Lecture 20 – Matrix optimization in ML

Principal component analysis

Let us take three points in \mathbb{R}^2 :

$$x_1 = (2,1)$$
 $x_2 = (4,2)$
 $x_3 = (6,3)$

$$Y = \frac{1}{3} \sum_{i=1}^{3} x_i x_i^{\top} = \frac{1}{3} \left(\begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 16 & 8 \\ 8 & 4 \end{bmatrix} + \begin{bmatrix} 36 & 18 \\ 18 & 9 \end{bmatrix} \right)$$

$$Y = \frac{1}{3} \sum_{i=1}^{3} x_i x_i^{\top} = \frac{1}{3} \begin{bmatrix} 56 & 28 \\ 28 & 14 \end{bmatrix} = \frac{14}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix}$$

Principal component analysis

Find direction of largest variance

Let us take three points in \mathbb{R}^2 :

$$y_1 = (2,1) + (O(\epsilon), O(\epsilon))$$

 $y_2 = (4,2) + (O(\epsilon), O(\epsilon))$

$$y_3 = (6,3) + (O(\epsilon), O(\epsilon))$$

$$A = \frac{14}{\sqrt{3}} \begin{bmatrix} 2/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 2/\sqrt{3} & 1/\sqrt{3} \end{bmatrix} + \begin{bmatrix} O(\epsilon) & O(\epsilon) \\ O(\epsilon) & O(\epsilon) \end{bmatrix}$$

$$\begin{bmatrix} 2/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} = \operatorname{argmax}_{x \in \mathbf{R}^2, \|x\| = 1} x^{\top} A x$$

Sparse principal component analysis

Find a sparse direction of largest variance

Let us take three points in \mathbb{R}^2 :

$$y_1 = (2,1) + (O(\epsilon), O(\epsilon))$$

 $y_2 = (4,2) + (O(\epsilon), O(\epsilon))$
 $y_3 = (6,3) + (O(\epsilon), O(\epsilon))$

$$A = \frac{1}{3} \begin{bmatrix} 56 + O(\epsilon) & 28 + O(\epsilon) \\ 28 + O(\epsilon) & 14 + O(\epsilon) \end{bmatrix} \approx \frac{56}{3} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} + \begin{bmatrix} O(\tilde{\epsilon}) & O(\tilde{\epsilon}) \\ O(\tilde{\epsilon}) & O(\tilde{\epsilon}) \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \operatorname{argmax}_{x \in \mathbf{R}^2, \|x\| = 1, \operatorname{card}(x) = 1} x^{\top} A x$$

Introduction

Clustering of gene expression data in PCA versus sparse PCA, on 500 genes.

The PCA factors f_i on the left are dense and each use all 500 genes. The sparse factors g_1 , g_2 and g_3 on the right involve 6, 4 and 4 genes respectively.

Sparse PCA

Given a set
$$Y \in \mathbf{R}^{m \times n}$$
 compute empirical covariance matrix $A = \frac{1}{m} Y^{\top} Y$

Principal component analysis

Maximize the variance explained by factor x

$$\max_{x \in \mathbf{R}^n} \quad x^\top A x$$

s.t.
$$||x||_2 = 1$$

Sparse principal component analysis

Maximize the variance explained by a factor x with bounded cardinality

$$\max_{x \in \mathbf{R}^n} \quad x^{\top} A x$$

s.t.
$$card(x) = k$$

$$||x||_2 = 1$$

Semidefinite relaxation

Start from:

maximize
$$x^T A x$$

subject to $||x||_2 = 1$
 $\operatorname{Card}(x) \leq k$,

where $x \in \mathbb{R}^n$. Let $X = xx^T$ and write everything in terms of the matrix X:

Replace $X = xx^T$ by the equivalent $X \succeq 0$, $\operatorname{Rank}(X) = 1$:

again, this is the same problem.

Semidefinite relaxation

We have made some progress:

- The objective Tr(AX) is now linear in X
- The (non-convex) constraint $||x||_2 = 1$ became a linear constraint Tr(X) = 1.

