Optimization Methods in Machine Learning Lecture 15

Optimization Methods for SVMs

- Stochastic gradient method
- Block-coordinate descent
- Active set method

Support Vector Machines

Classification SVM Problem

Given a training set of
$$(x_1, y_1), \dots, (x_n, y_n)$$
, $x_i \in \mathbf{R}^d$, $y \in \{+1, -1\}$

$$\min_{\xi, w} \frac{1}{2} w^{\top} w + c \sum_{i=1}^{n} \xi_{i}$$
s.t.
$$y_{i}(w^{\top} x_{i}) \geq 1 - \xi_{i}, \quad i = 1, \dots, n$$

$$\xi_{i} \geq 0, \quad i = 1, \dots, n.$$

Classification SVM Problem

Given a training set of
$$(x_1, y_1), \ldots, (x_n, y_n)$$
, $x_i \in \mathbf{R}^d$, $y \in \{+1, -1\}$

$$\min_{\xi,w} \frac{1}{2} w^{\top} w + c \sum_{i=1}^{n} \xi_{i}$$
s.t.
$$y_{i}(w^{\top} x_{i}) \geq 1 - \xi_{i}, \quad i = 1, \dots, n$$

$$\xi_{i} \geq 0, \quad i = 1, \dots, n.$$

What happened to β ?

$$w^{\top}x + \beta = (w, \beta)^{\top}(x, 1)$$

Stochastic gradient approach

Unconstrained formulation of the SVM problem

Given a training set
$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}$$
, $x_i \in \mathbf{R}^d, y \in \{+1, -1\}$

$$\min_{w} f(w) = \frac{\lambda}{2} ||w||^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(w, (x, y))$$

where

$$\ell(w, (x, y)) = \max\{0, 1 - y_i(w^{\top} x_i)\}$$

Find $f(w) \leq f(w^*) + \epsilon$ - ϵ -optimal solution.

Subgradient step

Consider the training set S and for a given w define $S^+ = \{(x, y) \in S \ y(w^\top x) < 1\}$

$$f(w) = \frac{\lambda}{2} \|w\|^2 + \frac{1}{|S|} \sum_{(x,y) \in S} \ell(w, (x,y))$$

an "app, subgradient of f(w):

$$\partial_w f(w) = \lambda w_t - \frac{1}{|S|} \sum_{(x,y) \in S^+} yx$$

Compute a subgradient step of lenth η_t .

$$w_{t+\frac{1}{2}} = w_t - \eta_t \partial_w f(w)$$

It can be shown that at optimality $||w|| \le 1/\sqrt{\lambda}$, hence we can project $w_{t+\frac{1}{2}}$ onto the ball to obtain w_{t+1} .

SVM problem using Huber loss function

Given a training set
$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}$$
, $x_i \in \mathbf{R}^d, y \in \{+1, -1\}$

$$\min_{w} f(w) = \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \phi_{\mu}(w, (x_i, y_i))$$

where

$$\phi_{\mu}(w, (x, y)) = \begin{cases} 0 & y(w^{\top}x) \ge 1\\ \frac{(y(w^{\top}x) - 1)^{2}}{2\mu} & 1 - \mu < y_{i}(w^{\top}x) < 1\\ 1 - y(w^{\top}x) - \frac{\mu}{2} & y(w^{\top}x) \le 1 - \mu \end{cases}$$

Find $f(w) \leq f(w^*) + \epsilon$ - ϵ -optimal solution in $O(\frac{1}{\epsilon})$ iterations

Approximate subgradient step

Consider a subset of the training set $A_t \subseteq S$ and for a given w define $A_t^+ = \{(x, y) \in A^t : y(w^\top x) < 1\}$

$$f_t(w) = \frac{\lambda}{2} ||w||^2 + \frac{1}{|A_t|} \sum_{(x,y)\in A_t} \ell(w,(x,y))$$

an "approximate" subgradient of f(w):

$$\partial_w f_t(w) = \lambda w_t - \frac{1}{|A_t|} \sum_{(x,y) \in A_t^+} yx$$

Compute a subgradient step of lenth η_t .

$$w_{t+\frac{1}{2}} = w_t - \eta_t \partial_w f(w, A_t)$$

It can be shown that at optimality $||w|| \le 1/\sqrt{\lambda}$, hence we can project $w_{t+\frac{1}{2}}$ onto the ball to obtain w_{t+1} .

