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1. Introduction
The mail-order DVD-rental company Netflix chooses distributienter locations so that most of its

customers receive their DVDs within one business day viacdlass U.S. mail. Similarly, many
municipalities aim to have fire crews reach 911 calletbiwia specified time, such as four minutes.
Both of these are examples of the notiorakerage, a concept that is central to several classes dityaci
location models; it indicates whether a demand locationtisma pre-specified radius (measured by
distance, travel time, cost, or another metric) oagisigned facility. Homeowners are covered if they are
within four minutes of the nearest fire station, and INetustomers are covered if they are within one
mailing day of a distribution center. Note that infine-station example, municipalities typically want to
coverall residents (while minimizing the number of service etetito open), whereas Netflix wants to
cover as many customers as possible (subject to a limit suthieer of warehouses it may operate at
any time, as specified by its capital budget). The fiaéest problem is an example of tse covering
location problem (SCLP), while Netflix’s problem is an example of theximal covering location

problem (MCLP). This chapter discusses both problems.

The SCLP was first introduced by Hakimi (1965) and vaéer Iformulated as an integer programming
problem by Toregas, et al. (1971). The MCLP was introdbgedhurch and ReVelle (1974). Both
models, and their variants, have been applied extensiwelytilic-sector facility location problems, such
as the location of emergency medical service (EMS) veh(iEke®n, et al. 1985), fire stations (Schilling,

et al. 1980), bus stops (Gleason 1975), wildlife reserves (CHsitams, and Davis 1996), and emergency



air services (Flynn and Ratick 1988). They have been agpliednuch more limited extent in the

private sector (see, e.g., Nozick and Turnquist 2001).

The SCLP and MCLP are closely related togreenter problem, which aims to locate at mp#icilities
to minimize the maximum distance, among all customers dagtithe customer and its assigned facility.
In thep-center problem, the coverage radius itself constitutestjeetove function. See the Introduction

chapter of this book for a more thorough discussion of taéarships among these classical models.

Like most location problems, the SCLP and MCLP may bmeefas continuous problems (in which
facilities may be located anywhere on the plane) orszsaie problems (in which they may be located

only at the nodes of a network). In this chapter we contiadatter approach.

The remainder of this chapter is organized as follomsSection 2, we discuss classical papers on the
SCLP (in Section 2.1) and on the MCLP (in Section 2.Zsqmt the results of computational
experiments, and discuss more recent variations. o8e; we discuss the impact that these models
have had and the bodies of research they have inspiredjrfgageneralized notions of coverage. Finally,

we conclude in Section 4 and suggest some possible futesechgirections.

2. Historical Contributions
We present the classical models for the SCLP by Halig§g) and Toregas, et al. (1971), and for the

MCLP by Church and ReVelle (1974), in Sections 2.1 and Z@eotively.

2.1 The Set Covering Location Problem

2.1.1 Hakimi (1965)
Although the generic (non-location) set-covering problem had foeemlated prior to Hakimi’'s (1965)

seminal paper on the SCLP, Hakimi’s work is importantamong other things, introducing the notion

of coverage into facility location models. Hakimi’s proposolution method, which involved the use of



Boolean functions, never proved to be efficient enough to waitsause in practice; rather, the SCLP is
generally solved using integer programming (IP) techniqires pfoposed by Toregas, et al. (1971). We
discuss Hakimi’s model and briefly outline the Boolean-functigor@ach in this section. In Section

2.1.2, we present the IP method of Toregas, et al.

We consider a grapB = (V, A) and assume that every node/irs both a customer (demand) node and a
potential site for a facility. (However, one can easiyend the models below to handle the cases in
which some customers may not be facilities, or somatfasibire not customers, i.e., do not need to be
covered. Below, we use terms like “custoiieand “facility j” as shorthand for “the customer located at
nodei” and “the facility located at node’) Letn = |V|. The distance between nodesd;] is given by
d;, and the maximum allowable distance between a custardatsanearest opened facility—the
“coverage distance™— is given sy If (i, j) O A, thend; is the length of the ar¢, {), and otherwise it is
the shortest distance frontoj on the graph. (We use the term “distance” throughouthleytarameters
d; ands may just as well represent travel times, costsnotreer measure of proximity.) Therefore,
facility j covers customerif d; <s. We define

Vi={jOV:di<s}
that is,V, is the set of nodes that cover customeNote that every, is nonempty, assuming that=0

for alli.

The objective of the SCLP is to find the minimum-costrimimum-cardinality) set of locations such
that every node il is covered by some node in the set. The application thatiHeikes for the SCLP
is that of locating policemen along a highway networkhst every intersection (vertex of the graph) is
within one distance unit of a policeman. Subsequentiyptbblem has found a much broader range of

applications, as discussed earlier.



We will assume that facilities may be located onlyhatriodes of the network, not along the edges. Note
that it may be optimal to locate along edges, since #gliekwown “Hakimi property"—which says that an
optimal solution always exists in which facilities aredtazl at the nodes, rather than along the edges, of
the network—doesot apply to the SCLP. (Hakimi introduced his famous prgperan earlier paper
(Hakimi 1964) in the context of themedian problem, not of the SCLP.) A very simple countergle
consists of two nodes connected by a single edge of lengthd @verage distance of 0.5. If facilities
are allowed on the edges, the unique optimal solution cons$istee facility (located in the middle of the

edge), whereas the optimal nodal solution consists of tviltiés; one at each node.

On the other hand, a problem in which facilities mayocated on edges may be converted to a node-
only problem by inserting dummy nodes onto the edges, talvangage of the fact that there are only a

finite number of possible optimal locations along edges=e Ghurch and Meadows (1979) for details.

In some applications, it is desirable to use a diffetemerage distance for each customer—for example,
if customers have service agreements that specify diffegsponse times. In this case, the coverage
distance is customer dependentand the sev; is given byV; = {j O V: d; < s}. The analysis below

changes in only minor ways.

