440.4
88 20 0.6 269685 269953 0.10% 254396 275915 8.46% 7959 17 92.3
88 20 0.4 279589 279867 0.10% 273182 282220 3.31% 28058 61 340.5
88 20 0.2 289048 289330 0.10% 279108 290975 4.25% 37680 91 436.6
88 20 0.0 298422 298720 0.10% 289268 299303 3.47% 13700 29 159.5

150 5 1.0 1196980 1198160 0.10% 1196980 1198160 0.10% 260 1 8.0
150 5 0.8 1213000 1214190 0.10% 1213000 1214190 0.10% 364 1 10.8
150 5 0.6 1225190 1226190 0.08% 1225190 1226190 0.08% 190 1 6.1
150 5 0.4 1231040 1232270 0.10% 1231040 1232270 0.10% 325 1 9.7
150 5 0.2 1233870 1234390 0.04% 1233870 1234390 0.04% 312 1 9.4
150 5 0.0 1233910 1234390 0.04% 1233910 1234390 0.04% 276 1 8.5

150 10 1.0 738461 739200 0.10% 659817 739200 12.03% 8919 19 250.2
150 10 0.8 754318 755072 0.10% 749869 755072 0.69% 8663 19 243.9
150 10 0.6 766172 766938 0.10% 762862 769430 0.86% 13438 27 394.1
150 10 0.4 771397 772152 0.10% 769677 772152 0.32% 2641 5 77.5
150 10 0.2 773701 774243 0.07% 772587 774243 0.21% 2904 5 83.7
150 10 0.0 773477 774243 0.10% 773477 774243 0.10% 556 1 14.7

150 20 1.0 137992 380309 175.60% 137992 380309 175.60% 21282 50 > 600.0
150 20 0.8 349152 382366 9.51% 349152 386197 10.61% 19074 40 > 600.0
150 20 0.6 383377 383749 0.10% 375513 387837 3.28% 9586 21 295.5
150 20 0.4 387808 388180 0.10% 387791 388180 0.10% 4301 9 132.9
150 20 0.2 391763 392127 0.09% 347132 393858 13.46% 7416 17 208.0
150 20 0.0 394907 395299 0.10% 344463 397887 15.51% 9045 19 253.4

(continued on next page)
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Table 3: Algorithm results: RPMP (cont’d).

Overall Overall Overall Root Root Root # Lag # BB CPU
Nodes P α LB UB Gap LB UB Gap Iter Nodes Time

50 5 1.0 3209 3212 0.10% 3209 3212 0.10% 982 1 4.2
50 5 0.8 3261 3264 0.10% 3261 3264 0.10% 501 1 2.2
50 5 0.6 3312 3316 0.10% 3312 3316 0.10% 640 1 2.8
50 5 0.4 3364 3367 0.10% 3364 3367 0.10% 494 1 2.2
50 5 0.2 3409 3413 0.10% 3409 3413 0.10% 416 1 1.8
50 5 0.0 3455 3458 0.09% 3455 3458 0.09% 279 1 1.2

50 10 1.0 1644 1645 0.09% 723 1645 127.64% 9523 23 44.0
50 10 0.8 1687 1689 0.10% 1338 1689 26.22% 6007 13 27.3
50 10 0.6 1730 1732 0.10% 1710 1732 1.28% 2361 5 10.8
50 10 0.4 1774 1776 0.09% 1774 1776 0.09% 1043 1 4.5
50 10 0.2 1817 1819 0.10% 1783 1819 2.04% 2533 5 11.4
50 10 0.0 1861 1863 0.10% 1847 1863 0.85% 1675 3 7.4

50 20 1.0 719 720 0.10% -4852 734 — 36595 97 173.0
50 20 0.8 745 746 0.10% -1696 746 — 12550 29 58.8
50 20 0.6 772 773 0.10% -5728 789 — 19179 45 92.1
50 20 0.4 799 800 0.10% -2124 800 — 17184 41 88.2
50 20 0.2 825 826 0.10% -54 826 — 14738 33 71.5
50 20 0.0 852 853 0.10% -2757 853 — 18610 45 88.9

100 5 1.0 8351 8359 0.09% 8324 8359 0.41% 3266 7 41.1
100 5 0.8 8466 8474 0.10% 8446 8474 0.33% 2557 5 31.5
100 5 0.6 8577 8586 0.10% 8565 8586 0.24% 1414 3 17.3
100 5 0.4 8688 8697 0.10% 8683 8697 0.16% 1364 3 16.9
100 5 0.2 8800 8808 0.10% 8800 8808 0.10% 346 1 4.5
100 5 0.0 8911 8920 0.10% 8911 8920 0.10% 193 1 2.5

