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ABSTRACT

We present models and algorithms for choosing optimal lo-
cations of wave energy conversion (WEC) devices within an ar-
ray, or wave farm. The location problem can have a significant
impact on the total power of the farm due to the interactions
among the incident ocean waves and the scattered and radiated
waves produced by the WECs. Depending on the nature of the
interference (constructive or destructive) among these waves, the
wave energy entering multiple devices, and thus the power out-
put of the farm, may be significantly larger or smaller than the
energy that would be seen if the devices were operating in isola-
tion. Our model chooses WEC locations to maximize the perfor-
mance of a wave farm as measured by a well known performance
measure called the g-factor, which is the ratio of the power from
an array of N WECs to the power from N WECs operating in-
dependently, under the point absorber approximation. We prove
bounds for the g-factor based on the eigenvalues of an impor-
tant data matrix, and provide an analytical optimal solution for
the 2-WEC problem. We propose an iterative heuristic for the
general problem and discuss the WEC location problem under
uncertainty.

INTRODUCTION

In this paper, we study optimization models and algorithms
for the problem of finding an optimal configuration for an array
of wave energy converter (WEC) devices. Wave energy repre-
sents a large untapped source of energy in the world. According
to the Electric Power Research Institute [1], the total potential
wave energy resource along the U.S. continental shelf edge is
estimated to be 1,170 TWh per year, which is almost one third
of the annual electricity consumption in the U.S. Wave energy is
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more predictable and stable than wind and solar energy. How-
ever, uncertainties are still present and need to be investigated
and mitigated in order to optimize the power output from wave
energy systems.

A wave farm’s configuration or layout can have a significant
effect on the power output of the farm, depending on the nature
of the interference (constructive or destructive) among the inci-
dent ocean waves and the scattered and radiated waves produced
by the WECs. It is therefore important to consider the hydrody-
namic interactions when locating the devices. This problem is
the focus of the present work. For the sake of tractability, and
following the existing literature on the WEC layout problem, we
consider a simple model of the ocean environment that assumes
the incident waves are regular (sinusoidal) waves in water of infi-
nite depth; we also simplify the power calculations by employing
the point-absorber approximation. In the point absorber approx-
imation, the devices are assumed to be small enough with respect
to the wavelength of incident waves that the scattered waves can
be neglected. Even with these simplifying assumptions, the g-
factor is a highly nonlinear, nonconvex function of the WEC lo-
cations. See Figure 1, which plots the g-factor vs. the location
of device 1 in the 5-device layout S5A given by [2] assuming
B = 0; the location is plotted in Cartesian coordinates scaled by
the wavenumber k.

The first study related to wave farm layout is that of Budal
[3], who investigates the power absorption of a system of mul-
tiple identical interacting bodies under the assumptions of linear
wave theory. By assuming one mode of motion and equal ampli-
tudes, [3] simplifies the calculations using the point-absorber ap-
proximation and provides the optimal power absorption. Falnes
[4] and Evans [5] independently modify the assumption of identi-
cal motion amplitudes for oscillating devices and provide the op-
timal power absorption. [6] studies the hydrodynamic aspects of
a system of interacting WEC devices and summarizes the known
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FIGURE 1: ¢g-FACTOR VS. LOCATION OF DEVICE 1 IN 5-WEC
LAYOUT.
2.8+
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mathematical results for both heaving and surging devices in an
array of interacting devices. These papers provide the theoretical
background for modeling the power absorbed by interacting bod-
ies in an array. They derive formulations for the optimal power
absorption characteristics of an array of interacting devices under
the point-absorber approximation and provide expressions for the
g-factor to measure the performance of wave arrays. The g-factor
is the ratio of the total power absorbed by the array to that of the
same number of devices in isolation; it captures the interaction
effect of the array configuration. The g-factor is, essentially, the
objective function of the location problem studied by these refer-
ences and by our own models.