But this is still a hard problem:

- The $Card(X) \leq k^2$ is still non-convex.
- So is the constraint $\operatorname{Rank}(X) = 1$.

We still need to relax the two non-convex constraints above:

- If $u \in \mathbb{R}^p$, Card(u) = q implies $||u||_1 \le \sqrt{q}||u||_2$. So we can replace $\operatorname{Card}(X) \leq k^2$ by the weaker (but convex): $\mathbf{1}^T |X| \mathbf{1} \leq k$.
- We simply drop the rank constraint

Semidefinite Programming

Semidefinite relaxation:

maximize
$$x^TAx$$
 subject to $\|x\|_2 = 1$ $\operatorname{Card}(x) \leq k$, becomes x^TAx subject to $\operatorname{Tr}(AX)$ subject to $\operatorname{Tr}(X) = 1$ $1^T|X|1 \leq k$ $X \succeq 0$,

- This is a semidefinite program in the variable $X \in \mathbf{S}^n$...
- Solve small problems (a few hundred variables) using IP solvers, etc.
- Dimensionality reduction apps: solve very large instances.

Solution: use first order algorithm. . .

Sparse inverse covariance selection

Sparse inverse covariance selection

p random varibles

$$x = \{x_1, ..., x_n\}$$

Multivariate Gaussian probability density function:

$$P(\mathbf{x}) = (2\pi)^{-\frac{n}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- $\Sigma \in \mathbb{R}^{n \times n}$ covariance matrix
- Zeros in Σ^{-1} : conditional independence
- Sparsity of Σ^{-1} : better interpretability

Sparse inverse covariance selection

Multivariate Gaussian probability density function:

$$P(\mathbf{x}) = (2\pi)^{-\frac{n}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- Given X m realizations of \boldsymbol{x} , $(\mu = 0)$
- $\max_{\Sigma} \log(P(X)) = \max_{\Sigma} \frac{m}{2} \log(\det(\Sigma^{-1})) \frac{1}{2} Tr((XX^{\top})\Sigma^{-1})$
- Can compute Σ^{-1} maximing log-likelihood

Optimizing log likelihood

- $\max_{\Sigma} \log(P(X)) = \max_{\Sigma} \frac{m}{2} \log(\det(\Sigma^{-1})) \frac{1}{2} Tr((XX^{\top})\Sigma^{-1})$
- Let $A = \frac{1}{m} X X^{\top}$
- $\Sigma^{-1} = \underset{C}{\operatorname{arg max}} \frac{m}{2} \left(\log \det C Tr(AC) \right)$

- Solution $\Sigma^{-1} = A^{-1}$ typically not sparse.
- Need to enforce sparsity of Σ^{-1} : Penalize for nonzeros

Enforcing sparsity

NP-hard formulation

$$\Sigma^{-1} = \arg \max_{C} \left(\frac{m}{2} (\log \det C - Tr(AC)) - \lambda Card(C) \right)$$

Convex relaxation

$$\Sigma^{-1} = \arg \max_{C} \frac{m}{2} (\log \det C - Tr(AC)) - \lambda ||C||_{1}$$
$$(||C||_{1} = \sum_{ij} |C_{ij}|)$$

• Convex optimization problem with unique solution for each λ

Primal-dual pair of problems

Primal problem

$$\max_{C \succ 0} \frac{m}{2} (\operatorname{Indet}(C) - Tr(AC)) - \lambda ||C||_1$$

Reformulate using constraints

$$\max_{C',C''} \frac{m}{2} [\ln \det(C' - C'') - Tr(A(C' - C''))] - \lambda Tr(E(C' + C'')),$$

s. t. $C' \ge 0, C'' \ge 0, C' - C'' > 0$

Lagrangian

$$\begin{split} &L(C',C'',U,V) = \\ &\frac{m}{2}[\ln \det(C'-C'') - Tr(A(C'-C''))] - \lambda Tr(E(C'+C'')) + U.*C' + V.*C'' \\ &U,V,C',C'' \geq 0 \end{split}$$