100 10 1.0 4858 4863 0.10% 4218 4863 15.28% 6775 17 84.7
100 10 0.8 4947 4952 0.10% 4910 4952 0.85% 2124 5 27.0
100 10 0.6 5036 5041 0.10% 5025 5041 0.31% 1651 3 20.3
100 10 0.4 5125 5130 0.09% 5125 5130 0.09% 570 1 6.9
100 10 0.2 5210 5215 0.10% 5143 5215 1.39% 3421 9 45.0
100 10 0.0 5289 5294 0.10% 5149 5294 2.80% 3456 7 45.9

100 20 1.0 27 2776 10041.40% 27 2776 10041.40% 45607 102 > 600.0
100 20 0.8 2816 2835 0.69% -384 2835 — 42301 97 > 600.0
100 20 0.6 461 2895 528.56% 461 2896 528.84% 39946 96 > 600.0
100 20 0.4 2947 2950 0.10% 1012 2955 191.88% 38700 91 574.9
100 20 0.2 3003 3005 0.07% 718 3005 318.51% 31762 71 413.2
100 20 0.0 3056 3059 0.10% 828 3059 269.48% 34386 81 475.5
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Table 4: Algorithm results: RFLP.

Overall Overall Overall Root Root Root # Lag # BB CPU
Nodes α LB UB Gap LB UB Gap Iter Nodes Time # Open

49 1.0 855959 856810 0.10% 830504 856810 3.17% 4149 11 19.2 6
49 0.8 790275 791014 0.09% 790275 791014 0.09% 201 1 1.1 6
49 0.6 707332 707982 0.09% 707332 707982 0.09% 361 1 1.8 8
49 0.4 589099 589677 0.10% 589099 589677 0.10% 524 1 3.0 10
49 0.2 404512 404903 0.10% 403946 404903 0.24% 1518 3 6.8 16
49 0.0 19285 19303 0.09% 18510 19303 4.28% 1956 5 8.1 49

88 1.0 1200700 1201880 0.10% 1200700 1201880 0.10% 394 1 5.1 9
88 0.8 1112990 1114070 0.10% 1112990 1114070 0.10% 598 1 7.8 9
88 0.6 1011980 1012970 0.10% 1011980 1012970 0.10% 736 1 9.7 10
88 0.4 871495 872364 0.10% 855355 872364 1.99% 13185 31 273.6 14
88 0.2 605380 605983 0.10% 603911 605983 0.34% 2959 7 46.0 24
88 0.0 17695 17712 0.10% 17278 17712 2.52% 2639 7 27.7 88

150 1.0 1668620 1670290 0.10% 1668620 1670290 0.10% 835 1 26.3 7
150 0.8 1546990 1548350 0.09% 1546990 1548350 0.09% 464 1 19.0 8
150 0.6 1350270 1351600 0.10% 1350270 1351600 0.10% 865 1 41.8 12
150 0.4 1094320 1095400 0.10% 1094320 1095400 0.10% 302 1 13.7 14
150 0.2 791337 792127 0.10% 791337 792127 0.10% 546 1 28.6 20
150 0.0 11116 11126 0.09% 8615 11126 29.15% 1498 3 43.2 150

50 1.0 6727 6733 0.10% 6727 6733 0.10% 818 1 3.6 4
50 0.8 6208 6214 0.10% 6208 6214 0.10% 653 1 2.9 5
50 0.6 5612 5617 0.10% 5612 5617 0.10% 927 1 4.2 5
50 0.4 4862 4866 0.09% 4844 4866 0.47% 1288 3 6.5 6
50 0.2 3558 3561 0.10% 1799 3561 97.94% 10876 27 60.3 11
50 0.0 81 81 0.10% -10676 81 — 15833 43 70.6 50

100 1.0 11482 11493 0.10% 11067 11493 3.85% 10965 27 169.7 7
100 0.8 10623 10633 0.09% 10623 10633 0.09% 522 1 8.6 8
100 0.6 9574 9584 0.10% 9387 9584 2.09% 3945 9 62.0 9
100 0.4 5025 8333 65.83% 5025 8333 65.83% 22219 50 > 600.0 11
100 0.2 3406 6231 82.94% 3406 6231 82.94% 8503 17 > 600.0 17
100 0.0 132 133 0.10% -20941 133 — 25671 71 365.7 100
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relied upon to produce good feasible solutions.