Stochastic Gradient Method

Choose w_1 , such that $||w_1|| \leq \frac{1}{\sqrt{\lambda}}$.

For t = 1, 2, ..., T

- Choose $A_t \subset S$, where $|A_t| = k$.
- Set $A_t^+ = \{(x, y) \in A_t : y(w^\top x) < 1\}.$
- $\eta_t = \frac{1}{\lambda t}$
- $w_{t+\frac{1}{2}} = (1 \eta_t \lambda) w_t + \frac{\eta_t}{k} \sum_{(x,y) \in A_t^+} yx$
- $w_{t+1} = \min\{1, \frac{1/\sqrt{\lambda}}{\|w_{t+\frac{1}{2}}\|}\}w_{t+\frac{1}{2}}$

Convergence in expectation

Find $E(f(\bar{w})) \leq f(w^*) + \epsilon$ ϵ -optimal solution in expectation, where $\bar{w} = \frac{1}{t} \sum_{i=1}^{t} w_i$.

Why does this work?

- Each iteration of the algorithm takes $O(n_t s)$ operations, where s is the number of nonzeros attributes of each data point x_i and n_t is the size of A_t . There are no subproblems to solve.
- When $A_t = S$ and hence $n_t = n$, the algorithm takes at most $\tilde{O}(\frac{R^2}{\lambda \epsilon})$, iterations where $R = \max_i ||x_i||$.
- When $|A_t| < n$, then we need an assumption that elements in A_t a drawn from S as i.i.d. samples.
- With probability $1-\delta$ the algorithm achieves ϵ -optimal solution in at most $\tilde{O}(\frac{R^2}{\delta \lambda \epsilon})$, iterations.
- This means that the probabilistic complexity of this method does not depend on the size of the training set at all!

Stochastic Approximation for Machine Learning

$$\min_{\mathbf{w}} L(\mathbf{w}) = \mathbb{E}[\ell(\langle \mathbf{w}, \mathbf{x} \rangle, y)]$$

$$|\ell'| \leq 1$$

$$||\mathbf{x}||_2 \leq X$$

- Our previous approach was a mixed approach:
 - SAA: collect sample of size m and minimize empirical error (w/ norm constraint):

$$\min_{\|\mathbf{w}\|_2 \le B} \hat{L}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(\langle \mathbf{w}, \mathbf{x}_i \rangle, y_i)$$

- Optimize this with SGD, i.e. applying SA to the empirical objective
 - At each SGD iteration, pick random (x,y) from empirical sample
- SGD guarantee is on *empirical* suboptimality:

$$\hat{L}(\overline{\mathbf{w}}^{(k)}) \leq \hat{L}(\hat{\mathbf{w}}) + O\left(\sqrt{\frac{X^2B^2}{k}}\right)$$

– To get guarantee on L(w^(k)), need to combined with uniform concentration:

$$\sup_{\|\mathbf{w}\| \le B} \left| \widehat{L}(\mathbf{w}) - L(\mathbf{w}) \right| \le O\left(\sqrt{\frac{X^2B^2}{m}}\right)$$

- Pure SA approach:
 - Optimize L(w) directly
 - Same SGD guarantee, but directly to the generalization error:

$$L(\overline{\mathbf{w}}^{(k)}) \leq L(\mathbf{w}^*) + O\left(\sqrt{\frac{X^2 \|\mathbf{w}^*\|_2^2}{k}}\right)$$

More Data \Rightarrow More Work?

10k training examples

2.3% error (when using the predictor)

2.29% error

Can always sample and get same runtime:

1 hour

2.3% error

Can we leverage the excess data to **reduce** runtime?

10 minutes

2.3% error

But I really care about that 0.01% gain

Study runtime increase as a function of target accuracy

My problem is so hard, I have to crunch 1M examples

Study runtime increase as a function of problem difficulty (e.g. small margin)

Error Decomposition

- Approximation error:
 - Best error achievable by large-margin predictor
 - Error of population minimizer
 w₀ = argmin E[f(w)] = argmin λ|w|² + E_{x,y}[loss(⟨w,x⟩;y)]
- Estimation error:
 - Extra error due to replacing E[loss] with empirical loss
 w* = arg min f_n(w)
- Optimization error:
 - Extra error due to only optimizing to within finite precision