Deriving the dual

$$\nabla_{C'}L(C', C'', U, V) = \frac{m}{2}[(C' - C'')^{-1} - A] - \lambda E + U = 0$$

$$U \ge 0$$

$$\nabla_{C''}L(C', C'', U, V) = \frac{m}{2}[-(C' - C'')^{-1} + A] - \lambda E + V = 0$$

$$V \ge 0$$

$$W = (C' - C'')^{-1}$$

$$-\lambda E + V = \frac{m}{2}W - A = \lambda E - U$$

$$U, V \ge 0$$

$$\frac{m}{2}||W - A||_{\infty} \le \lambda$$

Primal-dual pair of problems

Primal problem

$$\max_{C \succ 0} \frac{m}{2} (\operatorname{Indet}(C) - Tr(AC)) - \lambda ||C||_1$$

Dual problem

$$\max_{W \succ 0} \{ \frac{m}{2} \ln(\det(W)) - mp/2 : \text{ s.t. } \frac{m}{2} ||(W - A)||_{\infty} \le \lambda \}$$

Interior point method – O(n⁶) operations/iter

Block coordinate ascent

Update one row and one column of the dual matrix W at each step

$$W = \left[\begin{array}{cc} W_{11} & w_{12} \\ w_{21} & w_{22} \end{array} \right]$$

$$\max_{W \succ 0} \{ \frac{m}{2} \ln(\det(W)) - mp/2 : \text{s.t. } \frac{m}{2} ||W - A||_{\infty} \le \lambda \}$$

$$lndetW = ln(det(W_{11})(w_{22} - w_{12}^T W_{11}^{-1} w_{12}))$$

Block coordinate ascent subproblem

Update one row and one column of the dual matrix W at each step

$$W = \left[\begin{array}{cc} W_{11} & w_{12} \\ w_{21} & w_{22} \end{array} \right]$$

$$\max_{w_{12}, w_{22}} \quad \ln(w_{22} - w_{12}^T W_{11}^{-1} w_{12}))$$
s.t.
$$\|w_{12} - a_{12}\|_{\infty} \le \frac{2}{m} \lambda, |w_{22} - a_{22}| \le \frac{2}{m} \lambda$$

$$\min_{w_{12}} \{ w_{12}^{\top} W_{11}^{-1} w_{12} : \text{ s.t. } \| w_{12} - a_{12} \|_{\infty} \le \frac{2}{m} \lambda,$$

Subproblem reformulation

$$\min_{w_{12}} \{ w_{12}^{\top} W_{11}^{-1} w_{12} : \text{ s.t. } \| w_{12} - a_{12} \|_{\infty} \le \frac{2}{m} \lambda,$$

$$w_{ exttt{12}} = W_{ exttt{11}} eta$$

$$\min_{\beta} \{ \beta^{\top} W_{11} \beta : \text{ s.t. } \|W_{11} \beta - a_{12}\|_{\infty} \le \frac{2}{m} \lambda \}$$

Remember Lasso!

Primal-Dual pair of problems

$$\min \quad \frac{1}{2}||Ax - b||^2 + \lambda||x||_1$$

min
$$\frac{1}{2}x^{\top}A^{\top}Ax$$

s.t. $||A^{\top}(Ax - b)||_{\infty} \le \lambda$

Dual subproblem

$$\min_{w_{12}} \{ w_{12}^{\top} W_{11}^{-1} w_{12} : \text{ s.t. } \| w_{12} - a_{12} \|_{\infty} \le \frac{2}{m} \lambda,$$

$$w_{12} = W_{11} \beta$$

$$\min_{\beta} \{ \beta^{\top} W_{11} \beta : \text{ s.t. } \|W_{11} \beta - a_{12}\|_{\infty} \le \frac{2}{m} \lambda \}$$

$$\min_{\beta} \{ \|W_{11}^{1/2}\beta - W_{11}^{-1/2}a_{12}\|^2 + \frac{4}{m}\lambda \|\beta\|_1$$