The SCLP is closely related to the graph-theoretitex cover problem, whose objective is to find a
subset of nodes in the graph such that every node in the gragjacent to some node in thea®t such
that no strict subset of the set has the same prop®ugh a set of nodes is calledower. The
optimization version of the vertex cover problem seeks the mmirardinality cover, and this problem
is a special case of the SCLP in which 1 andd; = 1 for all ¢, j) O A. Indeed, this special case is the
problem considered by Hakimi (1965), although he is usuallytexetbr introducing the more general

SCLP, since he presented the problem explicitly in ditiatdcation context. In this section we will



assume, following Hakimi, that=d; = 1, though in subsequent sections we will alkoandd; to be
arbitrary. Hakimi notes that the assumption that 1 is not overly restrictive, since if the arc lengihs
greater than 1, one could simply introduce dummy nodesydhe arcs, one unit apart, assuming that the
arc lengths are integers. Of course, this modeling tockes at considerable computational expense,
especially since Hakimi’s method relies on an enurerapproach whose computational complexity

increases exponentially with the number of nodes.

In the remainder of this section, we describe Hakinii%6) approach to solving the SCLP. As noted

earlier, this method is not commonly used today and is disdusse primarily for its historical interest.

Recall thatv; is the set of nodes that cover noggiven the assumption of unit arc-lengths and unit
coverage distanc¥®; is simply the set of nodes that are adjacentptusi itself. LetSbe a subset of the
node seV. For each node we define a Boolean (binary) variaBjéhat equals 1 if J Sand O

otherwise. With a slight abuse of notation, we can write
S=Uxi,
iov

wherexi is taken to equal the sef §f x = 1 and the null set otherwise. We also defpas the sum of

the Boolean variables for the nodes/inthat is,

X =2 X.

iov;
Here,>. represents Boolean summation, analogous to the “or” mpemawhich 1 + 1 = 1. TheX = 1 if

and only ifS contains a node that covers node

Finally, we define the Boolean functibnwhich takes as inputs the vector of Boolean variablethéo

nodes and returns a single Boolean value:

f(X,. 0 X)) =X, -

iov



Since node is covered if and only iX; = 1, we have the following theorem:
Theorem 1. S contains a covering of if and only iff (x,...,x,) = 1.

The advantage of using the functiois that it allows us to use Boolean algebra to construvericms of

V. Although this approach still involves enumerating allerings, it allows us to do so without
enumerating all subsets ¥gfto identify them. In particular, we will create a fimum sum of products,”
i.e., the smallest possible sum of products @friables that is logically equivalentft@,,...,x,). This
method involves eliminating terms that are implied beot, then using Boolean algebra to simplify the
resulting formula until we have an expression consistingesum of simple products of variables such

that no product is implied by (contains) any other. Mie¢hod is best explained by use of an example.

Example 1. We illustrate the method using the sample network in Figure 1.

Figure 1. Sample network.

Using the adjacencies depicted in the figdtes x; + X3, X2 = X% + X4, and so on. Therefore,
FOG 0 X0) = (6 +X6) (% + X, ) (X X+ X + X, + X ) (X, + X, + X +X) (X + X +X,).
By Theorem 1, to find all coverings of the graph, we nediht all possible values ok{, ..., xs} that

makef (xi,...,X,) = 1, i.e., such that all terms in the product above ehjual



To begin, note that the first term is contained in tivglthSince we need each term to equal 1, the third
term equals 1 if the first does; therefore, we can ahiei the third term. Similarly, the fourth term
contains the fifth, so we can eliminate the fourth tefirhe resulting expression is:
FOXee X, ) = (X X5) (X, + X)) (X + X, + %)
Boolean algebra contains two distributive laws; one saysftiany Boolean variables y, andz,
X+ (y2) = X +y)(x+2).

Applying this law to the last two terms, we get

F(Xee X, ) = (X + X5) (X, + XX + X, X5).
The other Boolean distributive law says that

Xy +2) =xy+xz
Applying this law to multiply the two terms, and repe&tepplying both Boolean identity laws (which
say thatx + x = x and thatx = x), we get
F(Xeen X)) = X Xy F X XK X+ X X Xs F XX, F X, Xy + X X5 Xs

Finally, by the Boolean redundance laxt(xy = x), we can remove the second and last terms:

F(X 0 X)) = XX, + XXX + XX, + X, X5
Therefore, the covers for the graph in Figure 1 are:

{1, 4}, {1, 2, 5}, {3, 4}, {2, 3}.

All but {1, 2, 5} are minimum coverd]

Hakimi was optimistic that this enumerative approachlaiprove to be practical: “...since the subject of
simplification of Boolean functions has been widely studied there are efficient digital computer
programs for such a purpose, the above formulation idbfedsiTwenty-first-century readers, however,
will recognize that the enumerative approach is impraldior large instances. Moreover, since the

vertex cover problem is NP-complete (Garey and Johnson 1978p/yrmmial-time exact algorithm for



the SCLP exists. However, more efficient approachesHiadami’'s exist; we discuss a mathematical-

programming-based approach in the next section

2.1.2 Toregas, et al. (1971)
Toregas, et al. (1971) formulate the SCLP as an integgrgmoning (IP) problem and use standard

mathematical programming methods to solve it. We discegsapproach next.

The IP has one set of decision variables:

_ |1 if afacility isopenedatnodej
o, otherwise

for j O V. Note that this variabbg has no relation to the Boolean variabtedefined in Section 2.1.1.

The IP is formulated as follows:

(SCLP minimize z=YX D
v
subject t Y x; =21 i ov (2
i,
x; 0{01} 0jov ©)

The objective function (1) computes the total number ofife@ésilopened. Constraints (2) require at least
one node from the coverage %eto be opened for each nodeConstraints (3) are standard integrality
constraints. Here, we do not assume $watl; = 1 (as we did in Section 2.1.1); any values for these

parameters may be used in determining the coverag¥ sets

This formulation is virtually identical to that of tletassical set-covering problem; here it is discussed in
the context of location theory in particular. It is welbwn that the set-covering problem typically has a
small integrality gap; that is, the optimal objectizdue of the LP relaxation (denoted) is close to that

of the IP itself (Bramel and Simchi-Levi 1997), and oftem ItP relaxation even has all-integer solutions.



