Optimization Methods in Machine Learning
Lecture 15



Optimization Methods for SVMs

» Stochastic gradient method
 Block-coordinate descent
 Active set method



Support Vector Machines



Classification SVM Problem

Given a training set of (z1,y1),..., (Tn, Yn) ,

X, € Rd, Y € {—|—1, —1}

MIN¢ 4

S.t.

—w w+cz i

yi(w ' ;) > 1—57;7

i=1,...

€i>07 izl,...,n



Classification SVM Problem

Given a training set of (x1,91),..., (Tn,Yn) ,

X, € Rd, (TS {—|—1, —1}

MINg 4

S.t.

What happened to 57

—w w—|—cz &

yi(w ' ;) > 1—&,

i=1,...

5220, ’i:1,...,n

w'z + 5= (w,B)T(x, 1)



Stochastic gradient approach



Unconstrained formulation of the SVM problem

Given a training set S = {(5131,3/1), Cee (mmyn)} ,
T; € Rd, Y € {—|—1, —1}

min,, f(w) = 5 ]+ Zf

where
l(w, (x,y)) = max{0,1 — yz(wTazz)}

Find f(w) < f(w*) + € - e-optimal solution.



Subgradient step
Consider the training set S
and for a given w define ST = {(z,y) € Sy(w'z) < 1}

fw) = Sl g S ew, (29)
an ”app,subgradient of f(w):

Ow f (w )—)\wt—— Z YT

(x y)EST

Compute a subgradient step of lenth 7;.

Wiyl = We — MO f (W)

It can be shown that at optimality |Jw| < 1/V/A,
hence we can project w,_ 1 onto the ball to obtain w4 .



SVM problem using Huber loss function

Given a training set S = {(x1,v1),---, (Tn,Yn)} ,
T; € Rd, (TS {—|—1, —1}

minwf(w)z—uw||+ quu (i, i)

where
(0 y(w'z) > 1
T,y 1)2
Gu(w, (x,y)) = Lk Q:Z) . l—p<y(w'z) <1
|- y(wTe) 4 y(wTe) <1

Find f(w) < f(w*) + € - e-optimal solution in O(*) iterations



Approximate subgradient step
Consider a subset of the training set A; C S
and for a given w define A = {(z,y) € A : y(w'zx) < 1}

A

5 1
fe(w) = S| T4 > lw,(z,y))

an ”approximate” subgradient of f(w):
(z,y)€

Compute a subgradient step of lenth 7.

Wil = Wt — NtOw f(w, Ay)

It can be shown that at optimality ||Jw| < 1/V/A,
hence we can project w; 1 onto the ball to obtain w;;.



Stochastic Gradient Method

Choose wq, such that ||wy]| < %
Fort=1,2,...,7T

e Choose A; C S, where |A;| = k.

o Set A = {(z,y) € Ay : y(w'z) <1}

® "t = %

o wt_|_§ — (1 — 77t>\)wt —I_ % Z(x,y)EAj yaj

1/vV

2




Convergence In expectation

Find E(f(w)) < f(w*) + ¢
e-optimal solution in expectation,
where w = 7 S w



Why does this work?

Each iteration of the algorithm takes O(n;s) operations, where s is the
number of nonzeros attributes of each data point x; and n; is the size of
A;. There are no subproblems to solve.

When A; = S and hence n; = n, the algorithm takes at most O(i{—:),
iterations where R = max; ||z;||.

When |A¢| < n, then we need an assumption that elements in A; a drawn
from S as i.i.d. samples.

With probability 1—0¢ the algorithm achieves e-optimal solution in at most

O((SR—;), iterations.

This means that the probabilistic complexity of this method does not
depend on the size of the training set at all!



Stochastic Approximation for Machine Learning

min,, L(w) = E[£((w,x),y)]
(a<t)

» Our previous approach was a mixed approach:
— SAA: collect sample of size m and minimize empirical error (w/ norm constraint):

min”w”zss I:(W) = %Zgl E((W, xi>v _Vi)

— Optimize this with SGD, i.e. applying SA to the empirical objective
« At each SGD iteration, pick random (x,y) from empirical sample
— SGD guarantee is on empirical suboptimality:

Lwk)) <L(W)+ O (\/X—Q,F—Q)

— To get guarantee on L(w®), need to combined with uniform concentration:

SUP||jw|<B ‘E(W) - L(W)' <O ( XinB2)
* Pure SA approach:
— Optimize L(w) directly

— Same SGD guarantee, but directly to the generalization error:

LW < L(w*) + O (\/x2 Ill\<~*||%)




More Data = More Work?

