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1. Introduction 
The mail-order DVD-rental company Netflix chooses distribution center locations so that most of its 

customers receive their DVDs within one business day via first-class U.S. mail.  Similarly, many 

municipalities aim to have fire crews reach 911 callers within a specified time, such as four minutes.  

Both of these are examples of the notion of coverage, a concept that is central to several classes of facility 

location models; it indicates whether a demand location is within a pre-specified radius (measured by 

distance, travel time, cost, or another metric) of its assigned facility.  Homeowners are covered if they are 

within four minutes of the nearest fire station, and Netflix customers are covered if they are within one 

mailing day of a distribution center.  Note that in the fire-station example, municipalities typically want to 

cover all residents (while minimizing the number of service stations to open), whereas Netflix wants to 

cover as many customers as possible (subject to a limit on the number of warehouses it may operate at 

any time, as specified by its capital budget).  The fire-station problem is an example of the set covering 

location problem (SCLP), while Netflix’s problem is an example of the maximal covering location 

problem (MCLP).  This chapter discusses both problems. 

 

The SCLP was first introduced by Hakimi (1965) and was later formulated as an integer programming 

problem by Toregas, et al. (1971).  The MCLP was introduced by Church and ReVelle (1974).  Both 

models, and their variants, have been applied extensively to public-sector facility location problems, such 

as the location of emergency medical service (EMS) vehicles (Eaton, et al. 1985), fire stations (Schilling, 

et al. 1980), bus stops (Gleason 1975), wildlife reserves (Church, Stoms, and Davis 1996), and emergency 



air services (Flynn and Ratick 1988).  They have been applied to a much more limited extent in the 

private sector (see, e.g., Nozick and Turnquist 2001).   

 

The SCLP and MCLP are closely related to the p-center problem, which aims to locate at most p facilities 

to minimize the maximum distance, among all customers, between the customer and its assigned facility.  

In the p-center problem, the coverage radius itself constitutes the objective function.  See the Introduction 

chapter of this book for a more thorough discussion of the relationships among these classical models.  

 

Like most location problems, the SCLP and MCLP may be defined as continuous problems (in which 

facilities may be located anywhere on the plane) or as discrete problems (in which they may be located 

only at the nodes of a network).  In this chapter we consider the latter approach. 

 

The remainder of this chapter is organized as follows.  In Section 2, we discuss classical papers on the 

SCLP (in Section 2.1) and on the MCLP (in Section 2.2), present the results of computational 

experiments, and discuss more recent variations.  In Section 3, we discuss the impact that these models 

have had and the bodies of research they have inspired, focusing generalized notions of coverage. Finally, 

we conclude in Section 4 and suggest some possible future research directions.   

2. Historical Contributions 
We present the classical models for the SCLP by Hakimi (1965) and Toregas, et al. (1971), and for the 

MCLP by Church and ReVelle (1974), in Sections 2.1 and 2.2, respectively. 

2.1 The Set Covering Location Problem 

2.1.1 Hakimi (1965) 
Although the generic (non-location) set-covering problem had been formulated prior to Hakimi’s (1965) 

seminal paper on the SCLP, Hakimi’s work is important for, among other things, introducing the notion 

of coverage into facility location models.  Hakimi’s proposed solution method, which involved the use of 



Boolean functions, never proved to be efficient enough to warrant its use in practice; rather, the SCLP is 

generally solved using integer programming (IP) techniques, first proposed by Toregas, et al. (1971).  We 

discuss Hakimi’s model and briefly outline the Boolean-function approach in this section.  In Section 

2.1.2, we present the IP method of Toregas, et al. 

 
We consider a graph G = (V, A) and assume that every node in V is both a customer (demand) node and a 

potential site for a facility.  (However, one can easily extend the models below to handle the cases in 

which some customers may not be facilities, or some facilities are not customers, i.e., do not need to be 

covered.  Below, we use terms like “customer i” and “facility j” as shorthand for “the customer located at 

node i” and “the facility located at node j.”)  Let n = |V|.  The distance between nodes i and j is given by 

dij, and the maximum allowable distance between a customer and its nearest opened facility—the 

“coverage distance”— is given by s.  If (i, j) ∈ A, then dij is the length of the arc (i, j), and otherwise it is 

the shortest distance from i to j on the graph.  (We use the term “distance” throughout, but the parameters 

dij and s may just as well represent travel times, costs, or another measure of proximity.)   Therefore, 

facility j covers customer i if dji ≤ s.  We define  

Vi = {j ∈ V : dji ≤ s}, 

that is, Vi is the set of nodes that cover customer i.  Note that every Vi is nonempty, assuming that dii = 0 

for all i.   

 

The objective of the SCLP is to find the minimum-cost (or minimum-cardinality) set of locations such 

that every node in V is covered by some node in the set.  The application that Hakimi cites for the SCLP 

is that of locating policemen along a highway network so that every intersection (vertex of the graph) is 

within one distance unit of a policeman.  Subsequently, the problem has found a much broader range of 

applications, as discussed earlier. 

 



We will assume that facilities may be located only at the nodes of the network, not along the edges.  Note 

that it may be optimal to locate along edges, since the well known “Hakimi property”—which says that an 

optimal solution always exists in which facilities are located at the nodes, rather than along the edges, of 

the network—does not apply to the SCLP.  (Hakimi introduced his famous property in an earlier paper 

(Hakimi 1964) in the context of the p-median problem, not of the SCLP.)  A very simple counterexample 

consists of two nodes connected by a single edge of length 1 and a coverage distance of 0.5.  If facilities 

are allowed on the edges, the unique optimal solution consists of one facility (located in the middle of the 

edge), whereas the optimal nodal solution consists of two facilities, one at each node.   

 

On the other hand, a problem in which facilities may be located on edges may be converted to a node-

only problem by inserting dummy nodes onto the edges, taking advantage of the fact that there are only a 

finite number of possible optimal locations along edges.  See Church and Meadows (1979) for details. 

 

In some applications, it is desirable to use a different coverage distance for each customer—for example, 

if customers have service agreements that specify different response times.  In this case, the coverage 

distance is customer dependent, si, and the set Vi is given by Vi = {j ∈ V: dji ≤ si}.  The analysis below 

changes in only minor ways. 