In fact, ReVelle (1993) argues that many facility losatproblems have this property and discusses

“integer-friendly programming” techniques for several atzdgproblems.

However, there do exist instances of the SCLP whose bBRat@ns do not have all-integer optimal

solutions (otherwise the problem would not be NP-hafd) example is as follows.

Example 2. Consider the network depicted in Figure 2. In this examsptel. An optimal solution to the

LP relaxation of (SCLP) is given by =X, = x3 = 0.5,%, = 0, with an objective value afp = 1.5.00

Figure 2. Networkfor which SCLP does not have all-integer LP relaxation.

Since the coefficient of eachis 1 in the objective function of (SCLP), it is cleartttiee objective
function value is integer for any solution to the IP. 8mgis a lower bound og*, the optimal objective

function value for the IP, and singemust be integer, we can say that
z2[7, ],

where]—a_| denotes the smallest integer greater than or eqaal Therefore, Toregas, et al. propose
adding the following cut to (SCLP):

>x 2[z,]. (4)

joJ
We denote the resulting problem (SCLP-C). The new cuteinaynate some fractional solutions, and

the LP relaxation to (SCLP-C) may have an all-integkrtiom as a result.



For the example in Figure 2, (SCLP-C) does indeed havaeger solutionx; =x, = 1,X3 = x4 = 0, for
example, withe* = 2. (It also has optimal fractional solutions, exg= 0.5 for allj, but the simplex

method would find integer solutions since these represém=nee points of the feasible region.)

Toregas, et al. therefore propose a two-step solutiaredue for the SCLP:

1. Solve the LP relaxation of (SCLP). If the optimal siolntis integer, STOP.

2. Otherwise, solve the LP relaxation of (SCLP-C) using the aptoijective value from step 1 in

the right-hand side of (4).

Even with constraint (4), the LP relaxation may not havegeger solution. Toregas, et al. report that
they found no such instance in their computational experimotsgh we found several such instances
in ours; see Section 2.1.3.1. In fact, Rao (1974) givesbnaterexamples; in one, the addition of cut (4)
results in a fractional solution, and in the other, tiditeon of cut (4) results in an integer but non-

optimal solution. (See also the reply to Rao’s note bydas, ReVelle, and Swain (1974)).

Toregas, et al. also discuss the relationship betweerndhe &nd a variant of themedian problem in
which each customer may only be served by facilitiesaratvithin a distance af The formulation is
obtained simply by forcing the assignment variable to lme @atility—customer pairs that are more tisan
units apart, or, alternately, by indexing the assignmenahims for each customeover facilitiesj in V;,

as opposed to all facilitigan V. (We omit the formulation here.)

The optimal objective value of thismedian variant changes wish For sufficiently larges, the

objective function value is no different from fhranedian without distance constraints;satecreases, the
objective function value increases as a step functionfargifficiently smalls, the problem is infeasible.
Toregas, et al. argue that the solution to the SCLHAge®®0ome information about the feasibility of this
problem. In particular, for a given valuemfthe smallest value affor which thep-median variant is

feasible is equal to the smallest values &6r which the SCLP has an optimal objective valup.oOn the



other hand, the solution to SCLP does not provide any infa@mabout the breakpoints of the step

function that relates the median objective te.

2.1.3 Experiments and Variants
In Section 2.1.3.1, we discuss the results of our computagapaliment related to (SCLP). In Section

2.1.3.2, we discuss a technique for reducing the prollsrosthe SCLP, and in Section 2.1.3.4, we

discuss a variant involving fixed costs.

2.1.3.1 Computational Experiment
We performed a computational experiment to confirm thetseseported by Toregas, et al.—namely,

that the LP gap for (SCLP) is small, and that cuip(éyluces integer solutions. For each value ©f50,
100, 200, 400, 800, we generated 100 random instances of the Sa@iameters were generated as
follows:

* X- and y-coordinates were drawn fraJf0,100]

» Distances were calculated using the Euclidean metric

* The coverage distansavas drawn frontJ[0,140] (140= maximum possible distance between

two points in 100x 100 grid)

For each instance, we solved the LP relaxation of (SO@kPy CPLEX v10.2.0 to obtame. If the
optimal solution to the LP was not integer, we added cudr(d)solved the LP relaxation to (SCLP-C) to
obtainzp.c. If the optimal solution was still not integer, we sol(8CLP) as an IP to obtaa (If

either of the LP relaxations resulted in integer solutitrer objective values give us.)

The results are given in Table 1. The columns labelethtéger” list the percentage of instances for
which the LP relaxation produced an integer optimal solutitime columns labeled “Avg LP Gap”
and "Max LP Gap” list the average and maximum, respdgfieéthe LP gap, measured as-(—z*) / Z*

for (SCLP) and4p.c —Z*¥) / Z* for (SCLP-C).



Table 1. Performance of LP relaxations of (SCLP) and (SCLP-C).

(SCLP (SCLF-C)
n % Intege Avg LP Max LP % Intege Avg LP Max LP Gay
Gap Gap Gap
50 94.0% 0.006¢ 0.250( 98.0% 0.000( 0.000(
10C  87.0% 0.010¢ 0.166" 92.0% 0.000( 0.000(
20C  88.0% 0.007- 0.250( 90.0% 0.000( 0.000(
40C  73.0% 0.021° 0.335( 82.0% 0.000¢ 0.025(
80C  76.0% 0.019¢ 0.250( 82.0% 0.001" 0.071«
Total 83.6% 0.013: 0.335( 88.8% 0.000¢ 0.071«

The LP gap for (SCLP) is small and tends to be smiliesmaller values af. The worst gap we found

was 33.5% for a problem witin= 800. The addition of cut (4) reduces the LP gap substgr{fiain

0.0132 to 0.0004, on average), but does not guarantee integ@rssiaeven with the cut, 11.2% of

instances had fractional optimal solutions. Severdiegd instances also had integer optimal solutions,

though CPLEX did not find these. In general, CPLEX solted® in well under one minute on a laptop

computer, even for the largest problems.

