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ABSTRACT

Ocean wave energy represents a large untapped source of en-
ergy in the U.S., with the advantage of being in close proximity
to the coastal load centers in the U.S., which makes the transmis-
sion of the generated energy more efficient than, say, wind farms
located in the remote geographical center of the country. Wave
energy is more predictable and stable than wind and solar energy.
Optimal harvest of this potentially vast source of renewable en-
ergy through arrays of multiple wave energy converters (WECs),
known as wave farms, is an important operational and quantita-
tive problem. The problem of efficiently locating wave energy
converter (WEC) devices within a wave farm can have a signifi-
cant impact on the total power of the farm due to the interactions
among the incident ocean waves and the scattered and radiated
waves produced by the WECs. However, ocean environments are
stochastic, and these uncertainties can have a substantial degrad-
ing effect on the power output of the wave farm. Thus, we need
optimization models that design layouts that perform well, even
as the sea state changes.

The wave energy converter location problem (WECLP) for
single deterministic sinusoidal waves has been studied in the lit-
erature [1-8]. However, there is little research devoted to the
design of wave farms under uncertainty and in real ocean envi-
ronments [5, 6]. In the present work, we study the problem of
determining the optimal layout of WECs in an array under un-
certainty, from an optimization and modeling point of view.

We propose modeling approaches for mitigating the effect
of uncertainties assuming single component but stochastic sinu-
soidal waves, as well as irregular waves with a spectral represen-
tation, under a modification of the performance measure known
as the g-factor. We formulate the problems and study the proper-
ties and theoretical characteristics of the proposed models for a
simple 2-WEC case.
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1 Introduction

In order to have efficient and reliable power output, we need
to study the effect of stochastic ocean environments on the de-
sign and performance of a wave farm. Depending on the inter-
action between waves and WECs in the ocean, a wave farm’s
configuration or layout can have a significant effect on the power
output of the farm. Generally, when the incident wave (i.e., the
incoming ocean wave) hits a WEC, it produces scattered and
radiated waves that interact with each other and with the inci-
dent wave. Downstream WECs experience the combined wave
and, in turn, produce their own scattered and radiated waves.
Many works in the literature study the optimal configuration of
a wave farm under deterministic ocean environments in order to
maximize the power produced. These works provide a theoret-
ical background for the modeling, analysis and optimization of
a wave farm’s layout [1-4,9]. In these works, WECs absorb
mechanical power from the waves and convert it to electrical
power [2-4,7,8,10, 11]. There are two common approaches in
the literature to compute the absorbed mechanical power, or sim-
ply “power,” from a wave farm, an exact method and the point-
absorber approximation. The exact approach requires a bound-
ary element code such as WAMIT [12] which is computationally
expensive. Instead, by considering the assumption of linear wave
theory, we can use the point-absorber approximation in our for-
mulation, where the devices are assumed to be small enough with
respect to the wavelength of the incident waves that the scattered
waves can be neglected. It is common in the literature to op-
timize the g-factor, which is the ratio between the total power
absorbed by N WECs in a wave farm to the power that would be
absorbed by N WECs acting in isolation:
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where P, is the power absorbed by the nth device in the array and
Py is the power absorbed by a single device acting in isolation
(a constant). The total mean power absorbed by an array of N
identical WEC:s oscillating in one mode of motion, such as heave,
under the standard assumptions of linear wave theory is given
by [2,3]:
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where U is a column vector of complex velocity amplitudes (de-
termined from the equations of motion); X is a column vector of
complex exciting forces (i.e., forces acting on a floating system
due to the waves) of both the incident and scattered waves; B is
a matrix of real damping coefficients (i.e., parameters that quan-
tify the reduction of oscillations in an oscillatory system); and an
asterisk denotes complex conjugate transpose. For fixed WEC
locations, equation (2) can be interpreted as a control problem
with control variables in vector U. Although, this problem can
be solved in closed form, the optimal control vector U may not
be attainable. However, our interest is in optimizing the WEC
locations, in which case it is convenient to use an approximation
for the optimal absorbed power.

Under the point-absorber approximation and assuming that
the incident waves consist of a single sinusoid, characterized
by the wave angle 8 and wavenumber k = 27/A, where A is the
wavelength, the optimal g-factor in (1) has an analytical expres-
sion [3]:
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where L is an N-dimensional column vector with L, =
elkdmcosB=am) and J is an N x N matrix with Jy, = Jo(kdm);
i= V-1 ; Jo is the Bessel function of the first kind with order
0; and d,,;;, is the distance between device m and device n.