 

The SCLP is closely related to the graph-theoretic vertex cover problem, whose objective is to find a 

subset of nodes in the graph such that every node in the graph is adjacent to some node in the set and such 

that no strict subset of the set has the same property.  Such a set of nodes is called a cover.  The 

optimization version of the vertex cover problem seeks the minimum-cardinality cover, and this problem 

is a special case of the SCLP in which s = 1 and dij = 1 for all (i, j) ∈ A.  Indeed, this special case is the 

problem considered by Hakimi (1965), although he is usually credited for introducing the more general 

SCLP, since he presented the problem explicitly in a facility location context.  In this section we will 



assume, following Hakimi, that s = dij = 1, though in subsequent sections we will allow s and dij to be 

arbitrary.  Hakimi notes that the assumption that dij = 1 is not overly restrictive, since if the arc lengths are 

greater than 1, one could simply introduce dummy nodes along the arcs, one unit apart, assuming that the 

arc lengths are integers.  Of course, this modeling trick comes at considerable computational expense, 

especially since Hakimi’s method relies on an enumerative approach whose computational complexity 

increases exponentially with the number of nodes. 

 

In the remainder of this section, we describe Hakimi’s (1965) approach to solving the SCLP.  As noted 

earlier, this method is not commonly used today and is discussed here primarily for its historical interest. 

 

Recall that Vi is the set of nodes that cover node i; given the assumption of unit arc-lengths and unit 

coverage distance, Vi is simply the set of nodes that are adjacent to i, plus i itself.  Let S be a subset of the 

node set V.  For each node i, we define a Boolean (binary) variable xi that equals 1 if i ∈ S and 0 

otherwise.  With a slight abuse of notation, we can write 

U
Vi

iixS
∈

= , 

where xii is taken to equal the set {i} if xi = 1 and the null set otherwise.  We also define Xi as the sum of 

the Boolean variables for the nodes in Vi; that is, 

∑=
∈ iVj

ji xX . 

Here, ∑ represents Boolean summation, analogous to the “or” operator, in which 1 + 1 = 1.  Then Xi = 1 if 

and only if S contains a node that covers node i.  

 

Finally, we define the Boolean function f, which takes as inputs the vector of Boolean variables for the 

nodes and returns a single Boolean value: 

∏=
∈Vi

in Xxxf ),,( 1 K . 



Since node i is covered if and only if Xi = 1, we have the following theorem: 

 

Theorem 1. S contains a covering of V if and only if f (x1,…,xn) = 1. 

 

The advantage of using the function f is that it allows us to use Boolean algebra to construct coverings of 

V.  Although this approach still involves enumerating all coverings, it allows us to do so without 

enumerating all subsets of V to identify them.  In particular, we will create a “minimum sum of products,” 

i.e., the smallest possible sum of products of xi variables that is logically equivalent to f (x1,…,xn).  This 

method involves eliminating terms that are implied by others, then using Boolean algebra to simplify the 

resulting formula until we have an expression consisting of the sum of simple products of variables such 

that no product is implied by (contains) any other.  The method is best explained by use of an example. 

 

Example 1. We illustrate the method using the sample network in Figure 1. 

 

 

Figure 1. Sample network. 
 

Using the adjacencies depicted in the figure, X1 = x1 + x3, X2 = x2 + x4, and so on.  Therefore, 

).)()()()((),,( 43553245421342311 xxxxxxxxxxxxxxxxxxf n +++++++++++=K  

By Theorem 1, to find all coverings of the graph, we need to find all possible values of {x1, …, x5} that 

make f (x1,…,xn) = 1, i.e., such that all terms in the product above equal 1. 
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To begin, note that the first term is contained in the third.  Since we need each term to equal 1, the third 

term equals 1 if the first does; therefore, we can eliminate the third term.  Similarly, the fourth term 

contains the fifth, so we can eliminate the fourth term.  The resulting expression is: 

).)()((),,( 54342311 xxxxxxxxxf n ++++=K  

Boolean algebra contains two distributive laws; one says that, for any Boolean variables x, y, and z,  

x + (yz) = (x + y)(x + z). 

Applying this law to the last two terms, we get 

).)((),,( 52324311 xxxxxxxxxf n +++=K  

The other Boolean distributive law says that  

x(y + z) = xy + xz. 

Applying this law to multiply the two terms, and repeatedly applying both Boolean identity laws (which 

say that x + x = x and that xx = x), we get 

5323243521321411 ),,( xxxxxxxxxxxxxxxxxf n +++++=K . 

Finally, by the Boolean redundance law (x + xy = x), we can remove the second and last terms: 

3243521411 ),,( xxxxxxxxxxxf n +++=K . 

Therefore, the covers for the graph in Figure 1 are: 

{1, 4}, {1, 2, 5}, {3, 4}, {2, 3}. 

All but {1, 2, 5} are minimum covers. � 

 

Hakimi was optimistic that this enumerative approach would prove to be practical: “…since the subject of 

simplification of Boolean functions has been widely studied and there are efficient digital computer 

programs for such a purpose, the above formulation is feasible.”  Twenty-first-century readers, however, 

will recognize that the enumerative approach is impractical for large instances.  Moreover, since the 

vertex cover problem is NP-complete (Garey and Johnson 1979), no polynomial-time exact algorithm for 



the SCLP exists.  However, more efficient approaches than Hakimi’s exist; we discuss a mathematical-

programming-based approach in the next section 

2.1.2 Toregas, et al. (1971) 
Toregas, et al. (1971) formulate the SCLP as an integer programming (IP) problem and use standard 

mathematical programming methods to solve it.  We discuss their approach next. 

 

The IP has one set of decision variables: 





=
otherwise,0

 nodeat  opened isfacility  a if,1 j
x j  

for j ∈ V.  Note that this variable xj has no relation to the Boolean variables xi defined in Section 2.1.1. 

 

The IP is formulated as follows: 

 

(SCLP) minimize ∑=
∈Vj

jxz   (1) 

 subject to 1≥∑
∈ iVj

jx  Vi ∈∀  (2) 
 

  }1,0{∈jx  Vj ∈∀  (3) 

           

The objective function (1) computes the total number of facilities opened.  Constraints (2) require at least 

one node from the coverage set Vi to be opened for each node i.  Constraints (3) are standard integrality 

constraints.  Here, we do not assume that s = dij = 1 (as we did in Section 2.1.1); any values for these 

parameters may be used in determining the coverage sets Vi. 