The root-node lower bound was quite weak (sometimes even negative) for some of the

problems. We believe this is due primarily to the choice of the initial Lagrange multipli-

ers, and that with additional experimentation, one could find better starting multipliers

for a given problem. Indeed, the branch-and-bound process generally improved the mul-

tipliers quickly, and all but a few of these problems were solved to optimality within the

600-second limit. For the few problems for which the branch-and-bound process exe-

cuted for the full 600 seconds without improving the bounds, the “right-hand” branch

of the tree was never explored, preventing the overall lower bound from being updated;

nevertheless, improvement was made in the lower bound in the left-hand branch.

Two trends are evident from Tables 3 and 4. First, the algorithm performs worse in

terms of both gap sizes and CPU time when P is large. This is not surprising since these

problems have many more feasible solutions, and finding good Lagrange multipliers can

be particularly difficult. Second, the algorithm often produces weak bounds when α = 1.

This is surprising at first since α = 1 is the “easy” case—the pure PMP (or UFLP)

problem. However, these pure problems have many extraneous variables and constraints;

the extra variables have no bearing on the objective function, leading to a large number

of optimal solutions that are difficult to prove optimal. Location problems with highly

regular cost structures (e.g., many customers are equidistant from many facilities) are

well known to be difficult to solve. Moreover, the poor performance when α = 1 is not

a problem since good algorithms already exist for the classical PMP and UFLP.

Finally, we note that, not surprisingly, the number of facilities opened in optimal

solutions to the RFLP increases as α decreases, since for small α the emphasis is on

reliability more than operational cost. In the extreme case in which α = 0, the fixed

costs are not included in the objective function at all, and the resulting solution is

trivial: all facilities are open.

5.3 CPLEX Performance

To demonstrate the difficulty in solving (RPMP) and (RFLP) using an off-the-shelf IP

solver, we solved an instance of each problem using CPLEX 8.1. We coded (RPMP) and

(RFLP) in AMPL and solved the 50-node Euclidean data set using the same computer

described in Section 5.1. All CPLEX options were set to their default values, except
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Table 5: CPLEX performance.

LR CPLEX LR CPLEX # Simplex # BB
Problem α Time Time Obj Obj Iter Nodes

RPMP (P = 10) 1.0 44.0 4.5 1645 1645 5017 0
0.8 27.3 > 1800.0 1689 1689 118568 5
0.6 10.8 > 1800.0 1732 1732 192730 9
0.4 4.5 > 1800.0 1776 1776 98591 0
0.2 11.4 > 1800.0 1819 1819 121438 2
0.0 7.4 > 1800.0 1863 1863 307822 117

RFLP 1.0 3.6 32.2 6733 6734 11487 0
0.8 2.9 79.0 6214 6214 39009 0
0.6 4.2 151.5 5617 5618 46791 0
0.4 6.5 101.1 4866 4867 38104 0
0.2 60.3 > 1800.0 3561 4079 47498 0
0.0 70.6 8.0 81 81 2975 0

that we imposed a maximum time limit of 1800 seconds (30 minutes). We tested six

values of α for each problem. P was set to 10 for the (RPMP) instances. The results

are reported in Table 5. The columns labeled LR Time and LR Obj indicate the CPU

time and objective value returned by our Lagrangian relaxation algorithm (reproduced

from Tables 3 and 4), while those labeled CPLEX Time and CPLEX Obj indicate the

corresponding values for CPLEX. The last two columns report the number of simplex

iterations and branch-and-bound nodes as reported by CPLEX.

CPLEX required more time than our Lagrangian algorithm to solve 10 of the 12

problems tested, and for half of the problems, CPLEX could not prove optimality within

the 30-minute limit, although CPLEX did find an optimal or near-optimal solution for

all but one of the problems. CPLEX seemed to have an easier time solving the RFLP

than the RPMP, solving 5 of the 6 RFLP problems without branching. (This is the

result of CPLEX’s pre-processing and cut-generation features; it does not mean that

the LP relaxation has integer optimal solutions. For example, the RFLP with α = 0.6

has an optimal objective value of 5617, while its LP relaxation has an optimal objective

value of 5598.) This discussion suggests that CPLEX is not a reliable tool for solving the

problems at hand, motivating the development of the Lagrangian relaxation algorithm

presented above.

