Optimization Methods in Machine Learning Lectures 13-14

Katya Scheinberg

Lehigh University

katyas@lehigh.edu

First-order proximal gradient methods

Consider:

$$\min_{x} f(x)$$

$$|\nabla f(x) - \nabla f(y)| \le L||x - y||$$

Linear lower approximation

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)$$

Quadratic upper approximation

$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2\mu} ||y - x||^2 = Q_{f,\mu}(\mathbf{x}, y)$$

$$|f(y)| \le f(x) + \frac{1}{2\mu} ||x - \mu \nabla f(x)|^{\top} - y||^2 = Q_{f,\mu}(x,y)$$

First-order proximal gradient method

$$\min_{x} f(x)$$

Minimize quadratic upper approximation on each iteration

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f,\mu}(\mathbf{x}^{k}, y)$$

$$\mathbf{x}^{k+1} = x^{k} - \mu \nabla f(x^{k})$$

• If $\mu \leq 1/L$ then

$$f(x^{k+1}) \le f(x^k) + \frac{1}{2\mu} ||x^k - \mu \nabla f(x^k)^\top - x^{k+1}||^2 = Q_{f,\mu}(x^k, x^{k+1})$$

Quadratic example

 $f(x_1,x_2)=(x_1^2+Lx_2^2)/2; \ \text{left:} \ \ \mu=1.8/L; \ \text{right:} \ \ \mu=0.8/L$

Complexity bound derivation outline

$$f(x^{k+1}) \le f(x^k) + \frac{1}{2\mu} ||x^k - \mu \nabla f(x^k)^\top - x^{k+1}||^2 = Q_{f,\mu}(x^k, x^{k+1})$$

$$f(x^{k+1}) - f(x^*) \le \frac{1}{2\mu} (\|x^k - x^*\| - \|x^{k+1} - x^*\|)$$

$$f(x^k) - f(x^*) \le \frac{L||x^0 - x^*||}{2k}$$

Complexity of proximal gradient method

Minimize quadratic upper approximation on each iteration

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f,\mu}(\mathbf{x}^{k}, y)$$

$$\mathbf{x}^{k+1} = x^{k} - \mu \nabla f(x^{k})$$

• If $\mu \leq 1/L$ then in $O(L||x^0-x^*||/\epsilon)$ iterations finds solution

$$x^k: f(x^k) \le f(x^*) + \epsilon$$

Compare to $O(log(L/\epsilon))$ of interior point methods.

Can we do better?

Accelerated first-order method

Nesterov, '83, '00s,

Beck&Teboulle '09

$$\min_{x} f(x)$$

Minimize upper approximation at an intermediate point.

$$x^{k+1} = y^k - \mu \nabla f(y^k)$$

$$y^{k+1} := x^k + \frac{k-1}{k+2} [x^k - x^{k-1}]$$

• If $\mu \leq 1/L$ then

$$f(x^k) - f(x^*) \le \frac{L||x^0 - x^*||}{2k^2}$$

Complexity of accelerated first-order method

Nesterov, '83, '00s,

Beck&Teboulle '09

$$\min_{x} f(x)$$

Minimize upper approximation at an intermediate point.

$$x^{k+1} = y^k - \mu \nabla f(y^k)$$

$$y^{k+1} := x^k + \frac{k-1}{k+2} [x^k - x^{k-1}]$$

• If $\mu \leq$ 1/L then in $O(\sqrt{\frac{L\|x^0-x^*\|}{\epsilon}})$ iterations finds solution

$$\bar{x}: f(\bar{x}) \le f(x^*) + \epsilon$$

This method is optimal if only gradient information is used.

Optimality of Nesterov's method

define a first order method as any iterative algorithm that selects $\boldsymbol{x}^{(k)}$ in

$$x^{(0)} + \text{span}\{\nabla f(x^{(0)}), \nabla f(x^{(1)}), \dots, \nabla f(x^{(k-1)})\}\$$

optimality

no first-order method improves the $1/k^2$ convergence rate (uniformly, over all convex functions with Lipschitz continuous gradients)

quadratic example $\mu = 1.8/L$, $s_k = 0.3$

FISTA method

Beck&Teboulle '09

$$\min_{x} f(x)$$

Minimize upper approximation at an intermediate point.