 

This formulation is virtually identical to that of the classical set-covering problem; here it is discussed in 

the context of location theory in particular.  It is well known that the set-covering problem typically has a 

small integrality gap; that is, the optimal objective value of the LP relaxation (denoted zLP) is close to that 

of the IP itself (Bramel and Simchi-Levi 1997), and often the LP relaxation even has all-integer solutions.  



In fact, ReVelle (1993) argues that many facility location problems have this property and discusses 

“integer-friendly programming” techniques for several classical problems. 

 

However, there do exist instances of the SCLP whose LP relaxations do not have all-integer optimal 

solutions (otherwise the problem would not be NP-hard).  An example is as follows. 

 

Example 2. Consider the network depicted in Figure 2.  In this example, s = 1.  An optimal solution to the 

LP relaxation of (SCLP) is given by x1 = x2 = x3 = 0.5, x4 = 0, with an objective value of zLP = 1.5. � 

 

Figure 2. Network for which SCLP does not have all-integer LP relaxation. 
 

Since the coefficient of each xj is 1 in the objective function of (SCLP), it is clear that the objective 

function value is integer for any solution to the IP.  Since zLP is a lower bound on z*, the optimal objective 

function value for the IP, and since z* must be integer, we can say that 

 LP* zz ≥ , 

where  a  denotes the smallest integer greater than or equal to a.  Therefore, Toregas, et al. propose 

adding the following cut to (SCLP): 

 LPzx
Jj

≥∑
∈

. (4)

We denote the resulting problem (SCLP-C).  The new cut may eliminate some fractional solutions, and 

the LP relaxation to (SCLP-C) may have an all-integer solution as a result. 
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For the example in Figure 2, (SCLP-C) does indeed have an integer solution: x1 = x2 = 1, x3 = x4 = 0, for 

example, with z* = 2.  (It also has optimal fractional solutions, e.g., xj = 0.5 for all j, but the simplex 

method would find integer solutions since these represent extreme points of the feasible region.) 

 

Toregas, et al. therefore propose a two-step solution procedure for the SCLP: 

1. Solve the LP relaxation of (SCLP).  If the optimal solution is integer, STOP. 

2. Otherwise, solve the LP relaxation of (SCLP-C) using the optimal objective value from step 1 in 

the right-hand side of (4). 

Even with constraint (4), the LP relaxation may not have an integer solution.  Toregas, et al. report that 

they found no such instance in their computational experiments, though we found several such instances 

in ours; see Section 2.1.3.1.  In fact, Rao (1974) gives two counterexamples; in one, the addition of cut (4) 

results in a fractional solution, and in the other, the addition of cut (4) results in an integer but non-

optimal solution.  (See also the reply to Rao’s note by Toregas, ReVelle, and Swain (1974)). 

 

Toregas, et al. also discuss the relationship between the SCLP and a variant of the p-median problem in 

which each customer may only be served by facilities that are within a distance of s.  The formulation is 

obtained simply by forcing the assignment variable to be 0 for facility–customer pairs that are more than s 

units apart, or, alternately, by indexing the assignment variables for each customer i over facilities j in Vi, 

as opposed to all facilities j in V.  (We omit the formulation here.)   

 

The optimal objective value of this p-median variant changes with s.  For sufficiently large s, the 

objective function value is no different from the p-median without distance constraints; as s decreases, the 

objective function value increases as a step function; and for sufficiently small s, the problem is infeasible.  

Toregas, et al. argue that the solution to the SCLP provides some information about the feasibility of this 

problem.  In particular, for a given value of p, the smallest value of s for which the p-median variant is 

feasible is equal to the smallest value of s for which the SCLP has an optimal objective value of p.  On the 



other hand, the solution to SCLP does not provide any information about the breakpoints of the step 

function that relates the p-median objective to s. 

2.1.3 Experiments and Variants 
In Section 2.1.3.1, we discuss the results of our computational experiment related to (SCLP).  In Section 

2.1.3.2, we discuss a technique for reducing the problem size of the SCLP, and in Section 2.1.3.4, we 

discuss a variant involving fixed costs. 

2.1.3.1 Computational Experiment 
We performed a computational experiment to confirm the results reported by Toregas, et al.—namely, 

that the LP gap for (SCLP) is small, and that cut (4) produces integer solutions.  For each value of n = 50, 

100, 200, 400, 800, we generated 100 random instances of the SCLP.  Parameters were generated as 

follows: 

• x- and y-coordinates were drawn from U[0,100] 

• Distances were calculated using the Euclidean metric 

• The coverage distance s was drawn from U[0,140] (140 ≈ maximum possible distance between 

two points in 100 × 100 grid) 

 

For each instance, we solved the LP relaxation of (SCLP) using CPLEX v10.2.0 to obtain zLP.  If the 

optimal solution to the LP was not integer, we added cut (4) and solved the LP relaxation to (SCLP-C) to 

obtain zLP-C.  If the optimal solution was still not integer, we solved (SCLP) as an IP to obtain z*.  (If 

either of the LP relaxations resulted in integer solutions, their objective values give us z*.)  

 

The results are given in Table 1.  The columns labeled “% Integer” list the percentage of instances for 

which the LP relaxation produced an integer optimal solution.  The columns labeled “Avg LP Gap” 

and ”Max LP Gap” list the average and maximum, respectively, of the LP gap, measured as (zLP – z*) / z* 

for (SCLP) and (zLP-C – z*) / z* for (SCLP-C). 



 

Table 1. Performance of LP relaxations of (SCLP) and (SCLP-C). 
 

 (SCLP)  (SCLP-C) 
n % Integer Avg LP 

Gap 
Max LP 
Gap 

 % Integer Avg LP 
Gap 

Max LP Gap 

50 94.0% 0.0068 0.2500  98.0% 0.0000 0.0000 
100 87.0% 0.0104 0.1667  92.0% 0.0000 0.0000 
200 88.0% 0.0074 0.2500  90.0% 0.0000 0.0000 
400 73.0% 0.0217 0.3350  82.0% 0.0003 0.0250 
800 76.0% 0.0195 0.2500  82.0% 0.0017 0.0714 
Total 83.6% 0.0132 0.3350  88.8% 0.0004 0.0714 

 

The LP gap for (SCLP) is small and tends to be smaller for smaller values of n.  The worst gap we found 

was 33.5% for a problem with n = 800.  The addition of cut (4) reduces the LP gap substantially (from 

0.0132 to 0.0004, on average), but does not guarantee integer solutions—even with the cut, 11.2% of 

instances had fractional optimal solutions.  Several of these instances also had integer optimal solutions, 

though CPLEX did not find these.  In general, CPLEX solved the IP in well under one minute on a laptop 

computer, even for the largest problems. 