The Double-Edged Sword

- When data set size increases:
 - Estimation error decreases
 - Can increase optimization error,
 i.e. optimize to within lesser accuracy ⇒ fewer iterations
- **(**

- But handling more data is expensive e.g. runtime of each iteration increases
- Stochastic Gradient Descent,
 e.g. PEGASOS (Primal Efficient Sub-Gradient Solver for SVMs)
 [Shalev-Shwartz Singer Srebro, ICML'07]
 - Fixed runtime per iteration
 - Runtime to get fixed accuracy does not increase with n

Optimization Problem

$$w^* = \sum_{i=1}^n \alpha_i y_i x_i, \quad 0 \le \alpha_i \le c$$

$$\min_{\boldsymbol{\alpha},\beta,\xi} \qquad \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} Q \boldsymbol{\alpha} + c \sum_{i=1}^{n} \xi_{i}$$
s.t.
$$-Q \boldsymbol{\alpha} + y \beta + s_{i} - \xi_{i} = -1, \quad i = 1, \dots, n$$

$$s_{i} \geq 0, \xi \geq 0, 0 \leq \alpha_{i} \leq c, \qquad i = 1, \dots, n,$$

Linear formulation

Kernel formulation

$$\min_{\alpha} \frac{1}{2} \alpha^{\top} Q \alpha - e^{\top} \alpha$$
s.t.
$$y^{\top} \alpha = 0,$$

$$0 \le \alpha \le c,$$

Support Vectors

Decomposition Methods

Dual Optimization Problem

$$\min_{\alpha} \frac{1}{2} \alpha^{\top} Q \alpha - e^{\top} \alpha$$
s.t.
$$y^{\top} \alpha = 0,$$

$$0 \le \alpha \le c,$$

Decomposition approach

Given any dual feasible solution, (α, β) , we partition $I = \{1, \ldots, n\}$ into B and N:

- $\forall i \in B \ 0 < \alpha_i < c$.
- $\forall i \in N \ 0 \le \alpha_i \le c$.

$$B \cup N = I$$
 and $B \cap N = \emptyset$.

Based on the partition (B, N) we define Q_{BB} (Q_{BN}, Q_{NB}, Q_{NN}) y_B (y_N) and α_B (α_N)

Active set method for convex QP

Solution of an LP is always at the vertex. In the case of QP it can be anywhere.

$$Q = \left[\begin{array}{cc} Q_{BB} & Q_{NB}^{\top} \\ Q_{NB} & Q_{NN} \end{array} \right].$$

Idea: temporarily fix all α_N to their current values and solve the reduced problem in terms of α_B only.

$$\min_{\alpha} \frac{1}{2} \alpha_B^{\mathsf{T}} Q_{BB} \alpha_B + e_B^{\mathsf{T}} \alpha_B + \alpha_N^{\mathsf{T}} Q_{NB} \alpha_B + \frac{1}{2} \alpha_N^{\mathsf{T}} Q_{NN} \alpha_N - e_N^{\mathsf{T}} \alpha_N$$
s.t.
$$y_B^{\mathsf{T}} \alpha_B = -y_N^{\mathsf{T}} \alpha_N,$$

$$0 \le \alpha_B \le c,$$

Solve this "small" QP problem by any method

Decomposition Method

How to determine the next set B? Look for steepest descent direction of size |B|.

$$\min_{d} \nabla_{\alpha} f(\alpha)^{\top} d = \nabla_{\alpha} (\frac{1}{2} \alpha^{\top} Q \alpha - e^{\top} \alpha) d = (\alpha^{\top} Q - e) d$$

min_d
$$(\alpha^{\top}Q - e)d$$

s.t. $y^{\top}d = 0$
 $-e \le d \le e$
 $d_i \le 0 \text{ if } \alpha_i = C$
 $d_i \ge 0 \text{ if } \alpha_i = 0$
 $|\{i: d_i \ne 0\}| = |B|$

Finding the new set B

Ordered vector

$$\nabla_{\alpha} f(\alpha) = Y(\alpha^{\top} Q - e)$$

Pick the same number of $d_i = y_i$ and $d_i = i y_i$ making sure that d_i satisfy the conditions from prev. slide

Workload of a decomposition method

•

$$\min_{\alpha} \frac{1}{2} \alpha_B^{\mathsf{T}} Q_{BB} \alpha_B + e_B^{\mathsf{T}} \alpha_B + \alpha_N^{\mathsf{T}} Q_{NB} \alpha_B$$
s.t.
$$y_B^{\mathsf{T}} \alpha_B = -y_N^{\mathsf{T}} \alpha_N,$$

$$0 \le \alpha_B \le c,$$

If using an interior point method, empirical complexity is $O(n_B^3)$.