The dual subproblem is the Lasso problem

Remember coordinate descent for Lasso

$$\min_{x_i} \quad \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

Choose one variable x_i and column A_i . Let \bar{x} and \bar{A} correspond to the fixed part

$$\min_{x_i} \frac{1}{2} (A_i x_i + \bar{A}\bar{x} - b)^2 + \lambda |x_i|$$

Soft-thresholding operator

$$\min_{x_i} \frac{1}{2} (x_i - r)^2 + \lambda |x| \to x_i = \begin{cases} r - \lambda & \text{if } r > \lambda \\ 0 & \text{if } -\lambda \le r \le \lambda \\ r + \lambda & \text{if } r < -\lambda \end{cases}$$

$$r = -A_i^{\top} (\bar{A}\bar{x} - b) / ||A_i||^2, \ \lambda \to \lambda / ||A_i||^2$$

Remember coordinate descent for Lasso

$$\min_{x_i} \quad \frac{1}{2} \|W_{11}^{1/2} \beta - W_{11}^{-1/2} a_{12}\|^2 + \lambda \|\beta\|_1$$

$$\min_{\beta_i} \frac{1}{2} (\beta_i - r)^2 + \lambda |x| \to \beta_i = \begin{cases} r - \lambda & \text{if } r > \lambda \\ 0 & \text{if } -\lambda \le r \le \lambda \\ r + \lambda & \text{if } r < -\lambda \end{cases}$$

$$r = -((W_{11})_i^{\top} \bar{\beta} - (a_{12})_i)/(W_{11})_{ii}, \ \lambda \to \lambda/(W_{11})_{ii}$$

No need to compute W^{1/2}

Multiple Kernel Learning

Modified from Gert Lanckriet's (UCSD) slides

Support Vector Machines

Kernel SVM

$$Q_{ij} = y_i y_j x_i^* x_j ! Q_{ij} = y_i y_j \phi(x_i)^* \phi(x_j) = y_i y_j K(x_i, x_j)$$

Kernel operation: $K(x_i, x_j) = \phi(x_i)^* \phi(x_j)$

Examples:

$$K(x_i, x_j) = \exp^{i jjx_i i x_j jj^2 = 2\frac{3}{4}^2}$$

$$K(x_{\rm i}, x_{\rm j}) = (x_{\rm i} > x_{\rm j} / a_1 + a_2)^{\rm d}$$

Maximal margin classification

- Training: convex optimization problem (QP)
- **Dual** problem:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(x_{i})^{T} \phi(x_{j}) \quad \text{s.t.} \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0, \ 0 \leqslant \alpha_{i} \leqslant C$$

$$K_{ij} = \phi(x_{i})^{T} \phi(x_{j})$$

$$\max_{\alpha} \alpha^{T} e - \frac{1}{2} \alpha^{T} D_{y} K D_{y} \alpha \quad \text{s.t.} \quad \alpha^{T} y = 0, \ 0 \leqslant \alpha \leqslant C$$

Optimality condition:
$$w = \sum_{i=1}^{n} \alpha_i y_i \phi(x_i)$$

Kernel-based learning

Embed data

IMPLICITLY: Inner product measures similarity

Property: Any symmetric positive definite matrix specifies a kernel matrix & every kernel matrix is symmetric positive definite

Optimizing over the kernel

Primal problem:

$$\begin{array}{ll}
\underset{K \succeq 0}{\text{min min}} & \frac{1}{2} \alpha^{\top} D_{y} K D_{y} \alpha + C \sum_{i=1}^{n} \xi_{i} \\
\text{s.t.} & D_{y} K D_{y} \alpha + y \beta + s - \xi = -e, \\
0 \leqslant \alpha_{i} \leqslant C, \ \xi \geqslant 0
\end{array}$$

Can we do this?

Optimizing over the kernel?

Primal problem:

$$\begin{array}{ll}
\min_{K \succeq 0} \min_{\alpha} & \frac{1}{2} \alpha^{\top} D_{y} K D_{y} \alpha + C \sum_{i=1}^{n} \xi_{i} \\
\text{s.t.} & D_{y} K D_{y} \alpha + y \beta + s - \xi = -e, \\
0 \leqslant \alpha_{i} \leqslant C, \xi \geqslant 0
\end{array}$$

Consider

$$K = yy^{\top} \succeq 0$$

$$K(x_i, x_j) = \begin{cases} 1 & \text{if } x_i, x_j \text{ in the same class} \\ -1 & \text{if } x_i, x_j \text{ in different classes} \end{cases}$$