2.1.3.2 Row and Column Reduction 
The size of (SCLP) can often be reduced substantially by using row- and column-reduction techniques.  

These methods exploit the coverage structure by eliminating rows and columns that are dominated by 

others.  In particular:  

• A facility j1 dominates another facility j2 if it covers all of the customers that j2 does; that is, if j2 

∈ Vi implies j1∈ Vi for all i ∈ V.  In this case, there is no reason to open facility j2 since j1 covers 

all the same customers and possibly more.  Therefore we can set 0
2

=jx , or equivalently, 

eliminate the column corresponding to j2. 

• A customer i1 dominates another customer i2 if every facility that covers i2 also covers i1; that is, 

if 
12 ii VV ⊆ .  In this case, if constraint (2) holds for i1 it also holds for i2, and therefore we can 

eliminate the row corresponding to i2. 



Row and column reduction techniques are appropriate for the SCLP because of the binary nature of 

coverage.  Most facility location problems with distance objectives cannot generally accommodate these 

techniques, except heuristically, since under most metrics it is impossible for a facility to dominate 

another, i.e., to be closer to every customer than another facility is.   

 

These techniques were proposed by Toregas and ReVelle (1972).  See also Daskin (1995) and Eiselt and 

Sandblom (2004) for thorough discussions and examples of row- and column-reduction techniques. 

2.1.3.3 Facility Fixed Costs 
If the facilities each have a different fixed cost fj, then the problem becomes to choose facilities to cover 

all demands at minimum possible cost.  This problem can be formulated simply by replacing the objective 

function (1) with 

minimize ∑=
∈Vj

jj xfz  

The SCLP as formulated above is a special case in which fj = 1 for all j.  The linear-programming-based 

solution methods described in Section 2.3 can easily accommodate this variation.  So can the Boolean-

function approach: at the final step, we simply choose the cover that has the smallest total fixed cost. 

2.2 The Maximal Covering Location Problem 

2.2.1 Church and ReVelle (1974) 

2.2.1.1 Introduction and Formulation 
Whereas the SCLP has the form 

  minimize number of facilities opened 

  subject to cover all demand, 

the maximal covering location problem (MCLP) has the inverse form: 

  maximize demand covered 

  subject to  limit on number of facilities opened. 



The SCLP treats all demand nodes as equivalent since the coverage constraint applies equally to all.  In 

the MCLP, in contrast, nodes are weighted by the demand that they generate, and the objective favors 

coverage of larger demands over smaller ones. 

 

As the number of allowable facilities increases, the demand covered naturally increases as well.  The 

modeler can plot a tradeoff curve depicting the performance of a range of solutions along these two 

dimensions; the decision maker can then choose a solution based on this tradeoff. 

 

Our notation in this section is identical to that in Section 2.1, with the addition of two new parameters: ai 

is the demand at node i per unit time, and p is the maximum allowable number of facilities.  We also 

introduce a new set of decision variables: 





=
otherwise,0

facility someby  covered is ustomer  if,1 ic
yi  

 

The MCLP is formulated by Church and ReVelle (1974) as follows: 

  (MCLP)     maximize ∑=
∈Vi

ii yaz   (5) 
 

 subject to 
i

Vj
j yx

i

≥∑
∈

 Vi ∈∀  (6) 
 

  px
Vj

j =∑
∈

  (7) 
 

  }1,0{∈jx  Vj ∈∀  (8) 

  }1,0{∈iy  Vi ∈∀  (9) 

 

The objective function (5) computes the total demand covered.  Constraints (6) prohibit a customer from 

counting as “covered” unless some facility that covers it has been opened.  Constraint (7) requires exactly 

p facilities to be opened.  Constraints (8) and (9) are standard integrality constraints.  (In fact, it suffices to 

relax constraints (9) to 0 ≤ yi ≤ 1 since integer values for the yi are optimal if the xj are integer.)   

 



Church and ReVelle cite White and Case (1973) as formulating a similar model to (MCLP) that 

maximizes the number of demand nodes covered, rather than the total demand.  Case and White’s model 

is therefore a special case of the MCLP in which ai = 1 for all i. 

 

Church and ReVelle also present an alternate formulation that uses a new decision variable iy  defined as 

ii yy −= 1 ; that is, 





=
otherwise,0

facilityany by  coverednot  is ustomer  if,1 ic
yi  

In the alternate formulation, constraints (6) are replaced by 

1≥+∑
∈

i
Vj

j yx
i

  Vi ∈∀  

The revised constraints say that if node i is not covered by any facility ( 0=∑ ∈ iVj jx ), then iy  must equal 

1.  The objective function (5) can be rewritten as 

maximize  ∑ ∑−∑ =−
∈ ∈∈ Vi Vi

iii
Vi

ii yaaya )1( , (10)

or equivalently, 

minimize  ∑
∈Vi

ii ya , 

 

(11)

since the first term in (10) is a constant.  The revised objective (11) minimizes the uncovered demand.  

The revised formulation is then given by 

  (MCLP2)     minimize ∑=
∈Vi

ii yaz   (12) 
 

 subject to 1≥∑ +
∈ iVj

ij yx  Vi ∈∀  (13) 
 

  px
Vj

j =∑
∈

  (14) 
 

  }1,0{∈jx  Vj ∈∀  (15) 

  }1,0{∈iy  Vi ∈∀  (16) 

 

The two formulations are mathematically equivalent, as are their LP relaxations.   



 

The MCLP is NP-hard (Megiddo, Zemel, and Hakimi 1983).  In the next two sections, we describe 

heuristic and exact approaches to solving it, all of which are discussed by Church and ReVelle (1974). 