2.1.3.2 Row and Column Reduction
The size of (SCLP) can often be reduced substantiallysinmg row- and column-reduction techniques.

These methods exploit the coverage structure by eliminatmgaod columns that are dominated by

others. In particular:

A facility j; dominates another facilify if it covers all of the customers thatdoes; that is, if.

O Vi impliesj;[0V; for alli O V. In this case, there is no reason to open fagilsyncej; covers

all the same customers and possibly more. Thereforawsetx; = 0, or equivalently,

eliminate the column correspondingjo

A customeii; dominates another customeif every facility that covers, also covers;; that is,

if \/i2 [l Vil. In this case, if constraint (2) holds feit also holds foi,, and therefore we can

eliminate the row correspondingito



Row and column reduction techniques are appropriate f@@hé because of the binary nature of
coverage. Most facility location problems with distanbgectives cannot generally accommodate these
techniques, except heuristically, since under most métiggnpossible for a facility to dominate

another, i.e., to be closer to every customer than anfattibty is.

These techniques were proposed by Toregas and ReV@M2)( See also Daskin (1995) and Eiselt and

Sandblom (2004) for thorough discussions and examples of ruxcadumn-reduction techniques.

2.1.3.3 Facility Fixed Costs
If the facilities each have a different fixed csthen the problem becomes to choose facilities to cover

all demands at minimum possible cost. This problenbeaiormulated simply by replacing the objective
function (1) with

minimize z=3 f,x
iv

The SCLP as formulated above is a special case in Wiychfor allj. The linear-programming-based
solution methods described in Section 2.3 can easily acodatethis variation. So can the Boolean-

function approach: at the final step, we simply choosedakier that has the smallest total fixed cost.

2.2 The Maximal Covering Location Problem
2.2.1 Church and ReVelle (1974)

2.2.1.1 Introduction and Formulation
Whereas the SCLP has the form

minimize number of facilities opened
subject to cover all demand,

the maximal covering location problem (MCLP) has the invensa:
maximize demand covered

subject to limit on number of facilities opened.



The SCLP treats all demand nodes as equivalent sincevbeage constraint applies equally to all. In
the MCLP, in contrast, nodes are weighted by the demanhtht#hagenerate, and the objective favors

coverage of larger demands over smaller ones.

As the number of allowable facilities increases, the dehcavered naturally increases as well. The
modeler can plot a tradeoff curve depicting the performan@ range of solutions along these two

dimensions; the decision maker can then choose a solutiondrasiad tradeoff.

Our notation in this section is identical to that int®ec2.1, with the addition of two new parametes:
is the demand at nodiger unit time, ang is the maximum allowable number of facilities. Wepals

introduce a new set of decision variables:

_ |1 if customei is coveredoy somefacility
"o, otherwise

The MCLP is formulated by Church and ReVelle (1974) Hevis:

(MCLP) maximize  z=Yay ®)
iv
subjecttt ¥ X, 2V, 0i v (6)
EY
ZXJ_ =p (7)
iov
x; 0{01} Oj OV )
y, 0{01} Oiav ©)

The objective function (5) computes the total demand coveredstaints (6) prohibit a customer from
counting as “covered” unless some facility that covensist been opened. Constraint (7) requires exactly
p facilities to be opened. Constraints (8) and (9tardard integrality constraints. (In fact, it sigfdo

relax constraints (9) to9y; < 1 since integer values for thieare optimal if theg are integer.)



Church and ReVelle cite White and Case (1973) as formulatsngilar model to (MCLP) that
maximizes the number of demand nodes covered, rathehthaotdl demand. Case and White's model

is therefore a special case of the MCLP in wiach 1 for alli.

Church and ReVelle also present an alternate formultitairuses a new decision varialjle defined as

y, =1-vy,; thatis,

_ 1, if customel is notcoveredoy anyfacility
0, otherwise

In the alternate formulation, constraints (6) are reguldmy

> X +y, 21 0i OV

IRY
The revised constraints say that if nod@not covered by any facilityX( -, X; = 0), then'y; must equal
1. The objective function (5) can be rewritten as
maximize Ya@l-y)=Xxa-Xxay, (10)
iov iv iov
or equivalently,
minimize _%:\/ai Yi, (11)

since the first term in (10) is a constant. The revadgdctive (11) minimizes the uncovered demand.

The revised formulation is then given by

(MCLP2) minimize  z=Yay, (12)
iv
subjecttc ¥ X, +y =21 i OV (13)
iV,
Z)(j =p (14
v
x; O{01} 0y ov (19)
y, 0{0.1} Oiav (16)

The two formulations are mathematically equivalestaie their LP relaxations.



The MCLP is NP-hard (Megiddo, Zemel, and Hakimi 1988)thke next two sections, we describe

heuristic and exact approaches to solving it, all of whieldegscussed by Church and ReVelle (1974).

2.2.1.2 Heuristic Solution M ethods
Like many facility location problems, the MCLP lendslitsécely to greedy heuristics such as the

Greedy Adding (GA) heuristic, which Church and ReVelle (197dditto Church’s (1974) Ph.D.
dissertation. The GA heuristic begins with all fa@liticlosed, then opepdacilities in sequence,
choosing at each iteration the facility that increasegmge the most. (For a discussion of greedy and

other heuristics for facility location problems, see €ntr Daskin and Schilling 2002.)