The g-factor defined in (3) is a nonconvex function of the
WEC locations. See Figure 1, which plots the g-factor vs. the
location of device 1 in the 5-device layout SSA given by [8]
(blue circles in Figure 3) assuming the incident wave angle 8 = 0;
the location is plotted in Cartesian coordinates scaled by the
wavenumber k.

The methods and analysis provided thus far are based on
deterministic ocean states; however, ocean environments are
stochastic, and these uncertainties can have a substantial degrad-
ing effect on the power of the wave farm. In fact, many authors
(e.g., [1,2,5-8,10]) have lamented the fact that a wave farm opti-
mized for a particular wave environment (wave heading angle
or wavenumber) performs quite poorly when the environment
changes just a little. For example, the best-known 5-device lay-
out (Figure 3) in [8] performs quite well if the incident waves

FIGURE 1. g-factor vs. location of device 1 in 5-WEC layout.

arrive at an angle of 8 = 0, but the performance degrades almost
immediately as 8 changes; see the solid blue curve in Figure 2.
Thus, we need optimization models that design layouts that per-
form well, even as the sea state changes. We propose stochastic
and robust models for mitigating the effect of uncertainty on the
total power by considering stochastic single component ocean
waves, and also consider an average interaction factor for spec-
tral wave climates.

In the first model, we maximize the expected value of the
g-factor when the wave direction, S, is stochastic with known
distribution:
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where ¢(f) is written so as to stress that 8 is changing. This is an
example of a stochastic optimization model. The second model
maximizes the worst-case solution over a range of 8 values and
is an example of robust optimization:
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where 3; and 3, are lower and upper bounds for the range of
wave direction, . Figure 2 plots g vs. B/n for 5-WEC solu-
tions found by optimizing these two objectives using a genetic
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FIGURE 2. g-factor vs. 8/m, for 5-WEC Layout that ® Maximize ¢
assuming § = 0, ® Maximize ming{q} assuming 8 € [-n/8,7/8], and @
Maximize Eg[q] assuming 8 ~ N(0,(%)?).

algorithm [6]. The red curve plots the stochastic solution, which
maximizes E[g(B)], while the green curve plots the robust so-
lution, which maximizes min{g(8)}. Both solutions are signifi-
cantly more robust than the deterministic solution, in the sense
that they perform at g > 1 for a much broader range of g values.
Of course, this comes at some expense, since g(8 = 0) is smaller
for the stochastic and robust solutions than for the deterministic
solution, as is typical for optimization under uncertainty. The
stochastic and robust solutions are also worse in the tails, but this
is of less concern since the tails represent unrealistic wave angles
such as waves headed out to sea from shore.

Finally, we use an expression for the average g-factor for
spectral wave climates, similar to the average interaction fac-
tor proposed by [10]. Real ocean waves are of stochastic na-
ture and can be considered as a superposition of a number of
regular waves each with their own phase, frequency, amplitude
and direction of propagation; these components are random. We
consider random ocean waves as linear superpositions of regular
wave components, where each component, indexed by p, has a
wave amplitude, A,, a wavenumber, kj, a wave direction, 3,, an
angular frequency, w, (wf, = gkptanh(k,h), where h is the water
depth and g is gravity acceleration), and a phase ¢,. We dis-
cretize the wave spectrum by assuming that the ranges of pos-
sible values of the wavenumber and wave direction are divided
into equal intervals of length Ak and A, respectively. Then the
average interaction factor is given by:
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where ¢ (k) is the group velocity and S (w, ) is the wave energy
spectrum.
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FIGURE 3. Best known configurations for a wave farm with 5 WECs
under different optimization problems.

2 Max-Min Optimization Model

In the max-min (robust) model, we reduce the effect of un-
certainty in the wave heading, 8, by maximizing the worst case
output. For convenience, we work with the expanded form of the
g-factor. One can show that