2.2.1.2 Heuristic Solution Methods 
Like many facility location problems, the MCLP lends itself nicely to greedy heuristics such as the 

Greedy Adding (GA) heuristic, which Church and ReVelle (1974) credit to Church’s (1974) Ph.D. 

dissertation.  The GA heuristic begins with all facilities closed, then opens p facilities in sequence, 

choosing at each iteration the facility that increases coverage the most.  (For a discussion of greedy and 

other heuristics for facility location problems, see Current, Daskin and Schilling 2002.) 

 

Solutions from the GA heuristic are nested in the sense that all of the facilities in the solution to the p-

facility problem are also opened in the solution to the (p+1)-facility problem.  Optimal solutions to the 

MCLP are not, in general, nested in this way.  Therefore, Church and ReVelle also suggest an alternate 

heuristic, called the Greedy Adding with Substitution (GAS) heuristic, which attempts to rectify this 

problem by allowing an open facility to be closed and a closed facility to be opened at each iteration. 

 

Like any heuristic, the GA and GAS are not guaranteed to find the optimal solution.  The GAS, however, 

tends to perform well in practice, and both heuristics execute very quickly. 

2.2.1.3 Linear Programming Approach 
Church and ReVelle propose solving (MCLP2) directly using linear programming and branch-and-bound.  

Like the SCLP, the LP relaxation of the MCLP often yields all-integer solutions: Church and ReVelle 

report that approximately 80% of their test instances had integer solutions; we found an even higher 

percentage in our computational tests (Section 2.2.2.1).  Branch-and-bound may be applied to resolve 

fractional solutions to the LP relaxation, but Church and ReVelle also suggest a method that is effective 

when solving the same problem for consecutive values of p. 



 

The method takes as input a fractional solution to the p-facility problem and an integer solution to the (p – 

1)-facility problem.  It is effective when the (p – 1)-facility solution covers all but a few nodes.  We 

illustrate the method using an example.   

 

Example 3. Consider an instance of the MCLP for which the total demand across all nodes is 100 units.  

Suppose we have found an integer solution to the 4-facility problem and that it covers all but two nodes, 

for a total of 91 demand units covered.  The two uncovered nodes (we’ll call them 1 and 2) have demands 

of 4 and 6, respectively.  Suppose further that the LP relaxation to the 5-facility problem is fractional and 

covers 98 demand units.  Finally, suppose that the minimum ai among all nodes i is 3. 

 

Now, the optimal integer solution with p = 5 cannot cover all of the nodes, since the LP relaxation has an 

objective value of 98.  In fact, the IP solution may cover at most 97 demand units, since at best it leaves 

the 3-demand node uncovered.  We can create an integer solution to the p = 5 problem by adding node 2 

to the p = 4 solution.  Since the p = 4 solution covered 91 demands, not including node 2, this new 

solution covers 91 + 6 = 97 demands.  This solution must be optimal for p = 5 since 97 is an upper bound 

on the objective value.  An optimal solution for the problem with p = 6 can now be found by adding node 

1 to the p = 5 solution; the resulting solution covers all demands. � 

 

Church and ReVelle refer to this method as the “inspection” method.  It can be summarized as follows.  

Let zIP(p) be the optimal p-facility objective value of (MCLP), that is, the optimal demand covered by p 

facilities, and let zLP(p) be the optimal p-facility objective value of the LP relaxation of (MCLP).  We 

assume that we know the integer optimal solution with p – 1 facilities and that the optimal solution to the 

LP relaxation with p facilities is not integer.  Let amin = min{ai : i ∈ V} and a∑ = ∑i ∈ V ai.  We summarize 

the inspection method in the following theorem.  (Church and ReVelle illustrate this method with an 

example, rather than stating it formally as a theorem.) 



 

Theorem 2. Suppose the following conditions hold: 

1. zLP(p) < a∑ 

2. zIP(p – 1) + ai = a∑ – amin for some node i that is not covered in the optimal solution to the (p – 1)-

facility problem. 

Then an optimal solution to the p-facility problem consists of the optimal solution to the (p – 1)-facility 

problem plus node i. 

 

Church and ReVelle report that, of the 20% of their test instances whose LP relaxations did not have 

integer solutions, half could be solved using the inspection method.  The other half was solved via 

branch-and-bound. 

2.2.1.4 Mandatory Closeness Constraints 
Church and ReVelle discuss a variant of the MCLP in which we require that all customers be covered 

within a secondary coverage distance t (t ≥ s).  For example, we might want to maximize the demand 

covered within 50 miles but require all demands to be covered within 100 miles.  This model, known as 

the MCLP with Mandatory Closeness Constraints, can be viewed as a hybrid between the MCLP and the 

SCLP since it has a max-coverage objective plus a hard coverage constraint. 

 

This problem can be formulated simply by adding the following constraint to either formulation of the 

MCLP: 

1≥∑
∈ iUj

jx  Vi ∈∀ , 

where Ui = {j ∈ V : dji ≤ t}.  The resulting model can be solved using linear programming and branch-

and-bound. 

 



Suppose we solve the SCLP and find that, for a given instance, the minimum number of facilities that 

covers all demand nodes with a coverage distance of t is p*.  Generally there are many optimal solutions 

to this problem.  The MCLP with mandatory closeness constraints gives us a mechanism for choosing 

among these, by selecting the solution that also maximizes the demands covered within some distance s.  

In particular, we solve the MCLP with mandatory closeness constraints using p* as the number of 

facilities to open and t as the secondary coverage distance. 

2.2.2 Experiments and Variants 

2.2.2.1 Computational Experiment 
We performed a computational experiment to verify Church and ReVelle’s claim that the MCLP often 

results in all-integer solutions.  We set n = 50, 100, 200, 400, 800.  For each value of n, we generated 100 

random instances and tested three different values of p.  The random instances were generated as 

described in Section 2.1.3.1, with one additional parameter: 

• Demands ai were drawn from U[0,100] 

 

We solved the LP relaxation of (SCLP2) using CPLEX v10.2.0 and, if the solution was not all integer, we 

solved the IP.  The results are displayed in Table 2.  The columns labeled “p” gives the value of p in 

(SCLP2).  The column labeled “Avg LP Gap >0” gives the average integrality gap among only those 

instances with a positive integrality gap, or “—” if there were no such instances.  All other columns are 

interpreted as in Table 1.   

