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Principal component analysis 



Principal component analysis 

Find direction of largest variance  



Sparse principal component analysis 

Find a sparse direction of largest variance  





Sparse PCA 

Principal component analysis 
Maximize the variance explained by factor x 

Sparse principal component 
analysis 
Maximize the variance explained by a 
factor x with bounded cardinality 









Sparse inverse covariance selection 



Sparse inverse covariance selection 



Sparse inverse covariance selection 



Optimizing log likelihood 



Enforcing sparsity 

•  NP-hard formulation  

•  Convex relaxation 

•  Convex optimization problem with unique solution for each  ̧



Primal-dual pair of problems 

Primal problem 

Reformulate using constraints 

Lagrangian 



Deriving the dual 



Primal-dual pair of problems 

Primal problem 

Dual problem 

Interior point method – O(n6) operations/iter 



Block coordinate ascent  
Update one row and one column of the dual matrix W at each step 

  



Block coordinate ascent subproblem 
Update one row and one column of the dual matrix W at each step 

  



Subproblem reformulation 

w12 =W11¯



Remember Lasso! 

Primal-Dual pair of problems 

 
 
 
 
 
 
 
 
 
 



Dual subproblem  

w12 =W11¯

The dual subproblem is the Lasso problem 



Remember coordinate descent for Lasso 

 
 
 
 
 
 
 
 
 
 
 

Soft-thresholding operator 



Remember coordinate descent for Lasso 

 
 
 
 
 
 
 
 
 
 
 

No need to compute W1/2 



Multiple Kernel Learning 

Modified from Gert Lanckriet’s  (UCSD) 
slides 



Support Vector Machines 

+ 
- 

  

  

  



Kernel SVM 

+ 

- 

  

  

  + 

Qi j = yi yj xi
> xj ! Qi j = yi yj Á(xi )

> Á(xj ) = yi yj K(xi , xj )
Kernel operation: K(xi , xj ) = Á(xi )

> Á(xj )

Examples:

² K(xi , xj ) = exp¡ j jx i ¡ x j j j 2 =2¾2

² K(xi , xj ) = (xi > xj /a1 + a2)d



•  Training: convex optimization problem (QP) 
•  Dual problem: 

•  Optimality condition:  

          

Maximal margin classification 



Kernel-based learning 
Embed data 

K 
i  

j 

IMPLICITLY: Inner product measures similarity 

Property: Any symmetric positive definite 
matrix specifies a kernel matrix & every kernel 
matrix is symmetric positive definite 



•  Primal problem: 

•  Can we do this? 
 

          

Optimizing over the kernel 



•  Primal problem: 

•  Consider 
 

          

Optimizing over the kernel? 



•  Training: 

 
•  Classification rule: classify new data point x: 

          

Classification using the kernel 



•  Training: 

 
•  Classification rule: classify new data point x: 

          

Classification using the kernel 



•  Primal problem: 

•  Need additional conditions on K 
 

          

Optimizing over the kernel? 



•  Primal problem: 

•  Still need more conditions 
 
 

          

When the unlabeled data is given 



Kernel methods with heterogeneous data 
 

–  First focus on every single source k of information 
individually 

–  Extract relevant information from source j into Kj 

–  Design algorithm that learns the optimal K, by 
“mixing” any number of kernel matrices Kj, for a 
given learning problem 

Focus on kernel design for specific types of information 

Flexibility 

Can ignore information irrelevant for learning task 

Homogeneous, standardized input 

1 

2 



•  Consider a convex sets of kernels 

 

Classification with multiple kernels 

Can reformulate this as an SOCP 



Convex combination of kernels 



Convex combination of kernels 

Because both problems are convex and have strictly feasible solutions 

Optimum of the linear function is achieved at the corners 

Omit Dy for simplicity 



Convex combination of kernels 



Convex combination of kernels 

This is a QCQP 



Convex combination of kernels 

An ASM 

An IPM 

A first order 
method 



•  Primal problem 

Multiple kernels: primal problem 



•  Reformulation as an SOCP 

•  Constraint of type 
–  Second-order cone (Lorentz cone, “ice-cream 

cone”) 

–  Self-dual cone  

Multiple kernels: dual problem 



•  Dual problem 

•  KKT conditions 
–   α is the solution of the SVM with K = Σj ηj Kj 

•   ηj's: from conic duality 
•  equivalent to previously obtained QCQP (for combining 

kernels)  

–  “Support vectors”: xi for which αi > 0 
–  “Support kernels”: Kj for which ηj > 0 

Multiple kernels: dual problem 

SKM: Support kernel machine 