5.4 Tradeoff Curves

We constructed the tradeoff curve for the RFLP using the 49-node data set as described

in Section 3.3; the results are pictured in Figure 3. The horizontal axis plots the UFLP
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cost (objective 1) while the vertical axis plots the expected failure cost (objective 2).

Each point on the curve represents a different solution; the optimal UFLP solution

(found by solving (RFLP) with α = 1) is the left-most point on the curve. The steep-

ness of the left part of the curve indicates that large improvements in reliability can

be attained without large increases in UFLP cost to improve reliability. The 10 left-

most solutions on the curve are listed in Table 6, along with their relationship to the

UFLP solution and the number of facilities open in the solution. Decision-makers may

be reluctant to undertake large increases in UFLP cost, but they may be willing, for

example, to expend 7% more to reduce expected failure cost by 27%, as in solution 4.

The points at the right of the tradeoff curve are unlikely to be of much interest, as they

represent solutions in which nearly all of the facilities are open; they have extremely

low failure costs but are very expensive to implement. In general, we find that the left

portion of the tradeoff curve is quite steep, indicating that substantial improvements in

reliability can be attained with minimal increases in operational cost.

Figure 3: RFLP tradeoff curve for 49-node data set.
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The tradeoff curve in Figure 3 was constructed assuming all facilities are failable.

Firms may be interested in knowing how the tradeoff curve changes if some of the

facilities in J are non-failable. This may help firms make decisions about which contracts

should be shored up or which DCs should be owned in-house, for example. Figure 4
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Table 6: First 10 solutions in curve: RFLP.

Soln Obj 1 Obj 2 % Increase Obj 1 % Decrease Obj 2 # Locations

1 856810 532199 — — 7
2 860078 514758 0.4% 3.3% 7
3 883656 460699 3.1% 13.4% 8
4 919203 391149 7.3% 26.5% 9
5 946914 356139 10.5% 33.1% 10
6 984969 326149 15.0% 38.7% 11
7 1014350 306754 18.4% 42.4% 12
8 1062410 275649 24.0% 48.2% 13
9 1104380 250493 28.9% 52.9% 14
10 1151970 226437 34.4% 57.5% 15

contains two tradeoff curves, the one in which all facilities are failable (discussed earlier)

and another in which 25 of the 49 facilities, chosen randomly, are designated as non-

failable. The inclusion of non-failable facilities has the effect of shifting the tradeoff curve

favorably toward the origin. (In addition, problems with more non-failable facilities

generally produce tighter bounds and require less computation time.)

Figure 4: Shifting tradeoff curve.
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A natural question to ask is, how many non-failable facilities need to be included

in the set of potential facility sites to achieve a satisfactory level of reliability? Figure

5 addresses this question by plotting the decrease in objective function value as the

number of non-failable facilities increases, using the RFLP and the 49-node data set

with α = 0.8 and q = 0.10. In the lower curve (marked “Last Solution”), the non-

failable facilities were selected from the previous solution. This curve represents how
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the objective function might change if the firm could make any facilities that it likes

non-failable. In the upper curve (marked “Random”), the non-failable facilities are

chosen randomly. This represents the case in which the firm has no control over which

facilities are non-failable. Note that in both cases, the horizontal axis plots the number

of non-failable facilities that are in J ; not all of these will necessarily be chosen in the

solutions. From the chart it is apparent that only a few non-failable DCs are necessary

to make the solution as a whole substantially more reliable. For our client, the durable

goods manufacturer, this means that the company needs to own only a few DCs in-house

to make the system perform well when third-party distributors fail. It also allows the

firm to threaten to cancel contracts with badly performing distributors, since the firm

can credibly claim to be able to operate without the distributor, at least in the short

term, while they establish a contract with a new distributor. This is an important issue

in contract negotiation and enforcement.

Figure 5: Changing the number of non-failing facilities.
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Table 7: Sensitivity to m.