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f,\mu}(\mathbf{y}^{k}, y)$$

$$t_{k+1} := (1 + \sqrt{1 + 4t_k^2})/2$$

$$y^{k+1} := x^k + \frac{t_k - 1}{t_{k+1}} [x^k - x^{k-1}]$$

• If $\mu \leq 1/L$ then in $O(\sqrt{L/\epsilon})$ iterations finds solution

$$\bar{x}: f(\bar{x}) \le f(x^*) + \epsilon$$

Nondifferentiable optimization by smoothing

for nondifferentiable f that cannot be handled by proximal gradient method

- replace f with differentiable approximation f_{μ} (parametrized by μ)
- minimize f_{μ} by (fast) gradient method μ is not a prox parameter here

complexity: #iterations for (fast) gradient method depends on L_{μ}/ϵ_{μ}

- L_{μ} is Lipschitz constant of ∇f_{μ}
- ullet ϵ_{μ} is accuracy with which the smooth problem is solved

trade-off in amount of smoothing (choice of μ)

- ullet large L_{μ} (less smoothing) gives more accurate approximation
- small L_{μ} (more smoothing) gives faster convergence

Example: Huber penalty as smoothed absolute value

$$\phi_{\mu}(z) = \begin{cases} z^2/(2\mu) & |z| \le \mu \\ |z| - \mu/2 & |z| \ge \mu \end{cases}$$

 μ controls accuracy and smoothness

accuracy

$$|z| - \frac{\mu}{2} \le \phi_{\mu}(z) \le |z|$$

smoothness

$$\phi_{\mu}^{\prime\prime}(z) \le \frac{1}{\mu}$$

Huber penalty approximation of 1-norm minimization

$$f(x) = ||Ax - b||_1, \qquad f_{\mu}(x) = \sum_{i=1}^{m} \phi_{\mu}(a_i^T x - b_i)$$

• accuracy: from $f(x) - m\mu/2 \le f_{\mu}(x) \le f(x)$,

$$f(x) - f^* \le f_{\mu}(x) - f_{\mu}^* + \frac{m\mu}{2}$$

to achieve $f(x) - f^* \le \epsilon$ we need $f_{\mu}(x) - f_{\mu}^* \le \epsilon_{\mu}$ with $\epsilon_{\mu} = \epsilon - m\mu/2$

• Lipschitz constant of f_{μ} is $L_{\mu} = \|A\|_2^2/\mu$

complexity: for $\mu = \epsilon/m$

$$\frac{L_{\mu}}{\epsilon_{\mu}} = \frac{\|A\|_{2}^{2}}{\mu(\epsilon - m\mu/2)} = \frac{2m\|A\|^{2}}{\epsilon^{2}}$$

i.e., $O(\sqrt{L_{\mu}/\epsilon_{\mu}}) = O(1/\epsilon)$ iteration complexity for fast gradient method

Unconstrained formulation of the SVM problem

Given a training set
$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}$$
, $x_i \in \mathbf{R}^d, y \in \{+1, -1\}$

$$\min_{w} f(w) = \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell(w, (x_i, y_i))$$

where

$$\ell(w, (x, y)) = \max\{0, 1 - y(w^{\top}x)\}\$$

Find $f(w) \leq f(w^*) + \epsilon$ - ϵ -optimal solution.

SVM problem using Huber loss function

Given a training set $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$, $x_i \in \mathbf{R}^d, y \in \{+1, -1\}$

$$\min_{w} f(w) = \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \phi_{\mu}(w, (x_i, y_i))$$

where

$$\phi_{\mu}(w, (x, y)) = \begin{cases} 0 & y(w^{\top}x) \ge 1\\ \frac{(y(w^{\top}x) - 1)^{2}}{2\mu} & 1 - \mu < y_{i}(w^{\top}x) < 1\\ 1 - y(w^{\top}x) - \frac{\mu}{2} & y(w^{\top}x) \le 1 - \mu \end{cases}$$

Find $f(w) \leq f(w^*) + \epsilon$ - ϵ -optimal solution in $O(\frac{1}{\epsilon})$ iterations