Classification using the kernel

Training:

$$\max_{\alpha} \ \alpha^{\top} 1 - \frac{1}{2} \alpha^{\top} D_y K D_y \alpha \quad \text{s.t.} \quad \alpha^{\top} y = 0, \ 0 \leqslant \alpha \leqslant C$$

Classification rule: classify new data point x:

$$f(\phi(x)) = \operatorname{sign} (w^T \phi(x) + b)$$
$$= \operatorname{sign} \left(\sum_{i=1}^n \alpha_i y_i \phi(x_i)^T \phi(x) + b \right)$$

Classification using the kernel

Training:

$$\max_{\alpha} \ \alpha^{\top} 1 - \frac{1}{2} \alpha^{\top} D_y K D_y \alpha \quad \text{s.t.} \quad \alpha^{\top} y = 0, \ 0 \leqslant \alpha \leqslant C$$

Classification rule: classify new data point x:

$$f(\phi(x)) = \operatorname{sign} \left(w^{T} \phi(x) + b \right)$$

$$= \operatorname{sign} \left(\sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})^{T} \phi(x) + b \right)$$

$$= \operatorname{sign} \left(\sum_{i=1}^{n} \alpha_{i} y_{i} k(x_{i}, x) + b \right)$$

Optimizing over the kernel?

Primal problem:

$$\begin{array}{ll}
\underset{K \succeq 0}{\text{min min}} & \frac{1}{2} \alpha^{\top} D_y K D_y \alpha + C \sum_{i=1}^{n} \xi_i \\
\text{s.t.} & D_y K D_y \alpha + y \beta + s - \xi = -e, \\
0 \leqslant \alpha_i \leqslant C, \xi \geqslant 0
\end{array}$$

Need additional conditions on K

When the unlabeled data is given

Primal problem:

$$\begin{array}{ll}
\underset{K\succeq 0}{\text{min min}} & \frac{1}{2}\alpha^{\top}D_{y}K_{tr}D_{y}\alpha + C\sum_{i=1}^{n}\xi_{i} \\
\text{s.t.} & D_{y}K_{tr}D_{y}\alpha + y\beta + s - \xi = -e, \\
0 \leqslant \alpha_{i} \leqslant C, \ \xi \geqslant 0
\end{array}$$

Still need more conditions

11tr	11ts;tr
$K_{\sf tr;ts}$	$K_{\sf ts}$

Kernel methods with heterogeneous data

- 1
- First focus on every single source k of information individually
- Extract relevant information from source j into K_i
- **-**
- Focus on kernel design for specific types of information
- 2
- Design algorithm that learns the optimal K, by "mixing" any number of kernel matrices K_j, for a given learning problem
- **->**
- Homogeneous, standardized input
- Flexibility
- Can ignore information irrelevant for learning task

Classification with multiple kernels

Consider a convex sets of kernels

$$K = \sum_{j=1}^{m} \eta_j K_{j,tr}$$

$$\sum_{j=1}^{m} \eta_j = c$$

$$\sum_{j=1}^{m} \eta_j K_j \succeq 0, \ \eta \geq 0$$

Can reformulate this as an SOCP

$$K_{tr} = \sum_{j=1}^{m} \eta_j K_{j,tr}$$
$$\sum_{j} \eta_j = c$$
$$K_j \succeq 0, \ \eta \ge 0$$

$$\min_{\eta_j \geqslant 0, \sum_j \eta_j = c} \left(\max_{\alpha, \alpha^\top y = 0} \quad \alpha^\top e - \frac{1}{2} \alpha^\top D_y \left(\sum_j \eta_j K_j \right) D_y \alpha \quad \text{s.t.} \quad 0 \leqslant \alpha \leqslant C \right)$$

$$\min_{\eta_j \geqslant 0, \sum_j \eta_j = c} \left(\max_{\alpha, \alpha^\top y = 0} \quad \alpha^\top e - \frac{1}{2} \alpha^\top \left(\sum_j \eta_j K_j \right) \alpha \quad \text{s.t.} \quad 0 \leqslant \alpha \leqslant C \right)$$