The papers cited thus far do not discuss optimal configura-
tion of the wave farm or propose algorithms for choosing layouts
to maximize the g-factor. In contrast, [7] considers devices with
simple geometry (e.g., spheres) laid out in simple arrangements
(e.g., rows) and concludes that the spacing among devices has
a larger impact on ¢ than the device geometry. Fitzgerald and
Thomas [2] appear to be the first to consider general configura-
tions of WECs in the plane. They employ the small-body ap-
proximation [8, 9] rather than the point-absorber approximation
and solve the resulting problem using a sequential quadratic pro-
gramming (SQP) solver with multiple manually chosen starting
points. Cruz, et al. [10] consider a few fixed layout strategies
in the context of evaluating control strategies; they do not solve
a layout-optimization problem. Child and Venugopal [11] con-
sider the layout problem for WECs with simplified geometries
under the exact g-factor calculation. They argue it is advanta-
geous for each device to be located at the intersection points of
certain parabolas centered at the other devices. They use this
to develop a heuristic they call the Parabolic Intersection (PI)
method, which they find is less accurate but faster than a ge-

FIGURE 2: ¢-FACTOR VS. B/x, FOR 5-WEC LAYOUTS THAT @
MAXIMIZE g ASSUMING g = 0, ® MAXIMIZE ming{q} ASSUMING
Be[-n/8,x/8], AND @ MAXIMIZE Eg[q] ASSUMING 8 ~ N(0,(%)?).
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netic algorithm (GA) that they also introduce. However, to com-
pute the g-factor exactly requires a boundary element method
code such as WAMIT [12] and is therefore computationally pro-
hibitive within an optimization context.

From an optimization point of view, there is still a gap in
the literature, as the existing algorithms to maximize the g-factor
appear to be relatively slow and inaccurate. Moreover, the main
focus of the current literature is on deterministic ocean states,
even though the uncertainties in the sea environment can have a
substantial degrading effect on the power output. In fact, many
authors (e.g., [2, 3, 11, 13]) have lamented the fact that a wave
farm optimized for a particular wave environment (wave heading
angle or wavenumber) performs quite poorly when the environ-
ment changes just a little. For example, the best-known 5-device
layout [2] performs quite well if the incident waves arrive at an
angle of 8 =0, but the performance degrades almost immedi-
ately as 8 changes; see the blue curve in Figure 2. In the latter
part of this paper, we discuss the WEC location problem under
uncertainty. Our results demonstrate that significantly more ro-
bust solutions can be obtained by maximizing either the expected
or minimum value of the g-factor; see the red and green curves
in Figure 2. To our knowledge, this is the first demonstration of
this important fact, which contradicts the conventional wisdom
that the sharp drop off in g depicted in the blue curve in Figure 2
is inevitable, and that most “good” layouts will perform at g < 1
if B differs from the angle assumed during the optimization.

THEORETICAL BACKGROUND

For an array of N identical WECs oscillating in one mode
of motion, such as heave, the total mean power absorbed by the
system under the standard assumptions of linear theory is given
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by [3,5]:
1 * * 1 *
P:Z(U X+X U)_EU BU, €))

where U is a column vector of complex velocity amplitudes (de-
termined from the equations of motion); X is a column vector of
complex exciting forces (i.e., forces acting on a floating system
due to the waves) of both the incident and scattered waves; B is
a matrix of real damping coefficients (i.e., parameters that quan-
tify the reduction of oscillations in an oscillatory system); and
an asterisk denotes complex conjugate transpose. The first term
in (1) represents the power absorbed from the incoming waves,
while the second represents the power lost to the radiated waves
created by oscillating bodies.

If the WEC locations are fixed, then (1) may be maximized
over the control variables U, and the maximum power is [5]:

1
Poax = §X*Bflx, )

which is attained when U = %B‘IX . The expressions for power
in (1) and (2) represent the mechanical power absorbed by the
WEC array, which, as is typical in the literature, we use as a
proxy for the electrical power output.

The expression in (2) gives the optimal power as a function
of the control variables for fixed WEC locations. We wish to op-
timize the locations in order to maximize (2). Unfortunately, to
calculate P, in (2) requires calculation of the so-called hydro-
dynamic coefficients in B and X. Since these coeflicients depend
on the shape, geometry and location of WEC devices, they must
be computed numerically using boundary element method code
such as WAMIT [12]. These calculations normally are complex
and time-consuming for one g-factor evaluation, and except for
very special cases, a closed form analytical expression is out of
the question. Thus, the optimization of the objective function
in (2) by means of classical numerical methods is difficult and
computationally expensive.

Fortunately, the point-absorber approximation [3, 6] pro-
vides a much more tractable expression for the absorbed power,
under the assumption that the devices are small relative to the in-
cident wavelength. Instead of using P as the objective function,
it is common to use the g-factor, which is the ratio of the total
power from the array to that for the same number of devices in
isolation:

N
P
n=1"n
= 3
1= NP, )

where P, is the power absorbed by the nth device in an array and
Py is the power absorbed by a single device acting in isolation.