- Computing $\alpha^{\top}Q e$ is almost equivalent to computing $\alpha_B^{\top}Q$ which is $O(n_B n)$.
- The complexity of the second step can be reduced by "shrinking" considering only "important" part of $\alpha^{\top}Q e$ vector.

Reducing the cost of finding the new set B

Reduce the size of the vector

$$Y(\alpha^{\top}Q - e)$$

by ignoring the elements that are likely to be in the middle (for example because they were in the middle last 100 iterations)

Complexity

Per iteration:

- Need to solve $Q_{ss}p = r$ at each iteration, where Q_{ss} is $n_s \times n_s$, n_s number of active support vectos for ASMs, but can be any number (2 or more) for the DMs.
- In ASMs, by updating the Cholesky of Q_{ss} the work reduced to $O(n_s^2)$. For DMs have to solve each subproblem independently.
- Need to search for negative s and x_i , $O(n_s n)$ operations.
- By considering only a small number of "promising" candidates, the work is substantially reduced.

Bound on the number of iterations

- Active set method finite to obtain the exact solution, but could be exponential.
- Decomposition methods $O(n^2/\epsilon)$ not polynomial.

Interior point methods Cplex, OOQP, OOPS, Mosek	$O(k^2n) \times O(n \log(1/\epsilon)$ $O(k^2n)$ in practice, very accurate solutions
Active set method SVM-QP, Cplex	Exponential in theory O(n _s n ²) in practice, very accurate solutions
Decomposition methods SMO, SVM ^{light}	$O(n^2/\epsilon)$, reasonably accurate solutions
Cutting plane methods SVM ^{perf}	$O(Rns/\epsilon)$, no accurate solutions
Stochastic Gradient Pegasos	$O(Rs/\epsilon)$, probabilitsitc results, requires i.i.d samples, no accurate solutions

Optimality Conditions

$$\min_{\alpha} \frac{1}{2} \alpha^{\top} Q \alpha - e^{\top} \alpha$$
s.t.
$$y^{\top} \alpha = 0,$$

$$0 \le \alpha \le c,$$

KKT conditions

$$\alpha_{i}s_{i} = 0, \quad i = 1, \dots, n,$$
 $(c - \alpha_{i})\xi_{i} = 0, \quad i = 1, \dots, n,$
 $y^{T}\alpha = 0,$
 $-Q\alpha + y\beta + s - \xi = -e,$
 $0 < \alpha < c, \ s > 0, \ \xi > 0.$

Active Set

Given a dual basic feasible solution, (α, β, s, ξ) , we partition $I = \{1, \ldots, n\}$ into $\mathbf{I_0}$, $\mathbf{I_c}$ and $\mathbf{I_s}$:

- $\forall i \in \mathbf{I_0} \ \xi_i = 0 \text{ and } \alpha_i = 0, \ (s_i \ge 0?)$
- $\forall i \in \mathbf{I_c} \ s_i = 0 \ \text{and} \ \alpha_i = c, \ (\xi_i \geq 0?)$
- $\forall i \in \mathbf{I_s} \ s_i = \xi_i = 0 \text{ and } 0 < \alpha_i < c.$

$$\mathbf{I_0} \cup \mathbf{I_c} \cup \mathbf{I_s} = I \text{ and } \mathbf{I_0} \cap \mathbf{I_c} = \mathbf{I_c} \cap \mathbf{I_s} = \mathbf{I_0} \cap \mathbf{I_s} = \emptyset.$$

Based on the partition $(\mathbf{I_0}, \mathbf{I_c}, \mathbf{I_s})$ we define Q_{ss} $(Q_{cs}, Q_{sc}, Q_{cc}, Q_{0s}, Q_{00})$, y_s (y_c, y_0) and α_s (α_c, α_0)

