
Lecture 18  
Optimization approaches to Sparse Regularized 

Regression 
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Least Squares Linear Regression 

  

  

  



Lasso 

Primal-Dual pair of problems 
 
 
 
 
 
 
 
 
 
 



Optimality Conditions 



An active set approach 



Optimality Conditions 



Active set approach 

 
 
 
 
 
 
 
 
 
 
 



Active set approach 

 
 
 
 
 
 
 
 
 
 
 



Checking optimality, choosing next nonzero element 



Least angle regression 
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Least angle regression 

AT 

(A(p,n)x(p,n)-b) 



Least angle regression 

AT 

(A(p,n)x(p,n)-b)=r 

residual 

If all angles are “big” (defined by ¸) or r is small then we are done! 





Computing regularization path 



Per iteration cost 

 
 
 
 
 
 
 
 
 
 
 

Update factorization of A(p,n)TA(p.n) at each step  - O(mk) 

Memory – O(k2) 

Compute AT(A(p,n)x(p,n)): O(nm) (improved by “sifting”) 

Can be too costly to compute and to store.  



Coordinate descent 



Coordinate descent 

 
 
 
 
 
 
 
 
 
 
 

Soft-thresholding operator 





Given the scaled gradient 

 
 
 
 
 
 
 
 
 
 
 

Can choose coordinate to update by: 

 

• Simply cycle through all coordinates 

• Update all at once 

• Choose the one with largest gradient component  

• Choose the one with largest obj. function improvement 

• Choose coordinate at random 







First order methods 



•  Consider: 

•  Linear lower approximation 

•  Quadratic upper approximation 

          

First-order proximal gradient methods 



 

•  Minimize quadratic upper approximation on each  iteration 

 
 
 
•   If µ· 1/L then 

First-order proximal gradient method 



 

•   Minimize upper approximation at an intermediate point.  

•  If µ· 1/L then 

Accelerated first-order method 
Nesterov, ’83, ‘00s, 

Beck&Teboulle ‘09 



 

•   Minimize upper approximation at an intermediate point.  

•  If µ· 1/L then in                       iterations finds solution       

Complexity of accelerated first-order method 
Nesterov, ’83, ‘00s, 

Beck&Teboulle ‘09 

This method is optimal if only gradient information is used. 



•  Consider: 

•  Quadratic upper approximation 

          

Prox method with nonsmooth term 

Assume that g(y) is such that the above 
function is easy to optimize over y 



 

l  Minimize quadratic upper relaxation on each  iteration 

l  If µ· 1/L then in O(1/²) iterations finds solution       

Beck&Teboulle, Tseng, 
Auslender&Teboulle, 2008 

First-order method for nonsmooth functions 



 

l  Minimize a upper approximation at an intermediate point.  

l  If µ· 1/L then in               iterations finds solution       

Fast-first order methods 

Beck&Teboulle, Tseng, 2008 



 g(y) in sparse regression 



 

l  Minimize upper approximation function Qf(x,y) on each  iteration 

Example 1 (Lasso) 

Closed form 
solution! 

O(n) effort 



Gradient method for Lasso 

2 matrix/vector multiplications + shrinkage operator per iteration 

                                          O(1/²) iteration bound 



Sparse logistic regression 

A gradient computation + shrinkage operator per iteration 

                                          O(1/²) iteration bound 



 

l  Very similar to the previous case, but with ||.|| instead of |.| 

Example 2 (Group Lasso) 

Closed form 
solution! 

O(n) effort  



SIMPLIFIED ACTIVE SET 
(EXTRA SLIDES)  



Optimality Conditions 



Active set approach  
 
 
 
 
 
 
 
 
 
 



Least angle regression 
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Least angle regression 
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Least angle regression 

AT 

(ABxB-b) 



Least angle regression 

AT 

(ABxB-b)=r 

residual 



Per iteration cost  
 
 
 
 
 
 
 
 
 
 

Update factorization of  AB
TAB: O(mk) if AB2 Rm x k 

 

Compute AT(ABxB): O(nm) (can be improved in practice) 

Can be too costly to compute and to store. We’ll now see 
how to avoid any matrix factorizations 