Under the point absorber approximation, the g-factor in (3)
has a closed form expression [5]:

1
q= NL*J_IL, 4)

where L is an N-dimensional column vector with

Ly = eikdm cos(B—am) 5)
and J is an N X N matrix with
Jmn = JO(kdmn); (6)

Jo is the Bessel function of the first kind with order O; k is the
wavenumber (k = 27r/A, where A is the wavelength); g is the di-
rection of the incident wave; (d,,, @,,) are the polar coordinates of
device m; and (d,, @) are the local polar coordinates of device
m relative to device n. The advantage of (4) is that it does not
involve the hydrodynamic coefficients and can thus be evaluated
efficiently.

OPTIMIZATION MODEL

We want to find locations of the WECs (in terms of @ and d)
in order to maximize the g-factor. The mathematical formulation
of the Wave Energy Converter Location Problem (WECLP) is:

1

d,a:B,k)=—L"J'L 7

max q(d,a;B,k) N @)

S.t.
dyn > dod

(dn,an) €R

VYmn=12,.,.NNm#n (8)
Yn=12,.,N (9)

where dy > 0 is a constant, A is the incident wavelength, and R
is the region for locating WECs. In (7), the notation ¢(d,a;, k)
indicates the g-factor for solution (d, @) under wave angle 8 and
wavenumber k. We will often shorten this notation to simply g.
The objective function depends on the decision variables d and
a through L and J, as discussed above. Constraints (8) ensure a
minimum level of separation between the devices, which reflect
physical constraints and are also necessary for the point absorber
approximation to remain valid.

Proposition 1. Let (d,a) be a solution to the WECLP and let
B and k be a wave angle and wavenumber, respectively. Then for

any wave angle B and any wavenumber k', there exists a solution
(d’,a") such that

q(d,a:p,k) = q(d’,a"; B ,K').



Proof. Follows from the fact that, as 8 changes, we can rotate the
layout, and as k changes, we can scale the layout, while maintain-
ing the same gq.

Proposition 1 demonstrates that the WECLP is isomorphic
with respect to 8 and k. Therefore, an instance of the WECLP is
completely specified by N, the number of devices.

2-WEC Case

In this section, we provide an analytical optimal solution for
the special case of N = 2. Without loss of generality, assume
WEC 1 is located at the origin and WEC 2 is located at (d,@).
Then (dy,a;) = (0,0); (da,ar) = (d,@); di» = dp; = d. Constraint
(8) simplifies to

d > doA. (10)

Let j, be the nth local optimizer (min or max) of the Bessel func-
tion Jo(+). Approximate values are given in columns 1-3 of Ta-
ble 1.

Theorem 1. Let n* be the smallest integer n such that j, >
2ndy. Then the optimal solution to the 2-WEC problem is to lo-
cate one WEC at (0,0) and the other at (d*,a"), where

o[ i otkado) < oG
Ady, otherwise

o = B—arccos(#), if Jo(jn=) =0,
B— %, otherwise.

The optimal solution attains a g-factor of

1
1= |Jo(kd*)|’

*

q

Proof. See [14].

Roughly speaking, Theorem 1 locates the second WEC at the lo-
cal optimum (min or max) with the largest absolute value, subject
to (10). Figure 3(a) displays these optima (along with hypothet-
ical constraints (10), for the first two optima), while Figure 3(b)
displays the corresponding locations of WEC 2. Column 4 of Ta-
ble 1 gives the g-factor corresponding to each of these solutions,
while the last four columns give the locations of WEC 2 in polar
and Cartesian coordinates, assuming £ = 0.2 and 8 = 0.
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FIGURE 3: SOLUTIONS TO 2-WEC PROBLEM.