Problem m Root Gap # Lag Iter # BB Nodes CPU Time Time/Iter

RPMP 3 0.10% 391 1 1.3 0.003
RPMP 5 0.10% 592 1 2.7 0.005
RPMP 7 0.88% 2018 5 10.9 0.005
RPMP 9 1.24% 7185 19 44.4 0.006
RPMP 11 1.11% 6445 17 46.7 0.007
RFLP 3 0.07% 120 1 0.5 0.005
RFLP 5 0.09% 201 1 1.1 0.006
RFLP 8 0.98% 4102 11 31.5 0.008
RFLP 12 0.64% 4233 11 41.0 0.010
RFLP 20 0.66% 4279 11 57.4 0.013
RFLP 50 0.54% 3996 9 102.1 0.026

5.5 Number of Levels

In this section we briefly explore the impact of changing the number of levels, m, as

discussed in Section 4.3. We solved the RPMP with P = 10 and the RFLP using the

88-node data set, α = 0.8, and q = 0.05, testing various values of m. The results

are presented in Table 7. (Note that the last entry for each problem corresponds to

the case in which we do not use the modification suggested in Section 4.3. Since the

emergency facility has been added to the problem, m = 50 for the RFLP and m = 11

for the RPMP since |J | and P increased by 1 when the emergency facility was added.)

The column marked Time/Iter gives the average number of CPU seconds spent on

each Lagrangian iteration. From the table it is apparent that using larger values of m

generally results in larger root-node optimality gaps, more Lagrangian iterations, more

branch-and-bound nodes, and more time spent on each iteration (due to loops of the

form “for r = 0, . . . , m − 1”). It is worth pointing out that in all cases, regardless of

the value of m, the algorithm returned the same set of facility locations (one set for the

RPMP and one for the RFLP), indicating that the computational improvement came

at no loss of solution accuracy, though of course we cannot prove that this will hold in

general.

6 Conclusions

In this paper we presented two new models that incorporate reliability into classical

facility location problems. These models arose from a realization that supply chains are

vulnerable to disruptions of all sorts, and that facility location decisions can be critical



6 CONCLUSIONS 33

in reducing the impact of these disruptions. We formulated reliability models based

on the P -median problem and the uncapacitated fixed-charge location problem, called

the RPMP and RFLP, respectively. Key to our formulation is the concept of “backup”

assignments, which represent the facilities to which customers are assigned when closer

facilities have failed. In both models, the expected transportation cost, taking into

account the costs that result from facility failures, is included in the objective function.

The tradeoff of interest is between the operating cost (the traditional PMP or UFLP

objective function) and the expected failure cost. In a subsequent paper, we will address

the tradeoff between operating cost and the maximum failure cost over all facilities

in the solution. Both models are solved using Lagrangian relaxation, with promising

results. We demonstrated empirically that the interesting portion of the tradeoff curve

is steep, indicating that reliability can be drastically improved without large increases

in operating costs. This is a critical issue for decision-makers who may be reluctant to

expend greater sums for sure in order to hedge against possible failures in the future.

For large values of P in the RPMP, and for the RFLP, straightforward application

of our algorithm yielded large gaps at the root node. We proposed a modification that

entails assigning facilities only to a pre-specified level m (we used m = 5). This mod-

ification tightens these bounds considerably with little or no loss of accuracy. In our

computational tests, we found that the choice of m has a large impact on computational

performance but no impact on the solution found. For different values of m, the ob-

jective function for the solutions differed slightly since higher-level terms are excluded

for smaller values of m. However, we found this difference to be less than 0.02% in all

cases. This addresses an important question about the bounds produced by our algo-

rithm. In particular, when a Lagrangian relaxation algorithm produces lower bounds

that are loose, one always wants to know whether this is the theoretical lower bound

(the maximum value of z(λ) in (20), regardless of whether we can find it in practice) or

simply a practical lower bound (the bound actually produced by a computer implemen-

tation) that might be improved by a different multiplier updating method or different

choices of algorithm parameters. Consider the last entry in Table 7. When we began

testing, we assumed that the theoretical bound for this problem was 0.54% away from

the optimal solution, or close to it. When m = 3, however, we get a lower bound that

is only 0.07% from the upper bound, and since this upper bound is very close (within
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0.02%, as discussed above) to the upper bound when all assignment levels are included

in the objective function, we can be confident that the theoretical lower bound is no

more than 0.1% from the optimal solution. This suggests that the size of the practical

bounds is to some extent determined by our implementation of the multiplier updating

routine, and not by the theoretical bound, and that we might tighten this bound even

further by improving this routine or by choosing better initial multipliers. (This is es-

pecially important for the larger problems tested, which resulted in bounds significantly

larger than 0.1% at the root node.)

We also note that our upper-bound heuristic and improvement routines are highly

effective, yielding the optimal solution at the root node in 99 of 120 problems tested

(83%), including all of the RFLP problems, often finding it within the first 100 iterations

or so. This suggests that very good solutions can be found very quickly, if a theoretical

guarantee of optimality is not required.