Omit D_v for simplicity

Because both problems are convex and have strictly feasible solutions

$$\left(\max_{\alpha,\alpha^\top y=0} \quad \alpha^\top e - \max_{\eta_j \geqslant 0, \sum_j \eta_j = c} \frac{1}{2} \alpha^\top \left(\sum_j \eta_j K_j\right) \alpha \quad \text{s.t.} \quad 0 \leqslant \alpha \leqslant C\right)$$

Optimum of the linear function is achieved at the corners

$$\left(\max_{\alpha,\alpha^{\top}y=0} \quad \alpha^{\top}e - c\max_{j} \frac{1}{2}\alpha^{\top} \left(K_{j}\right)\alpha \quad \text{s.t.} \quad 0 \leqslant \alpha \leqslant C\right)$$

$$\left(\max_{\alpha,\alpha^{\top}y=0} \quad \alpha^{\top}e - c\max_{j} \frac{1}{2}\alpha^{\top} \left(K_{j}\right)\alpha \quad \text{s.t.} \quad 0 \leqslant \alpha \leqslant C\right)$$

$$\max_{t,\alpha} \qquad \alpha^{\top} e - ct$$
s.t.
$$t \ge \frac{1}{2} \alpha^{\top} K_j \alpha$$
$$y^{\top} \alpha = 0$$
$$0 \le \alpha \le C$$

$$\left(\max_{\alpha,\alpha^{\top}y=0} \quad \alpha^{\top}e - c\max_{j} \frac{1}{2}\alpha^{\top} \left(K_{j}\right)\alpha \quad \text{s.t.} \quad 0 \leqslant \alpha \leqslant C\right)$$

$$\max_{t,\alpha} \qquad \alpha^\top e - ct$$
 s.t.
$$t \ge \frac{1}{2} \alpha^\top K_j \alpha$$

$$y^\top \alpha = 0 \qquad \text{This is a QCQP}$$

$$0 \leqslant \alpha \leqslant C$$

$$\begin{pmatrix} \max_{\alpha, \alpha^{\top} y = 0} & \alpha^{\top} e - c \max_{j} \frac{1}{2} \alpha^{\top} \left(K_{j} \right) \alpha \quad \text{s.t.} \quad 0 \leqslant \alpha \leqslant C \end{pmatrix}$$

Multiple kernels: primal problem

$$x \mapsto \begin{pmatrix} \phi_1(x) \\ \vdots \\ \phi_m(x) \end{pmatrix} \leftrightarrow w = \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}$$

Primal problem

$$\min_{w,b} \frac{1}{2} (\sum_{j} ||w_{j}||_{2})^{2} + C \sum_{i} \xi_{i}$$

$$s.t. \quad y_{i} (w^{\top} \phi(x_{i}) + b) \ge 1 - \xi_{i}, \quad i = 1, \dots, n$$

$$\xi_{i} \ge 0, \quad i = 1, \dots, n$$

Multiple kernels: dual problem

Reformulation as an SOCP

$$\min_{w,b,t} \frac{1}{2} \left(\sum_{j} t_{j} \right)^{2} + C \sum_{i} \xi_{i} \quad \text{s.t.} \quad \forall j, ||w_{j}||_{2} \leqslant t_{j}$$

- Constraint of type $||u||_2 \le t$
 - Second-order cone (Lorentz cone, "ice-cream cone")

- Self-dual cone

Multiple kernels: dual problem

Dual problem

$$\max_{\alpha} \ \alpha^{\top} 1 - \frac{1}{2} \max_{j} \alpha^{\top} K_{j} \alpha \quad \text{s.t.} \quad \alpha^{\top} y = 0, \ 0 \leqslant \alpha \leqslant C$$

- KKT conditions
 - α is the solution of the SVM with $K = \sum_{j} \eta_{j} K_{j}$
 - η_i's: from conic duality
 - equivalent to previously obtained QCQP (for combining kernels)
 - "Support vectors": x_i for which $\alpha_i > 0$
 - "Support kernels": K_j for which $\eta_j > 0$

SKM: Support kernel machine