Solutions from the GA heuristic are nested in the senseallhaf the facilities in the solution to the
facility problem are also opened in the solution to g -facility problem. Optimal solutions to the
MCLP are not, in general, nested in this way. TheegfGhurch and ReVelle also suggest an alternate
heuristic, called the Greedy Adding with Substitution (GAS) is&ar which attempts to rectify this

problem by allowing an open facility to be closed amtbaed facility to be opened at each iteration.

Like any heuristic, the GA and GAS are not guaranteed tdtimaptimal solution. The GAS, however,

tends to perform well in practice, and both heurisbecate very quickly.

2.2.1.3 Linear Programming Approach
Church and ReVelle propose solving (MCLP2) directly usinglireeogramming and branch-and-bound.

Like the SCLP, the LP relaxation of the MCLP often yietsnteger solutions: Church and ReVelle
report that approximately 80% of their test instancestitader solutions; we found an even higher
percentage in our computational tests (Section 2.2.2.1).clB&md-bound may be applied to resolve
fractional solutions to the LP relaxation, but Church aedéle also suggest a method that is effective

when solving the same problem for consecutive valugs of



The method takes as input a fractional solution t@ifeility problem and an integer solution to tipe~(
1)-facility problem. It is effective when thp £ 1)-facility solution covers all but a few nodes. We

illustrate the method using an example.

Example 3. Consider an instance of the MCLP for which the totalal®racross all nodes is 100 units.
Suppose we have found an integer solution to the 4-facilitylggmoand that it covers all but two nodes,
for a total of 91 demand units covered. The two uncovered rfa@dkcall them 1 and 2) have demands
of 4 and 6, respectively. Suppose further that the l&&agbn to the 5-facility problem is fractional and

covers 98 demand units. Finally, suppose that the minigpamong all nodesis 3.

Now, the optimal integer solution with= 5 cannot cover all of the nodes, since the LP relaxatioama
objective value of 98. In fact, the IP solution mayercat most 97 demand units, since at best it leaves
the 3-demand node uncovered. We can create an integer solutiep to5 problem by adding node 2
to thep = 4 solution. Since the= 4 solution covered 91 demands, not including node 2, this new
solution covers 91 + 6 = 97 demands. This solution must bealdorp = 5 since 97 is an upper bound
on the objective value. An optimal solution for the probleth w= 6 can now be found by adding node

1 to thep = 5 solution; the resulting solution covers all demahils.

Church and ReVelle refer to this method as the “inspetinethod. It can be summarized as follows.
Let zp(p) be the optimap-facility objective value of (MCLP), that is, the aptl demand covered lpy
facilities, and letz p(p) be the optimap-facility objective value of the LP relaxation of (MCLPYVe
assume that we know the integer optimal solution pithl facilities and that the optimal solution to the
LP relaxation witlp facilities is not integer. Letn, = min{a :i 0V} anday =2igva. We summarize
the inspection method in the following theorem. (Church asMeRe illustrate this method with an

example, rather than stating it formally as a thegrem.



Theorem 2. Suppose the following conditions hold:
1. zp(p) <as
2. zp(p—1) +a = ay — anin for some nodethat is not covered in the optimal solution to the (1)-
facility problem.
Then an optimal solution to tipefacility problem consists of the optimal solution to the-(1)-facility

problem plus node

Church and ReVelle report that, of the 20% of theiritetnces whose LP relaxations did not have
integer solutions, half could be solved using the inspeatetihod. The other half was solved via

branch-and-bound.

2.2.1.4 Mandatory Closeness Constraints
Church and ReVelle discuss a variant of the MCLP in whielrequire thaall customers be covered

within a secondary coverage distah¢e> s). For example, we might want to maximize the demand
covered within 50 miles but require all demands to be covertbthviOO miles. This model, known as
the MCLP with Mandatory Closeness Constraints, caridweed as a hybrid between the MCLP and the

SCLP since it has a max-coverage objective plus a hardag®/eonstraint.

This problem can be formulated simply by adding the folloveimigstraint to either formulation of the

MCLP:

Y x 21 00V,

IR
whereU; = {j O V: d; <t}. The resulting model can be solved using linear programgmand branch-

and-bound.



Suppose we solve the SCLP and find that, for a given staime minimum number of facilities that
covers all demand nodes with a coverage distantis pf. Generally there are many optimal solutions
to this problem. The MCLP with mandatory closenesstrtamts gives us a mechanism for choosing
among these, by selecting the solution that also maximizeethands covered within some distaace
In particular, we solve the MCLP with mandatory closemesstraints using* as the number of

facilities to open antas the secondary coverage distance.

2.2.2 Experiments and Variants

2.2.2.1 Computational Experiment
We performed a computational experiment to verify ChurchRa¢kelle’s claim that the MCLP often

results in all-integer solutions. We set 50, 100, 200, 400, 800. For each value, afie generated 100
random instances and tested three different valups ©he random instances were generated as
described in Section 2.1.3.1, with one additional parameter:

* Demandsy were drawn fronJ[0,100]

We solved the LP relaxation of (SCLP2) using CPLEX v10.2.0Qi&tlte solution was not all integer, we
solved the IP. The results are displayed in Table 2.c®lunns labeledp” gives the value op in
(SCLP2). The column labeled “Avg LP Gap >0" gives the ayerintegrality gap among only those
instances with a positive integrality gap, or “—"liiere were no such instances. All other columns are

interpreted as in Table 1.

Table 2. Performance of LP relaxation of (MCLP2).

n p % Intege Avg LP Gaj Avg LP Gap Max LP Ga|
>0
50 2  95.0% 0.0(11 0.054: 0.064¢
5 96.0% 0.0019 0.0635 0.1109
8 99.0% 0.0000 — 0.0000
10C 2 10C.0% 0.000( — 0.000(
5 98.0% 0.0002 0.0232 0.0232




8 98.0% 0.000( — 0.000(

20C 4  96.0% 0.001¢ 0.054( 0.129:
10 93.0% 0.0092 0.1308 0.3957
16 92.0% 0.0028 0.0699 0.1296
40C 4  98.0% 0.000( — 0.000(
10 92.0% 0.0006 0.0190 0.0280
16 92.0% 0.0158 0.5254 0.9632
80C 4  10C.0% 0.000( — 0.000(
10 91.0% 0.0002 0.0089 0.0089
16 89.0% 0.0195 0.4865 0.9704
Total 95.% 0.003¢ 0.970¢

The LP relaxation MCLP seems to generate integer solugiers more frequently than the SCLP does
(at least for our test instances), an average of 95.3kedfime. When it fails to do so, the integrality gap
can be quite large, though this is partly a function oftihremization objective, which may have optimal

values near zero and hence any suboptimal solution mayataxge error on a percentage basis.