Partitioning of matrix Q

Q ss		
Q _{sc}	Q_{cc}	
Q ₅₀	Q_{co}	Q _∞

Step 1

(i) Solve

$$\min_{\alpha_s} \frac{1}{2} \alpha_s^{\mathsf{T}} Q_{ss} \alpha_s + c e^{\mathsf{T}} Q_{cs} \alpha_s - e^{\mathsf{T}} \alpha_s$$

s.t.
$$y_s^{\mathsf{T}} \alpha_s = -y_c^{\mathsf{T}} \alpha_c$$

- (ii) From the current iterate make a step toward the solution until for some $i \in \mathbf{I_s}$ $(\alpha_s)_i = 0$ or $(\alpha_s)_j = c$ or until solution is reached.
- (iii) If for some $i \in \mathbf{I_s}$, $(\alpha_s)_i = 0$ Then update $I_s = I_s \setminus \{i\}$, $I_0 = I_0 \cup \{i\}$, and go to step (i).
- (iv) If for some $i \in \mathbf{I_s}$, $(\alpha_s)_i = c$ then update $I_s = I_s \setminus \{i\}$, $I_c = I_c \cup \{i\}$, and go to step (i).
- (v) If the optimum is reached in step (ii), proceed to **Step 2**.

Step 2

(i) Compute s_0

$$s_0 = -Q_{0s}\alpha_s - y_0\beta + 1 - cQ_{0c}e$$

and ξ_c

$$\xi_c = Q_{cs}\alpha_s + y_c\beta - 1 + cQ_{cc}e$$

- (ii) Find $i_0 = \operatorname{argmin}_i \{ s_i : i \in \mathbf{I_0} \}$. Find $i_c = \operatorname{argmin}_i \{ \xi_i : i \in \mathbf{I_c} \}$.
- (iii) If $s_{i_0} \geq 0$ and $\xi_{i_c} \geq 0$ then the current solution is optimal, **Exit**. If $s_{i_0} \leq \xi_{i_c}$, then $I_s = I_s \cup \{i_0\}$ and $I_0 = I_0 \setminus \{i_0\}$. Else, $I_s = I_s \cup \{i_c\}$ and $I_c = I_c \setminus \{i_c\}$.

Go to Step 1.

Step 1

(i) Solve a system with matrix

$$\left[\begin{array}{cc} Q_{ss} & y \\ y^{\top} & 0 \end{array}\right].$$

If factorization $Q_{ss} = G_s G_s^{\top}$ is available, then work is $\mathbf{O}(\mathbf{n_s^2})$.

- (ii) Step toward solution. $O(n_s)$
- (iii) If for some $i \in \mathbf{I_s}$, $(\alpha_s)_i = 0$, then update $I_s = I_s \setminus \{i\}$, $I_0 = I_0 \cup \{i\}$, update G_s by removing a row. $\mathbf{O}(\mathbf{n_s^2})$
- (iv) If for some $i \in \mathbf{I_s}$, $(\alpha_s)_i = c$ then update $I_s = I_s \setminus \{i\}$, $I_c = I_c \cup \{i\}$, update $e^{\top}Q_{cs}$ and G_s by removing a row. $\mathbf{O}(\mathbf{n_s^2}) + \mathbf{O}(\mathbf{n_c})$

Step 2

(i)

$$s_0 = -Q_{0s}\alpha_s - y_0\beta + 1 - cQ_{0c}e$$

$$\xi_c = Q_{cs}\alpha_s + y_c\beta - 1 + cQ_{cc}e$$

$$\mathbf{O}(\mathbf{n_s}\mathbf{n})$$

- (ii) Find $i_0 = \operatorname{argmin}_i \{ s_i : i \in \mathbf{I_0} \}, i_c = \operatorname{argmin}_i \{ \xi_i : i \in \mathbf{I_c} \}.$ O(n)
- (iii) If $s_{i_0} \leq \xi_{i_c}$, then $I_s = I_s \cup \{i_0\}$ and $I_0 = I_0 \setminus \{i_0\}$. Update G_s by adding a row

Else, $I_s = I_s \cup \{i_c\}$ and $I_c = I_c \setminus \{i_c\}$. Update $e^{\top}Q_{cs}$ and G_s by adding a row

$$\mathbf{O(n_s^2)} + \mathbf{O(n_c)}$$

Complexity

Active set method:

- Need to solve $Q_{ss}p = r$ at each iteration, where Q_{ss} is completely dense, $k_s \times k_s$.
- By updating the Cholesky of Q_{ss} the work reduced to $O(k_s^2)$.
- Need to search for negative s and x_i , $O(k_s n)$ operations.
- By considering only a small number of "promising" candidates, the work is substantially reduced.