N N-1 N
_ 1 :E: -1 z : z -1
q(ﬁ) - ﬁ n=1 Jnn ’ n=1 m=n+1 2Jnm COS(anm(ﬂ)) ’ (7)

where z,,,(8) = d,cos(B — a;) — dy,cos(B— ay). Here, if 8, —
B = n and kd, > n for n = 1,2,---,N, the minimum value
of 2J,,} cos (kd, cos(8 - a,,) — kd, cos(B— a,)) is equal to -2,
when J,,, > 0, and is 2J,,) otherwise. After further simplifica-
tion, the max-min optimization problem reduces to:
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The condition B, —3; > m means that the wave angle can
vary by more than &, which is unrealistic. However, without
this assumption, the optimization model is much more difficult
to solve, at least analytically. Therefore, for the sake of analysis,
we assume that 8, —8; > m holds and consider a 2-WEC array.
For N =2, without loss of generality we put the first device at
the origin and the second one at the point (d, @) in polar coordi-

nates. Figure 4(a) shows the objective function value, %,



versus the value of kd. In this figure, the blue line is the objec-
tive function, %, and the green line is the Bessel function,
Jo(kd). The fact that ¢ < 1 implies that the two WECs together
can never perform better than if they were separated; that is, there
is no synergy between the devices. This is not a desirable prop-
erty of wave farms. However, for more realistic situations with
Bu—Pi < 7, the optimal max-min objective will be greater than
one.

The optimal value of the max-min g-factor, calculated by
discretization of the search space and enumeration, as a function
of B, —B; is depicted in Figure 4(b).

3 Maximum Expected Value Problem

As we observed, the solution of the max-min optimization
problem can be conservative. Thus, we may use the other opti-
mization model, the maximum expected value model. However,
this problem is analytically challenging to study and in some
cases obtaining a closed form solution is impossible. For the
expected value optimization problem, we have:
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In this problem, computing Eg [cos(kzun(B))] analytically is im-
portant but difficult. To get some insight into this problem, we
start by analyzing the expected value problem for the 2-WEC
array. In this case, the expected value optimization problem is:
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Proposition 1. Suppose B is normally distributed with a mean of
0 and a variance of o*. Then if the first WEC is located at (0,0)
and the second at (d, @), we have
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From Proposition 1, we observe that as the variance of 8
increases, the expected value of the g-factor converges to one,
which is the optimal value for the max-min model for large
ranges of 8. This indicates that the mathematical models tends to
provide conservative solutions as the uncertainty increases.

Optimal layouts for the various problems discussed in this
section for a 5-WEC instances are shown in Figure 3.
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FIGURE 4. Max-min solution for 2-WEC problem.

4 Average g-Factor for Spectral Wave Climate

Real ocean waves are random and irregular, but there is enor-
mous historical data and measurements for the sea surface eleva-
tion. These statistical measurement would help in estimating the
wave spectrum. However, if we design the wave farm based on
the significant wavenumber and wave direction, we lose farm ef-
ficiency as the ocean environment changes. Figure 5 plots the
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FIGURE 5. Wave farm performance designed for significant
wavenumber k = 0.2.

g-factor of the 5-WEC farm optimally designed for significant
wavenumber k = 0.2. As depicted, the farm performance is not
satisfactory for a wide range of wavenumbers, even where the
wave energy spectrum is high. (We note that the wave energy
spectrum curve is scaled up by a constant.)

This motivates the need to design wave farms that perform
well over the range in which the wave energy spectrum is high.
We consider an omni-directional wave spectrum and use the
modified g-factor in (6). Hence, the WECLP optimization prob-
lem for real random ocean waves is:
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Figure 6 plots the objective function in (11) for a wave farm with
N =2 WECs, where one WEC is fixed at the origin. As depicted,
the objective function is nonconvex, thus we need to develop
heuristic algorithms in order maximize the average g-factor.

Figure 7 plots the wave energy spectrum for significant
wavenumber k = 0.2, against the g-factor in (3) and (6) for a best
solution obtained from problem (11) for N =5 based on a random
search heuristic.

FIGURE 6. g vs. location of device 2 in 2-WEC layout.
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FIGURE 7. Wave farm performance designed for significant
wavenumber k = (.2 using the average interaction factor.

5 Conclusion

In this work, we develop two optimization models for the
wave energy converter location problem under uncertainty. We
propose models for ocean environments in which the wave head-
ing, B, is stochastic. We prove structural properties of the max-
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min model and the maximum expected value model for a 2-WEC
layout and observe that the optimal distance between the two de-
vice decreases as uncertainty increases. Moreover, we provide a
performance measure for the design of the wave energy farms in
irregular ocean waves and show its importance.

For future research, it is necessary to generalize the max-
min and the maximum expected value results for layouts with
N >3 devices, and considering stochastic wavenumber, k. More-
over, developing efficient and effective optimization algorithms
to solve the max-min model, the maximum expected value model
and the average g-factor for spectral wave climate is important
and should be studied.
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