 

Table 2. Performance of LP relaxation of (MCLP2). 
 

n p % Integer Avg LP Gap Avg LP Gap 
>0 

Max LP Gap 

50 2 
5 
8 

95.0% 
96.0% 
99.0% 

0.0011 
0.0019 
0.0000 

0.0542 
0.0635 
— 

0.0646 
0.1109 
0.0000 

100 2 
5 

100.0% 
98.0% 

0.0000 
0.0002 

— 
0.0232 

0.0000 
0.0232 



8 98.0% 0.0000 — 0.0000 
200 4 

10 
16 

96.0% 
93.0% 
92.0% 

0.0016 
0.0092 
0.0028 

0.0540 
0.1308 
0.0699 

0.1293 
0.3957 
0.1296 

400 4 
10 
16 

98.0% 
92.0% 
92.0% 

0.0000 
0.0006 
0.0158 

— 
0.0190 
0.5254 

0.0000 
0.0280 
0.9632 

800 4 
10 
16 

100.0% 
91.0% 
89.0% 

0.0000 
0.0002 
0.0195 

— 
0.0089 
0.4865 

0.0000 
0.0089 
0.9704 

Total  95.3% 0.0035  0.9704 
 

The LP relaxation MCLP seems to generate integer solutions even more frequently than the SCLP does 

(at least for our test instances), an average of 95.3% of the time.  When it fails to do so, the integrality gap 

can be quite large, though this is partly a function of the minimization objective, which may have optimal 

values near zero and hence any suboptimal solution may have a large error on a percentage basis. 

 

Note that some instances had fractional LP solutions but an integrality gap of 0, as evidenced by the fact 

that some rows have “% Integer” <100% but an average LP gap of 0.  For these instances, an optimal 

integer solution exists for the LP relaxation but CPLEX returned a fractional optimal solution instead. 

2.2.2.2 Tradeoff Curve 
Figure 3 displays the optimal objective function value of (MCLP2)—the number of demand units 

uncovered—as p varies for a particular random instance with n = 100 and s = 15.  As expected, the 

uncovered demand decreases as p increases.  For p ≥ 18, all demands are covered.  The convex shape is 

typical of tradeoff curves for the MCLP, meaning that additional facilities provide decreasing marginal 

returns in terms of additional coverage.   

 



 

 
Figure 3. Tradeoff curve: demands uncovered vs. p. 

 

2.2.2.3 Lagrangian Relaxation Approach 
The MCLP can also be solved using Lagrangian relaxation.  The key idea is to remove a set of constraints 

and add a penalty to the objective function for violating the constraints.  The resulting problem is easier to 

solve but may produce solutions that are infeasible for the MCLP.  By adjusting the objective-function 

penalties iteratively, the solutions found approach the optimal solution for the MCLP.  The use of 

Lagrangian relaxation for the MCLP was detailed by Galvão and ReVelle (1996), although Daskin, et al. 

(1989) also report computational results from a similar method without providing details.  See Fisher 

(1981, 1985) for an excellent overview of Lagrangian relaxation. 

 

We illustrate the Lagrangian relaxation method using formulation (MCLP), though it can also be applied 

to (MCLP2).  We relax constraints (6) using Lagrange multipliers λi to obtain the following Lagrangian 

subproblem: 
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  }1,0{∈jx  Vj ∈∀  (19) 

  }1,0{∈iy  Vi ∈∀  (20) 

 

This problem decouples by x and y since there are no constraints involving both sets of variables.  As a 

result, it can be solved easily.  The optimal y-values are given by 


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=
otherwise,0
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λ
 

To find the optimal x-values, we set xj = 1 for the p facilities with the largest values of ∑
∈∈ iVjVi

i
:

λ .  The 

optimal objective value of (MCLP-LR) provides an upper bound on that of (MCLP).  Feasible (lower 

bound) solutions can be found by opening the p facilities that are opened in the upper-bound solution and 

setting yi = 1 for each customer i that is covered by some opened facility.  Lagrange multipliers can be 

updated using subgradient optimization, and branch-and-bound can be used if the Lagrangian procedure 

fails to yield a suitably small optimality gap; see Daskin (1995) for more details.  Daskin, et al. (1989) 

report that the procedure works quite well, especially when the lower-bound heuristic is supplemented by 

a substitution heuristic. 

2.2.2.4 Budget Constraints 
We can incorporate fixed costs into the model in a similar manner as we did for the SCLP in Section 

2.1.3.3.  Here, the fixed cost appears in the constraints rather than the objective function.  In particular, 

we replace constraint (7) or (14) with  

Bxf
Vj

jj ≤∑
∈

, 



where B is a budget imposed exogenously on the total fixed costs.  This constraint can be easily handled 

by the linear programming approach in Section 2.2.1.3, but it somewhat complicates the Lagrangian 

approach in Section 2.2.2.3 since determining the optimal x values now requires us to solve the following 

knapsack problem: 

 
maximize j

Vj VjVi
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subject to Bxf
Vj
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 }1,0{∈jx  Vj ∈∀  

Although this problem can be solved quite quickly using modern codes, it is still NP-hard, and it may 

slow the Lagrangian procedure significantly. 

2.2.2.5 Relationship to p-Median Problem 
The MCLP can be formulated as a special case of the p-median problem (PMP) through a simple 

transformation of the distance matrix.  In particular, we set  



 ∈

=
otherwise,1

 if,0 i
ji

Nj
d  

That is, we redefine the distance metric so that the distance from node j to node i is 0 if j covers i and 1 

otherwise.  The PMP is then formulated as usual (see, e.g., Daskin 1995).  The optimal solution will cover 

as many demand units as possible using p facilities.  Any algorithm for the PMP can then be applied to 

solve the MCLP. 

3. Extensions 
The literature contains many enhancements to the SCLP and MCLP.  In this section, we focus in 

particular on generalizations of the notion of coverage.  One common criticism of the SCLP and MCLP is 

that they assume that all customers within a facility’s coverage radius can be served by the facility, and 

served equally.  In practice, facilities are not always available when needed, especially in the public-

sector arena where facilities may represent ambulances, fire crews, etc.  One approach to this issue is 

backup coverage, in which customers are required or encouraged to be covered by more than one open 



facility.  Another approach is expected coverage, which accounts for probabilistic information.  Moreover, 

in many cases the coverage benefit changes as the distance between a customer and its assigned facility 

changes.  This dependency is captured by the notion of gradual coverage.  We briefly discuss models for 

backup, expected, and gradual coverage in the next three subsections.  For thorough reviews of backup 

and expected coverage models, see Daskin, Hogan, and ReVelle (1988) or Berman and Krass (2002). 