The main drawback of our models is the assumption that failable facilities all have the

same probability q of failing. This assumption is necessary to allow us to compute the

probability that a customer is served by its level-r facility without explicitly knowing

its lower-level assignments, only that there are r of them and that they are failable.

Increasing the number of probabilities results in an exponential increase in the number of

terms in the objective function, since one term is required for each possible combination

of the failure probabilities of the r lower-level assignments. We intend to study this issue

in future research to find an objective function that can accommodate multiple failure

probabilities.

Another limitation of our models is the assumption that the facilities are uncapac-

itated. While this is a common assumption made in facility location models, it may

be unrealistic in practice. In the reliability context, customers of failed facilities can

only be assigned to backup facilities if those facilities have enough excess capacity to

accommodate the additional demand. This makes the capacitated case significant from

a practical perspective; it also makes the capacitated model more complex than capac-

itated versions of classical models. In any case, the capacitated model is another topic

worthy of future study.

Finally, we note that if decision makers are interested only in total expected cost, not

in the tradeoff between the PMP or UFLP objective and the expected failure cost, the
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two objectives can easily be replaced with a single objective representing the expected

cost. For the RPMP, this simply means setting α = 0. For the RFLP, one would add

the fixed cost term to w2 and then set α = 0. In either case, the solution method

remains the same. Some decision makers may prefer these formulations as they address

the common objective of minimizing long-run cost. We have chosen to formulate the

problems as we did because the multi-objective framework provides greater flexibility;

more importantly, it allows us to demonstrate, via tradeoff curves, the large improve-

ments in reliability that are possible with only small increases in the objectives under

which firms have historically evaluated facility location decisions.

7 Acknowledgments

This research was supported by NSF grants DMI-9812915 and DMI-0223277. This

support is gratefully acknowledged. The authors would also like to thank the anonymous

referees, whose comments improved the paper significantly.



REFERENCES 36

References

[1] Ball, M. O. 1979. Computing network reliability. Operations Research 27, no. 4:

823-838.

[2] Ball, M. O. and F. L. Lin. 1993. A reliability model applied to emergency service

vehicle location. Operations Research 41, no. 1: 18-36.

[3] Berman, O., R. C. Larson, and S. S. Chiu. 1985. Optimal server location on a

network operating as an M/G/1 queue. Operations Research 33, no. 4: 746-771.

[4] Berman, O. and D. Krass. 2001. Facility location problems with stochastic demands

and congestion. In Facility Location: Applications and Theory, ed. Zvi Drezner and

H. W. Hamacher. New York: Springer-Verlag. pp. 331-373.

[5] Bienstock, D., E. F. Brickell, and C. L. Monma. 1990. On the structure of minimum-

weight k-connected spanning networks. SIAM Journal on Discrete Mathematics 3,

no. 3: 320-329.

[6] Bundschuh, M., D. Klabjan, and D. L. Thurston. 2003. Modeling robust and reli-

able supply chains. Optimization Online e-print.

[7] Church, R. L. and C. ReVelle. 1974. The maximal covering location problem. Papers

of the Regional Science Association 32: 101-118.

[8] Cohon, J. L. 1978. Multiobjective Programming and Planning. New York: Academic

Press.

[9] Colbourn, C. J. 1987. The Combinatorics of Network Reliability. New York: Oxford

University Press.

[10] Daskin, M. S. 1982. Application of an expected covering model to EMS system

design. Decision Sciences 13: 416-439.

[11] Daskin, M. S. 1983. A maximum expected covering location model: Formulation,

properties and heuristic solution. Transportation Science 17, no. 1: 48-70.

[12] Daskin, M. S., K. Hogan, and C. ReVelle. 1988. Integration of multiple, excess,

backup, and expected covering models. Environment and Planning B 15, no. 1:

15-35.

[13] Daskin, M. S. 1995. Network and Discrete Location: Models, Algorithms, and Ap-

plications. New York: Wiley.



REFERENCES 37

[14] Eiselt, H. A., M. Gendreau, and G. Laporte. 1996. Optimal location of facilities on

a network with an unreliable node or link. Information Processing Letters 58, no.

2: 71-74.

[15] Fisher, M. L. 1981. The Lagrangian relaxation method for solving integer program-

ming problems. Management Science 27, no. 1: 1-18.

[16] Fisher, M. L. 1985. An applications oriented guide to Lagrangian relaxation. In-

terfaces 15, no. 2: 10-21.
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