Note that some instances had fractional LP solutionamuttegrality gap of 0, as evidenced by the fact
that some rows have “% Integer” <100% but an average LPfdapFeor these instances, an optimal

integer solution exists for the LP relaxation but CPLEXim&d a fractional optimal solution instead.

2.2.2.2 Tradeoff Curve
Figure 3 displays the optimal objective function valu@E€LP2)—the number of demand units

uncovered—agp varies for a particular random instance with 100 ands = 15. As expected, the
uncovered demand decreasep axreases. Fqgr> 18, all demands are covered. The convex shape is
typical of tradeoff curves for the MCLP, meaning that addél facilities provide decreasing marginal

returns in terms of additional coverage.



4500
4000 A

3500 \
3000
2500

2000
1500 \\
1000

500

Uncovered Demands

1 2 345 6 7 8 9 10111213 141516 17 18 19 20

p

Figure 3. Tradeoff curve: demands uncovereds.

2.2.2.3 Lagrangian Relaxation Approach
The MCLP can also be solved using Lagrangian relaxafitve key idea is to remove a set of constraints

and add a penalty to the objective function for violatingcthrestraints. The resulting problem is easier to
solve but may produce solutions that are infeasible for @eR1 By adjusting the objective-function
penalties iteratively, the solutions found approach the opsaolation for the MCLP. The use of
Lagrangian relaxation for the MCLP was detailed by &aland ReVelle (1996), although Daskin, et al.
(1989) also report computational results from a similar methtbobut providing details. See Fisher

(1981, 1985) for an excellent overview of Lagrangian relaxation.

We illustrate the Lagrangian relaxation method using fornangMCLP), though it can also be applied
to (MCLP2). We relax constraints (6) using Lagrange migtiph; to obtain the following Lagrangian

subproblem:



(17)
(MCLPLR) maximize Z=2xaV, + ZA[Z X, — yij
iv iv v

=2 -A)y + z[ Aijxj
iv jov

vV,
subjecttt  y'x. =p (18)
jov
x; 0{01} 0jov (19)
y, 0{01} 0i OV (20)

This problem decouples yandy since there are no constraints involving both sets chbims. As a

result, it can be solved easily. The optipahlues are given by

(1 ifa-A>0
"0, otherwise

To find the optimak-values, we set; = 1 for thep facilities with the largest values of >’ A, . The
iov:jov,

optimal objective value of (MCLP-LR) provides an upper boomdhat of (MCLP). Feasible (lower
bound) solutions can be found by openinggliacilities that are opened in the upper-bound solution and
settingy, = 1 for each customerthat is covered by some opened facility. Lagrangeiplielts can be
updated using subgradient optimization, and branch-and-boartkassed if the Lagrangian procedure
fails to yield a suitably small optimality gap; see Dagli995) for more details. Daskin, et al. (1989)
report that the procedure works quite well, especwalign the lower-bound heuristic is supplemented by

a substitution heuristic.

2.2.2.4 Budget Constraints
We can incorporate fixed costs into the model in alammanner as we did for the SCLP in Section

2.1.3.3. Here, the fixed cost appears in the constraitiier than the objective function. In particular,

we replace constraint (7) or (14) with



whereB is a budget imposed exogenously on the total fixed c@$ts. constraint can be easily handled
by the linear programming approach in Section 2.2.1.3, but #wbat complicates the Lagrangian
approach in Section 2.2.2.3 since determining the opkmalues now requires us to solve the following

knapsack problem:

maximize Z[_ 2A jxj
subject t Sfx. <B

x; 0{01} 0j Ov
Although this problem can be solved quite quickly using modedes, it is still NP-hard, and it may

slow the Lagrangian procedure significantly.

2.2.2.5 Relationship to p-Median Problem
The MCLP can be formulated as a special case gi-thedian problem (PMP) through a simple

transformation of the distance matrix. In particular,set

(o if jON,
711 otherwise

That is, we redefine the distance metric so that stante from nodgeto nodd is O ifj coversi and 1
otherwise. The PMP is then formulated as usual ésge,Daskin 1995). The optimal solution will cover
as many demand units as possible upifegilities. Any algorithm for the PMP can then be aggplio

solve the MCLP.

3. Extensions
The literature contains many enhancements to the SCLRI@h&. In this section, we focus in

particular on generalizations of the notion of coverage. Omeron criticism of the SCLP and MCLP is
that they assume that all customers within a facilitggerage radius can be served by the facility, and
served equally. In practice, facilities are not alsvayailable when needed, especially in the public-
sector arena where facilities may represent ambulafieesrews, etc. One approach to this issue is

backup coverage, in which customers are required or encouraged tovered by more than one open



facility. Another approach iexpected coverage, which accounts for probabilistic information. Moreqver
in many cases the coverage benefit changes as the distaweei a customer and its assigned facility
changes. This dependency is captured by the notigradfial coverage. We briefly discuss models for
backup, expected, and gradual coverage in the next three sutseéior thorough reviews of backup

and expected coverage models, see Daskin, Hogan, and RE%88 or Berman and Krass (2002).

3.1 Backup Coverage Models

Both the SCLP and the MCLP have been extended to considépss in which customers are covered
by more than one facility. One masquire backup coverage in order for a customer to count as

“covered,” or one may simplyeward solutions for backup coverage.