3.1 Backup Coverage Models 
Both the SCLP and the MCLP have been extended to consider solutions in which customers are covered 

by more than one facility.  One may require backup coverage in order for a customer to count as 

“covered,” or one may simply reward solutions for backup coverage.   

3.1.1 Required Backup Coverage 
It is simple to formulate a required-backup version of either the SCLP or the MCLP.  In the SCLP, we 

simply modify constraints (2) to read  

mx
iVj

j ≥∑
∈

 Vi ∈∀ , 

where m is the desired number of times that each customer is to be covered.  In the MCLP, we can replace 

constraints (6) with  

i
Vj

j myx
i

≥∑
∈

 Vi ∈∀ . 

Then yi must equal 0 unless at least m facilities that cover customer i are open.  This constraint is likely to 

weaken the LP relaxation of (MCLP), however, as is typical of such “big-M” constraints. 

3.1.2 Rewards for Backup Coverage 
We focus on models in which m = 2.  Extensions to these models to consider m > 2 are straightforward 

but often yield weaker LP relaxations, as discussed above.  Let 





=
otherwise,0

facilities moreor  by two covered is customer  if,1 i
wi  



The models formulated below contain a reward in the objective function for each customer that is covered 

twice.  However, the backup-coverage reward is strictly a secondary objective; in no case should a 

solution with more facilities have a better objective than one with fewer facilities, even if it has better 

backup coverage.   

 

Daskin and Stern (1981) propose the following model for the SCLP with backup coverage: 

  (SCLP-BC)    minimize ∑−∑+=
∈∈ Vi

i
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j wxVz )1|(|   (21) 
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∈

i
Vj

j wx
i

 Vi ∈∀  (22) 
 

  }1,0{∈jx  Vj ∈∀  (23) 

  }1,0{∈iw  Vi ∈∀  (24) 

The objective function (21) enforces the hierarchical nature of the primary objective (minimizing the 

number of facilities) and the secondary one (maximizing twice-covered customers).  It does so by 

multiplying the primary objective by a constant large enough that even if the primary objective is as small 

as possible (equal to 1), the secondary objective can never exceed it.  Therefore, the solution will never 

open more facilities than necessary solely to improve the secondary objective.  Constraints (22) require 

each customer to be covered at least once and prohibit wi from equaling 1 unless customer i is covered at 

least twice. 

 

Another advantage of this formulation is that its solutions avoid facilities that are dominated by others in 

the sense described in Section 2.1.3.2.  As a result, the LP relaxation to (SCLP-BC) is more likely to have 

all-integer solutions than that of (SCLP) is.  (See Daskin and Stern 1981 for justifications of both of these 

claims.) 

 

A similar hierarchical version of the MCLP was introduced by Storbeck (1982) and reformulated by 

Daskin, Hogan, and ReVelle (1988).  We modify their formulation somewhat in what follows. 
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  }1,0{∈jx  Vj ∈∀  (28) 

  }1,0{∈iy  Vi ∈∀  (29) 

  }1,0{∈iw  Vi ∈∀  (30) 

The objective function (25) maximizes a sum of the primary coverage (first term) and backup coverage 

(second term); the weight on the first term ensures that primary coverage will never be sacrificed in order 

to achieve backup coverage.  Note that the secondary coverage objective considers nodes covered, rather 

than demand units covered.  This is required in order for the weighting to achieve the desired hierarchy.  

Constraints (26) stipulate that customer i may be considered covered (yi = 1) only if at least one facility in 

Vi is open, and may be considered twice covered (wi = 1) only if two such facilities are open.  Since the 

objective function coefficient for yi is greater than that for wi, the model will always set yi = 1 before it 

sets wi = 1, thus ensuring the desired coverage hierarchy.   

3.2 Expected Coverage Models 
The class of expected coverage models is descended primarily from the Maximum Expected Covering 

Location Problem (MEXCLP) introduced by Daskin (1982).  Daskin’s primary application is in the siting 

of emergency medical service (EMS) vehicles.  The MEXCLP maximizes the expected coverage of each 

node, defined using probabilistic information about facility availability, subject to a constraint on the 

number of facilities. 

 

The MEXCLP assumes that the average system-wide probability that a given facility (vehicle) is busy is 

given by q.  If a customer is covered by k facilities, then the probability that all those facilities are busy at 

a given point in time is given by qk, and the probability that at least one facility is available is 1 – qk.  The 

MEXCLP defines new variables to keep track of the number of covering facilities for each customer: let 
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for all i ∈ V and m = 1, …, p.  Note that if customer i is covered by exactly k facilities, then yim = 1 for m 

= 1, …, k and yim = 0 for m = k + 1, …, p.  Then 

∑∑
−

==

− −=−=−
1

01

1 1)1()1(
k

m

km
p

m
im

m qqqyqq  

using a standard formula for geometric sums.  In other words, the first summation in the equation above 

expresses the probability that customer i is covered by an available facility in terms of the decision 

variables yim.  Using this approach, Daskin formulates the MEXCLP as follows: 
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The objective function (31) calculates the expected coverage.  Constraints (32) allow the total number of 

yim variables, for fixed i, to be no more than the total number of opened facilities that cover i.  At first it 

may seem that the model needs a constraint of the form 

1, +≤ miim yy  1,,1, −=∈∀ pmVi K  

in order to ensure that yim is set to 1 for the correct values of m; that is, for the k smallest values of m, 

where k is the number of opened facilities that cover i.  However, such a constraint is not necessary since 

the objective function coefficient is larger for smaller values of m; the model will automatically set yim = 1 

for the k smallest values of m. 

 

Daskin (1983) proposes a heuristic for the MEXCLP based on node exchanges, and several 

metaheuristics have been proposed subsequently (e.g., Aytug and Saydam 2002, Rajagopalan et al. 2007). 