Eigenvalue Bounds

In this section, we introduce upper and lower bounds on g
that provide a benchmark against which to compare feasible solu-
tions, and also may play a role in future optimization algorithms,
since the bounds are simpler to compute than g itself. The first
step is to show that for a feasible array configuration, if the ma-
trix J in (4) is invertible, it is also positive definite.
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TABLE 1: LOCAL OPTIMA OF BESSEL FUNCTION, AND RESULTING OPTIMAL ¢ (FOR ANY k, 8) AND OPTIMAL LOCATIONS OF WEC

2 (FOR k= 0.2, 8 =0).

n Jn JoUn) | 4" a x* V'

1 0.0000  1.0000 | oo — — —

2 38317  -0.4028 | 1.6744 | 19.1585 —1.5708 0.0000  —19.1585
3 7.0156  0.3001 | 1.4288 | 35.0780 —1.1065 157080 —31.3644
4 10.1735 -0.2497 | 1.3328 | 50.8675 —1.5708 0.0000  —50.8675
5 133237 02184 | 1.2794 | 66.6185 —1.3328 157080 —64.7401
6 164706 —0.1965 | 1.2445 | 823530 —1.5708 0.0000  —82.3530
7 19.6158  0.1801 | 1.2196 | 98.0790 —1.4099 157080 —96.8130
8 227601 —0.1672 | 1.2007 | 113.8005 —1.5708 0.0000 —113.8005

Lemma 1. Matrix J in (4) is positive definite if it is invertible.

Proof. We know that g > 0, thus by (4) we can conclude that
J~! = 0, which means that det(J~!) > 0. Since matrix J is in-
vertible, det(J) # 0 and also det(J~') # 0. So, it is clear that
det(J~') > 0, which means J~! is positive definite.

The following proposition provides bounds on the value of the
g-factor in (4).

Proposition 2. Let 0 < A =1 < A2 < .. € Ay-1 < AN = dppax
be the N eigenvalues of the matrix J. Then

1 1
— < < —, 11
/]LN—CI—/l1 (11)

. o Ly .
Proof. Since matrix J~! is symmetric, %LL is a Rayleigh quo-

tient, so by the min—max theorem,

LJ'L
L*L

Mmin < < Umax>

for ||L]| # 0, where i, and pyq, are the minimum and maximum
eigenvalues of J -1 respectively [15]. Thus,

Nq
Hmin < E < Umax-

The proof follows from the fact that L*L = N and p;,, = ﬁ and

1
Mmax = -

These bounds are illustrated in Figure 4 for the 5-WEC configu-
ration in [2] as the location of the first WEC changes along the

x- axis and y-axis. Note that in both figures, the upper bound and
the exact g-factor both attain their global maxima at the same
values, which suggests that the upper bound may be useful as
a proxy for the g-factor in an optimization algorithm, since the
bounds are faster to compute than the exact value of g. Moreover,
the bounds are robust with respect to the incident wave direction,
B, since they depend only on the J matrix, which does not de-
pend on . So, by maximizing the lower bound, we can obtain a
solution that is robust with respect to 3.

HEURISTIC ALGORITHM

In order to develop a good heuristic algorithm, we first ex-
plore the optimality conditions and structure. Figure 5 shows
near-optimal layouts for WEC location problems with 4, 5 and
6 devices, obtained by exhaustive search over a discretization of
the allowable region R. From the figure, it appears that good lay-
outs exhibit several geometric properties. First, they are symmet-
ric with respect to the wave direction. Second, there are at most
two WECs on each line normal to the ray of wave direction.

We use these properties to develop a preliminary two-phase
greedy-type algorithm. Without loss of generality, we assume x
axis is parallel to the ray of wave direction. In the first phase,
we add two WECs to the current layout, one above x axis and
one below it in order to maintain symmetry in the solution being
generated. We find the best locations for the two new WECsS in
order to maximize the g-factor. Then, in the second phase, the
algorithm takes the solution from the first phase as its starting
point and optimizes the resulting layout locally. The process then
repeats to add additional WECs. See Algorithm 1.

Note that step 3 requires us to solve a difficult nonconvex
optimization problem. We choose to solve this problem by dis-
cretizing the search space and enumerating the possible loca-
tions. (Only the location of one WEC must be enumerated, since
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FIGURE 4: BOUNDS AND ¢-FACTOR VS. LOCATION OF FIRST
WEC ALONG x- AND y-AXES.

the location of the first determines the location of the second.)
However, other approaches may be substituted instead. In step
4, the local optimization is performed using a convex optimiza-
tion solver (we used MATLAB’s fmincon). The key idea is that,
once the two new WECs are added, the hydrodynamic interac-
tions change for the existing WECs, so the locations of all WECs
must be reoptimized to ensure they are located at local maxima.
Step 6 is executed only if N is even, in which case the last WEC
must be located on the x-axis in order to maintain symmetry.
Table 2 shows the performance of our heuristic for N =
2,...,7. Tt lists the g-factor for the solution returned by our
heuristic, as well as from the GA by [16]. Our heuristic finds the

101 K .
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FIGURE 5: NEAR-OPTIMAL CONFIGURATIONS FOR THREE
VALUES OF N.