3.1.1 Required Backup Coverage
It is simple to formulate a required-backup version thfezithe SCLP or the MCLP. In the SCLP, we

simply modify constraints (2) to read

Yx zm 00V,

iov;
wherem s the desired number of times that each customertie tovered. In the MCLP, we can replace

constraints (6) with

Yx zmy, Oi0V.

iV,
Theny; must equal O unless at leasfacilities that cover customemare open. This constraint is likely to

weaken the LP relaxation of (MCLP), however, as is tymtalich “big-M” constraints.

3.1.2 Rewards for Backup Coverage
We focus on models in whiagh = 2. Extensions to these models to conswler2 are straightforward

but often yield weaker LP relaxations, as discussed alaste.

W,

_ |1 if customer is coveredoy twoor morefacilities
0, otherwise



The models formulated below contain a reward in the objeftiivaion for each customer that is covered
twice. However, the backup-coverage reward is strictlgandary objective; in no case should a
solution with more facilities have a better objectiventbae with fewer facilities, even if it has better

backup coverage.

Daskin and Stern (1981) propose the following model for the S@ttPbackup coverage:

(SCLF-BC) minimize  z=(|V [+) T %, - T w, (21)
jiov iov
subjecttt ¥ X, —w 21 i ov (22)
Y
x; 0{01} 0jav (23)
w, 0{01} Oiav (24)

The objective function (21) enforces the hierarchical nailitiee primary objective (minimizing the
number of facilities) and the secondary one (maximizingesimvered customers). It does so by
multiplying the primary objective by a constant large endhgheven if the primary objective is as small
as possible (equal to 1), the secondary objective can eeseed it. Therefore, the solution will never
open more facilities than necessary solely to imprbgesecondary objective. Constraints (22) require
each customer to be covered at least once and prehfbiim equaling 1 unless customes covered at

least twice.

Another advantage of this formulation is that its sohsiavoid facilities that are dominated by others in
the sense described in Section 2.1.3.2. As a resultPtnelaxation to (SCLP-BC) is more likely to have
all-integer solutions than that of (SCLP) is. (Seeskin and Stern 1981 for justifications of both of these

claims.)

A similar hierarchical version of the MCLP was introdubgdStorbeck (1982) and reformulated by

Daskin, Hogan, and ReVelle (1988). We modify their fornofasomewhat in what follows.



(MCLP-BC) maximize z=(|V [+])Tay + W, (29)
iov iov

subject t %:v X, =y, —w 20 i ov (26)
IV
ij =p (27)
jov
x, {01} 0 0V @)
y, 0{01} i av (29)
w, 0{01} 0i OV (30)

The objective function (25) maximizes a sum of the primaryremee(first term) and backup coverage
(second term); the weight on the first term ensures thatapy coverage will never be sacrificed in order
to achieve backup coverage. Note that the secondary cowdrjagave considersodes covered, rather
thandemand units covered. This is required in order for the weightingdbieve the desired hierarchy.
Constraints (26) stipulate that customenay be considered covergg£ 1) only if at least one facility in
Vi is open, and may be considered twice covened (L) only if two such facilities are open. Since the
objective function coefficient foy; is greater than that foy;, the model will always sgt = 1 before it

setsw; = 1, thus ensuring the desired coverage hierarchy.

3.2 Expected Coverage Models
The class of expected coverage models is descended priframlyhe Maximum Expected Covering

Location Problem (MEXCLP) introduced by Daskin (1982).skas primary application is in the siting
of emergency medical service (EMS) vehicles. The MEX@laRimizes thexpected coverage of each
node, defined using probabilistic information about facilityilawdity, subject to a constraint on the

number of facilities.

The MEXCLP assumes that the average system-wide prdipdbdt a given facility (vehicle) is busy is
given byq. If a customer is covered kfacilities, then the probability that all those faadd are busy at
a given point in time is given by, and the probability that at least one facility is e is 1 -o. The

MEXCLP defines new variables to keep track of the numbeowering facilities for each customer: let



_ |1 if customer is covereddy atleastmfacilities
Yim =10, otherwise

foralli OVandm=1, ...,p. Note that if customaris covered bxactly k facilities, theny,,, = 1 form

=1, ..., kandy,=0form=k+ 1, ...,p. Then
3 -1 = k
D A-9)a™y, =>.@-gg"=1-q
m=1 m=0

using a standard formula for geometric sums. In otleedsy the first summation in the equation above
expresses the probability that custoinisrcovered by an available facility in terms of theisiea

variablesyi,. Using this approach, Daskin formulates the MEXCLPolsvis:

31
(MEXCLP) maximize Z= ZZD‘, L= Vi, o
; iv m=1 (32)
subject to mZ::lyim - E/ x; <0 Oi OV
ij = (33
jov
x; 0{01} 0j ov (34)
y, 0{01} Oiav (35)

The objective function (31) calculates the expected cover@gastraints (32) allow the total number of
Yim Variables, for fixed, to be no more than the total number of opened fasilihat cover. At first it
may seem that the model needs a constraint of the form

Yim<Yime HiOV,m=1..,p-1

in order to ensure thai, is set to 1 for the correct valuesnafthat is, for the&k smallest values oh,
wherek is the number of opened facilities that coveHowever, such a constraint is not necessary since
the objective function coefficient is larger for smallatues oim; the model will automatically sgi, = 1

for thek smallest values ah.

Daskin (1983) proposes a heuristic for the MEXCLP basetbde exchanges, and several

metaheuristics have been proposed subsequently (e.gg agtl Saydam 2002, Rajagopadaal. 2007).