 

The primary criticism that has been leveled at the MEXCLP concerns the assumption of a uniform 

system-wide availability probability, since availability might vary based on geographic area, or on the 

demand assigned to each facility.  ReVelle and Hogan (1989) address this concern in the Maximum 

Availability Location Problem (MALP), a chance-constrained version of the MCLP.  They formulate two 

versions of the model, one in which the availability probability is assumed to be the same throughout the 

system; the main difference between this model and the MEXCLP is that the MALP maximizes the 

number of demand units that are covered with at least a certain probability, whereas the MEXCLP 

includes the expected coverage in the objective.  ReVelle and Hogan’s second MALP model estimates the 

busy probability separately for each customer by assuming that facilities within the coverage radius of a 

given customer are available only to that customer.  Obviously this assumption is not true but provides an 

easy, and fairly accurate, estimate of the availability probability.  The two models are nearly identical 

once the availability probabilities are calculated.  Galvão, Chiyoshi, and Morabito (2005) present a 

framework that attempts to unify the MEXCLP and MALP. 

 

Batta, Dolan, and Krishnamurthy (1989) embed Larson’s (1974, 1975) hypercube queuing model into 

MEXCLP to compute the availability probabilities endogenously.  They find that their model disagrees 

substantially with MEXCLP in terms of expected coverage predicted but nevertheless results in similar 

sets of facilities chosen.  Marianov and ReVelle (1996) formulate a version of the MEXCLP that 

endogenously calculates the availability property using a queuing model at each facility.  The region 

around each customer node is treated as an M/M/s/s queue, where s is the number of servers located 

within the coverage radius.  Their model implicitly assumes that that the call rate in the neighborhood is 

not too different from that in adjacent neighborhoods.  The resulting model is structurally similar to the 

MALP but uses different (but pre-computable) values for the coverage radius. 



3.3 Gradual Covering Models 
The models discussed in this chapter so far all assume that coverage is a binary concept: either a customer 

is covered or it isn’t, and the distance from the customer to the covering facility is irrelevant.  In practice, 

though, customers that are located very close to a facility (e.g., a fire station) may be served better than 

those located farther away, even if both customers are within the nominal coverage radius.  In this case, 

the benefit from coverage is decreasing with the customer–facility distance, as illustrated in Figure 4(a).  

Moreover, some facilities (e.g., garbage dumps) are most beneficial when they are close (to reduce 

transportation costs) but not too close (to reduce odors and truck traffic), as illustrated in Figure 4(b).   

  

(a)                                                                         (b) 

Figure 4. Benefit of coverage vs. distance: (a) strictly decreasing, (b) non-monotonic. 
 

Church and Roberts (1983) introduce the Weighted Benefit Maximal Coverage (WBMC) Model, which 

extends the MCLP to accommodate non-binary coverage benefits.  The objective is to maximize the sum 

of all customers’ coverage benefits (defined as the benefit per unit of demand times the demand at that 

customer) subject to a constraint on the number of facilities located.  The formulation is a relatively 

straightforward modification of (MCLP) and includes a coverage variable (y) and a constraint for each 

customer–distance pair.  (Each “distance” is really a range of distances, as in Figure 4.)  The number of 

variables and constraints therefore grows linearly with the number of distance ranges.  If the benefits are 

not monotonically decreasing with the distance, as in Figure 4(b), then an additional set of constraints is 

required to ensure that customers are assigned to their nearest opened facilities, a property that is 



automatic if benefits are monotonically decreasing.  The resulting formulations are more complex than 

(MCLP), but Church and Roberts find that they still retain their “integer-friendliness”: the LP relaxation 

is generally very tight, and often all-integer. 

4. Conclusions and Future Research Directions 
In this chapter we have discussed two classical models for locating facilities to ensure coverage of 

customer nodes.  One model, the SCLP, requires every customer to be covered and does so with the 

minimum number of facilities, while the other, the MCLP, maximizes the demand covered subject to a 

limit on the number of facilities.  Both models have garnered considerable attention in the location theory 

literature, and both models (and their extensions) have been widely applied in practice, especially in 

public-sector applications such as EMS location. 

 

The SCLP and MCLP are both reasonably easy to solve, in the sense that modern general-purpose IP 

solvers such as CPLEX can solve problems with hundreds or thousands of nodes to optimality in a few 

minutes on a desktop computer.  This stems, in part, from the fact that the LP relaxations of both 

problems tend to be tight, and even yield integer optimal solutions for a large percentage of instances.  

Therefore, although these problems are NP-hard, they are among the easiest problems in that class. 

 

On the other hand, many of the extensions of these models are much more computationally challenging.  

Daskin’s (1982) MEXCLP model, for example, or the queuing-based congestion models discussed by 

Berman and Krass (2002), have more complex structures than the SCLP or MCLP and therefore cannot 

be solved using off-the-shelf solvers, except for small instances.  One important direction for future 

research, therefore, is the development of effective, accurate algorithms and heuristics for extensions of 

the SCLP and MCLP.   

 



Of particular interest are stochastic and robust variants of coverage models.  Although the literature on 

stochastic facility location models is extensive (see Snyder 2006 for a review), most such models consider 

cost-based objectives rather than coverage-based ones.  (Notable exceptions are the expected-coverage 

models described in Section 3.2, and their variants.)  An important topic for future study is therefore the 

incorporation of stochastic elements—such as demands, travel times, server availabilities, and supply 

disruptions—into coverage models.  The resulting models are likely to be significantly more complex 

than their deterministic counterparts, but the stochastic programming and robust optimization literatures 

are vast, and many of their more sophisticated tools have yet to be tapped by the location science 

community. 

 

The distinction between cost- and coverage-based models made in the previous paragraph is an important 

one since it is often equivalent to the distinction between private- and public-sector applications—the 

former is primarily concerned with cost minimization while the latter is often encouraged or mandated to 

provide adequate coverage to all demand locations (ReVelle, Marks, and Liebman 1970).  Public-sector 

and humanitarian applications have gained increased attention in the OR community in recent years—for 

example, the 2008 INFORMS Annual Meeting featured “Doing Good with OR” as a central theme, as did 

the February, 2008 issue of OR/MS Today.  The application of coverage models to EMS and other 

services has been a public-OR success story for decades, and the renewed interest provides an opportunity 

for existing and new coverage models to be applied for the public good. 
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