Algorithm 1 TWO-PHASE HEURISTIC ALGORITHM

1. Place the first WEC at the origin and let N < N —1; N will
equal the number of remaining WECs.

2. If N=0,STOP. If N =1, go to 6, otherwise continue.

3. Add two WEC:s to the current layout by solving

max g S.f. X =2Xx2, Y1 =-)2.
X1,X2:Y1,Y2

4. Using the layout from step 3 as the initial solution, and opti-
mize all locations locally using a convex optimization solver.

5. Set N« N —2,and go to 2.

6. Add the last WEC (if any) to the current layout by solving

max g s.t. y=0.
X,y

7. Using the layout from step 6 as the initial solution, and opti-
mize all locations locally using a convex optimization solver.
8. STOP.

optimal solution for N = 2 (from Theorem 1) and the best-known
solution from the literature for N = 5 [13], as well as improving
on the result by [16] for N = 7. (No other solutions have been
reported in the literature.) The table also lists the WEC coordi-
nates for the best solution for each value of N, normalized by the
wavenumber k.
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TABLE 2: RESULTS OF OUR HEURISTIC AND THAT OF [16] FOR N =2,...,7.

N | g [Heuristic] ¢ [16] | Best Solution

2 1.67 1.67 | kx=10,0]
ky =10,-19.16]

3 1.98 1.98 | kx=1[0,0,0]
ky =[0,4.44,-4.44]

4 2.28 2.17 | kx=10,4.26,4.26,8.53]
ky =10,-5.26,5.26,0]

5 2.78 278 | kx=1[0,-9.08,-9.08,-16.01,-16.01]
ky =10,17.63,-17.63,10.97,-10.97]

6 2.72 279 | kx=1[0,-15.80,-15.80,—8.88,—-8.88,4.54]
ky =10,-10.95,10.95,17.75,-17.75,0]

7 2.70 3.07 | kx=1[0,-0.27,-0.27,-6.22,-6.22,1.67,1.67]
ky =10,-15.92,15.92,8.10,8.65,—-8.65]

THE WECLP UNDER UNCERTAINTY

The methods and analysis provided in the previous sections
are based on deterministic ocean states; however, ocean environ-
ments are stochastic, and these uncertainties can have a substan-
tial degrading effect on the power of the wave farm. As noted
above, the blue curve in Figure 2 shows that the g-factor of the
optimal 5-WEC configuration degrades drastically as the sea en-
vironment (5) changes just a little. Thus, we need optimization
models that design layouts that perform well, even as the sea state
changes. Mao [16] proposes two models for mitigating the effect
of uncertainty on the total power. The first model maximizes
the expected value of the g-factor when the wave direction, 3, is
stochastic with known distribution. The model in mathematical
form is:

_ l * y—1
max Eﬁ[qwn—E[NLJ L} (12)

subject to (8)—(9), where g(B) is written so as to stress that 8
is changing. This is an example of a stochastic optimization
model. The second model maximizes the worst-case solution
over a range of 8 values and is an example of robust optimiza-
tion:

. |1 -1
max min =min|—=L*J"'L 13
iy mpra@l=m [N ] (13)

Figure 2 plots g vs. B/n for 5-WEC solutions found by optimiz-
ing these two objectives using a genetic algorithm [16]. The red
curve plots the stochastic solution, which maximizes E[q(8)],
while the green curve plots the robust solution, which maximizes
min[g(B)]. Both solutions are significantly more robust than the
deterministic solution, in the sense that they perform at g > 1 for
a much broader range of 8 values. Of course, this comes at some
expense, since g(8 = 0) is smaller for the stochastic and robust
solutions than for the deterministic solution, as is typical for op-
timization under uncertainty. The stochastic and robust solutions
are also worse in the tails, but this is of less concern since the
tails represent unrealistic wave angles such as waves headed out
to sea from shore.

We plan to modify our proposed heuristic algorithm to de-
sign wave farm layouts that optimize the objectives (12) and (13).
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