The primary criticism that has been leveled at the MERConcerns the assumption of a uniform
system-wide availability probability, since availabilityght vary based on geographic area, or on the
demand assigned to each facility. ReVelle and Hogan (1988¢ss this concern in the Maximum
Availability Location Problem (MALP), a chance-constrainersion of the MCLP. They formulate two
versions of the model, one in which the availability probahgitgssumed to be the same throughout the
system; the main difference between this model and th¥@®IP is that the MALP maximizes the
number of demand units that are covered with at leastarcerobability, whereas the MEXCLP
includes the expected coverage in the objective. ReMallédagan’s second MALP model estimates the
busy probability separately for each customer by assumindgitibties within the coverage radius of a
given customer are available only to that customer. Obwidhisl assumption is not true but provides an
easy, and fairly accurate, estimate of the availalplibbability. The two models are nearly identical
once the availability probabilities are calculat€ghalvdo, Chiyoshi, and Morabito (2005) present a

framework that attempts to unify the MEXCLP and MALP.

Batta, Dolan, and Krishnamurthy (1989) embed Larson’s (1974, 1§p8&ycube queuing model into
MEXCLP to compute the availability probabilities endogenousligey find that their model disagrees
substantially with MEXCLP in terms of expected coverageligpted but nevertheless results in similar
sets of facilities chosen. Marianov and ReVelle (1986ntlate a version of the MEXCLP that
endogenously calculates the availability property using a quesialgl at each facility. The region
around each customer node is treated dd/8is/s queue, whereis the number of servers located
within the coverage radius. Their model implicitly assuthes that the call rate in the neighborhood is
not too different from that in adjacent neighborhoods. rébalting model is structurally similar to the

MALP but uses different (but pre-computable) values for theregeeradius.



3.3 Gradual Covering Models
The models discussed in this chapter so far all assumeavierage is a binary concept: either a customer

is covered or it isn’t, and the distance from the custdm#re covering facility is irrelevant. In practice,
though, customers that are located very close to atya@lg., a fire station) may be served better than
those located farther away, even if both customers d@négwthe nominal coverage radius. In this case,
the benefit from coverage is decreasing with the customelityfatistance, as illustrated in Figure 4(a).
Moreover, some facilities (e.g., garbage dumps) are besdficial when they are close (to reduce

transportation costs) but not too close (to reduce odadrtrack traffic), as illustrated in Figure 4(b).

0-1 1-2 2-3 3-4

Distance from Customer to Facility (miles) Distance from Customer to Facility {miles)

Benefit
Benefit

0-2 2-5 5-10

4+ 10-20 20+

(a) (b)

Figure 4. Benefit of coverage vs. distance: (a) strictly dedrepgb) non-monotonic.

Church and Roberts (1983) introduce the Weighted Benefit MaXdoverage (WBMC) Model, which
extends the MCLP to accommodate non-binary coverage benBfigsobjective is to maximize the sum
of all customers’ coverage benefits (defined as the benefitrieof demand times the demand at that
customer) subject to a constraint on the number of tiasiliocated. The formulation is a relatively
straightforward modification of (MCLP) and includes a cager variabley) and a constraint for each
customer—distance pair. (Each “distance” is reallgrge of distances, as in Figure 4.) The number of
variables and constraints therefore grows linearly Wighnumber of distance ranges. If the benefits are
not monotonically decreasing with the distance, as in Figflne then an additional set of constraints is

required to ensure that customers are assigned to theasshepened facilities, a property that is



automatic if benefits are monotonically decreasing. Tégltiag formulations are more complex than
(MCLP), but Church and Roberts find that they still iretheir “integer-friendliness”: the LP relaxation

is generally very tight, and often all-integer.

4. Conclusions and Future Research Directions
In this chapter we have discussed two classical modelsdating facilities to ensure coverage of

customer nodes. One model, the SCLP, reqeirey customer to be covered and does so with the
minimum number of facilities, while the other, the MCloRaximizes the demand covered subject to a
limit on the number of facilities. Both models havergged considerable attention in the location theory
literature, and both models (and their extensions) havevaeefy applied in practice, especially in

public-sector applications such as EMS location.

The SCLP and MCLP are both reasonably easy to sol¥keisense that modern general-purpose IP
solvers such as CPLEX can solve problems with hundrettt®osands of nodes to optimality in a few
minutes on a desktop computer. This stems, in part, fierfatt that the LP relaxations of both

problems tend to be tight, and even yield integer optsolaitions for a large percentage of instances.

Therefore, although these problems are NP-hard, tieegraong the easiest problems in that class.

On the other hand, many of the extensions of these maeatsuech more computationally challenging.
Daskin’s (1982) MEXCLP model, for example, or the queuingedacongestion models discussed by
Berman and Krass (2002), have more complex structures th&tCttfe or MCLP and therefore cannot
be solved using off-the-shelf solvers, except for small ins&an©ne important direction for future
research, therefore, is the development of effective, amatgorithms and heuristics for extensions of

the SCLP and MCLP.



Of particular interest are stochastic and robust variaintoverage models. Although the literature on
stochastic facility location models is extensive (see Sr3@d@6 for a review), most such models consider
cost-based objectives rather than coverage-based onesblé\®otaeptions are the expected-coverage
models described in Section 3.2, and their variants.)mfsortant topic for future study is therefore the
incorporation of stochastic elements—such as demanus| tiaes, server availabilities, and supply
disruptions—into coverage models. The resulting models afg tikée significantly more complex

than their deterministic counterparts, but the stoehasbgramming and robust optimization literatures
are vast, and many of their more sophisticated tools yetv® be tapped by the location science

community.

The distinction between cost- and coverage-based moddks imghe previous paragraph is an important
one since it is often equivalent to the distinctiotsen private- and public-sector applications—the
former is primarily concerned with cost minimization vetthe latter is often encouraged or mandated to
provide adequate coverage to all demand locations (ReVellgsMand Liebman 1970). Public-sector
and humanitarian applications have gained increaseatiatten the OR community in recent years—for
example, the 2008 INFORMS Annual Meeting featured “Doing Godld @R” as a central theme, as did
the February, 2008 issue ©OR/MS Today. The application of coverage models to EMS and other
services has been a public-OR success story for decaddbearenewed interest provides an opportunity

for existing and new coverage models to be applied for the pydodid.
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