10k training examples 1 hour 2.3% error

< the predictor)

1M training examples

1 week (or more___} 2.29% error

& &
& een e

1 hour 2.3% error

Can we leverage the excess data to reduce runtime?
10 minutes 2.3% error

/@ really care about that 0.01% gainj
ﬂﬁ; runtime increase as a function of target accuracy

! My problem is so hard, | have to crunch 1M examplesj

Study runtime increase as a function of problem difficulty (e.g. small margin)




=rror

Frediction error a

err(w)

err(w’)

err{wg)

«  Approximation error:

Decomposition

— Best error achievable by large-margin predictor

— Error of population minimizer
Wy = argmin E[f{w]] = argmin Alw[= + E, [loss((w,x)y]]

«  Estimation error:

— Extra error due to replacing E[loss] with empirical loss

w™ = arg min f_(w)
«  Optimization error:

— Extra error due to only optimizing to within finite precision



The Double-Edged Sword

Prediction error
err(w)

err(w’)

err(w,)

o data set size (n)
+ When data set size increases:

— Estimation error decreases .

— Can increase optimization error, o Q.".'l‘;
I.e. optimize to within lesser accuracy = fewer iterations v/

— But handling more data is expensive '
e.g. runtime of each iteration increases @

« Stochastic Gradient Descent,

e.g. PEGASOS (Primal Efficient Sub-Gradient Solver for SVMs)
[Shalev-Shwartz Singer Srebro, ICML’07]

— Fixed runtime per iteration %
— Runtime to get fixed accuracy does not increase with n (U/



Optimization Problem

1 n
min,, g ¢ §@TQO‘ +e) &
i=1
s.t. —Qa+yB+s;,—&=-1, 1=1,...,n
$; >0, >0,0 <, <c, 1 =1,...,n,

-
f> Qij = Yiyjr; x; or Qi = yiyjK(:ci,xj)ﬁ
Kernel formulation

Linear formulation

1
min,, §aTQa —e'a
s.t. y' a=0,

0 <ac<ec,



Support Vectors




Decomposition Methods



Dual Optimization Problem
: 1 T
min,, 50 Qo —e «

S.t. y' a=0,
0 < a<c



Decomposition approach

Given any dual feasible solution, («a, ), we partition I = {1,...,n} into B
and V:

e Vie BO<a; <c.

o Vie NO<ua; <ec.

BUN =1 and BN N = 0.

Based on the partition (B, N) we define Qpp (@sN, QNB, QNN) Y (YUN)
and ap (ay)



Active set method for convex QP

Solution of an LP is always at the vertex. In the case of QP it can be
anywhere.

Q: [ QBB QNBT ]
QN QNN |

Idea: temporarily fix all ay to their current values and solve the reduced
problem in terms of ap only.

1 1

: T T T T T
min, S OB Qo +ep ap+an Qnpap + SON QNNON —EN QN
T T
s.t. Yyp ap = —YnN OQn,
0 S ap S C,

Solve this “small” QP problem by any method



Decomposition Method

How to determine the next set B? Look for steepest descent
direction of size |B|.

m(}n Vaof(a)'d= VQ(%O{TQO& —e'a)d=(a'Q —e)d

ming ('@ —e)d
S.t. y'd=0
—e<d<e
d; <0if o =C
d; >0if a; =0

{i: di #0}| = |B]



Finding the new set B

) s = =1

Ordered vector

Vaf(a) =Y (a'Q —e)

Pick the same number of d; = y; and di =i y
making sure that d; satisfy the conditions
from prev. slide

d; = y;




Workload of a decomposition method

1
: T T T
min, 508 (ppap +ep ap+an Qnpap
T T
s.t. Yyp QaB = —Y~nN Qn,
0 S ap S C,

If using an interior point method, empirical complexity is O(n3,).

e Computing o' Q — e is almost equivalent to computing ap '@ which is
O(npn).

e The complexity of the second step can be reduced by ”shrinking” - con-
sidering only ”important” part of o' Q — e vector.



Reducing the cost of finding the new set B

Reduce the size
of the vector

Yia'Q —e)

by ignoring the
elements that are
likely to be in the
middle (for example
because they were
in the middle last
100 iterations)

d; > —vy;

But we do need to compute the
entire vector to verify
optimality!

d; < —y;



Complexity

Per iteration:

e Need to solve (D,.p = r at each iteration, where (Qss is ns X ng, ng

number of active support vectos for ASMs, but can be any number
(2 or more) for the DMs.

e In ASMs, by updating the Cholesky of Qs the work reduced to
O(n?). For DMs have to solve each subproblem independently.

e Need to search for negative s and z;, O(nsn) operations.

e By considering only a small number of “promising” candidates, the
work is substantially reduced.

Bound on the number of iterations

e Active set method - finite to obtain the exact solution, but could be
exponential.

e Decomposition methods - O(n?/¢) - not polynomial.



Interior point methods

Cplex, OOQP, OOPS,
Mosek

O(k?n)x O(n log(1/e)
O(k?n) in practice, very
accurate solutions

Active set method
SVM-QP, Cplex

Exponential in theory
O(n,n?) in practice, very
accurate solutions

Decomposition methods
SMO, SVMlight

O(n”"2/¢), reasonably
accurate solutions

Cutting plane methods
SVMpert

O(Rns/e), no accurate
solutions

Stochastic Gradient
Pegasos

O(Rsl/e), probabilitsitc results,
requires i.i.d samples, no
accurate solutions




Optimality Conditions

1
min,, iozTQoz —e'a
s.t. y'a=0,
0 <a<ec,
KKT conditions
OziS@':O, izl,...,n,
(c—a;)¢ =0, i=1,...,n,

y'a=0,
~Qa+yf+s—£=—e,
0<a<e s>0, £>0.



Active Set

Given a dual basic feasible solution, («, 3, s, &), we partition I = {1,...,n}
into Ig, I. and Ig:

o VicIp & =0and a; =0, (s; > 07)
o Vicl.s;=0and o; =¢, (§ > 07)

e Viclys;,=¢ =0and 0 < ; <ec.

IoUIL.UIL, =T and IoNI. =1I. NI, =1y NI = 0.

Based on the partition (Ig,I¢,Is) we define Qg5 (Qes, Qse, Qs Qos, Qoo),
Ys (Yo, Yo) and a; (ae, ap)



Partitioning of matrix Q

Qs
Q - Qc:c:
Qs Qo Qu
















Active Set Method

Step 1
(i) Solve
) 1
NI o §asTstas + CeTchas T eTas
S.t. ySTas = —yCT(XC

(ii) From the current iterate make a step toward the solution until for some
i € Is (as)i =0 or (as); = c or until solution is reached.

(iii) If for some ¢ € I, (as); =0
Then update I, = I;\{i}, Ip = Ip U{i}, and go to step (i).

(iv) If for some i € Iy, (ag); = ¢
then update Iy = I,\{i}, I. = I. U {i}, and go to step (i).

(v) If the optimum is reached in step (ii), proceed to Step 2.



Active Set Method

Step 2
(i) Compute sq
so = —Qoss — Yo + 1 — cQoce

and &,
fc — chas + ycﬁ — 1+ CQcce

(ii) Find ip = argmin,{s; : i € Ip}.
Find i, = argmin,{; : i € I.}.
(iii) If s;, > 0 and &;_ > 0 then the current solution is optimal, Exit.
If s;, <&, then Iy = I, U {ig} and Iy = Ip\{i0}-
Else, Iy = I, U{i.} and I. = I.\{i.}.
Go to Step 1.



Active Set Method

Step 1

(i) Solve a system with matrix

[st y]
y' 0|

If factorization Q.5 = G,G, ' is available, then work is O(n?2).

(ii) Step toward solution. O(ny)

(iii) If for some i € I, (as); = 0, then update I, = I,\{:}, Iy = Io U {i},
update GG, by removing a row. O(n?)

(iv) If for some i € Ig, (as); = ¢ then update Iy = I,\{i}, I. = I. U{i},
update e’ Q., and G by removing a row. O(n2) + O(n,)



Active Set Method

Step 2

so = —Qosts — Yo S + 1 — cQo.e
gc — chas + ycﬁ — 1+ CQcce
O(ngn)
(ii) Find 79 = argmin,;{s; : i € Ip}, i, = argmin,;{&; : i € I.}. O(n)

(111) If Sio S &C, then IS = IS U {Z()} and IO = ]0\{7,0}
Update GG, by adding a row

Else, Iy = I, U{i.} and I. = I.\{i.}.
Update e' Q. and G, by adding a row

O(ng) + O(n.)



Complexity

Active set method:
e Need to solve (Qssp = 7 at each iteration, where ()55 is completely
dense, ks X k.
e By updating the Cholesky of Qs the work reduced to O(k?).
e Need to search for negative s and x;, O(ksn) operations.

e By considering only a small number of “promising” candidates, the
work is substantially reduced.