First order methods for composite functions

Examples

• Lasso or CS:

$$\min_{x} \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

Group Lasso or MMV

$$\min_{x} \frac{1}{2} ||Ax - b||^2 + \lambda \sum_{i \in J} ||x_{i}||$$

Matrix Completion

$$\min_{X \in \mathbb{R}^{n \times m}} \lambda \sum_{(i,j) \in I} (X_{ij} - M_{ij})^2 + ||X||_*$$

Robust PCA

$$\min_{X \in \mathbb{R}^{n \times m}} \lambda ||X_{ij} - M_{ij}||_1 + ||X||_*$$

• SICS $\max_X \frac{m}{2} (\log \det X - Tr(AX)) - \lambda ||X||_1$

Prox method with nonsmooth term

Consider:

$$\min_{x} F(x) = f(x) + g(x)$$

$$|\nabla f(x) - \nabla f(y)| \le L||x - y||$$

Quadratic upper approximation

$$f(y) + g(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2\mu} ||y - x||^2 + g(y) = Q_{f,\mu}(x, y)$$

$$F(y) \le f(x) + \frac{1}{2\mu} ||x - \mu \nabla f(x)^{\top} - y||^2 + g(y) = Q_{f,\mu}(x, y)$$

Assume that g(y) is such that the above function is easy to optimize over y

Example 1 (Lasso and SICS)

$$\min_{x} f(x) + ||x||_1$$

• Minimize upper approximation function $Q_{f,\mu}(x,y)$ on each iteration

$$\min_{y} Q_{f,\mu}(\mathbf{x}, y) = \min_{y} f(x) + \frac{1}{2\mu} ||x - \mu \nabla f(x)^{\top} - y||^{2} + ||y||_{1}$$

Closed form solution!

O(n) effort

$$\min_{y_i} \frac{1}{2} (y_i - r_i)^2 + \mu |y_i| \to y_i^* = \begin{cases} r_i - \mu & \text{if } r_i > \mu \\ 0 & \text{if } -\lambda \le r_i \le \mu \\ r_i + \mu & \text{if } r_i < -\mu \end{cases}$$

$$f(x) = \frac{1}{2}(y-r)^2 + \mu|y|$$

$$f'(y) = y - r - \mu \quad \text{if } y < 0$$

$$f'(y) = y - r + \mu \quad \text{if } y > 0$$

Example 2 (Group Lasso)

$$\min_{x} f(x) + \sum_{i} ||x_i||, \ x_i \in \mathbb{R}^{n_i}$$

Very similar to the previous case, but with ||.|| instead of |.|

$$\sum_{i} \min_{y_i \in \mathbb{R}^{n_i}} \left[\frac{1}{2\mu} (y_i - r_i)^2 + ||y_i|| \right]$$

$$y_i^* = \frac{r_i}{\|r_i\|} \max(0, \|r_i\| - \mu)$$

Closed form solution!
O(n) effort

Example 3 (Collaborative Prediction)

$$\min_{X \in \mathbb{R}^{n \times m}} f(X) + ||X||_*$$

$$\min_{Y} Q_f(X, Y)$$

$$\min_{Y} \left[\frac{1}{2\mu} \|Y - Z\|_{F}^{2} + \|Y\|_{*} \right]$$

$$\updownarrow$$

$$Z = P \operatorname{diag} \{\sigma_1, \sigma_2, \dots, \sigma_n\} Q^{\top}$$

Closed form solution!

O(n^3) effort

$$Y^* = P \operatorname{diag} \left\{ \sigma_1^*, \sigma_2^*, \dots, \sigma_n^* \right\} Q^{\top}, \ \sigma_i^* = \begin{cases} \sigma_i - \mu & \text{if } \sigma_i > \mu \\ 0 & \text{if } -\mu \leq \sigma_i \leq \mu \\ \sigma_i + \mu & \text{if } \sigma_i < -\mu \end{cases}$$

ISTA/Gradient prox method

$$\min_{x} F(x) = f(x) + g(x)$$

Minimize quadratic upper approximation on each iteration

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f}(\mathbf{x}^{k}, y)$$

$$Q_{f,\mu}(\mathbf{x},y) = f(x) + \nabla f(x)^{\top} (y-x) + \frac{1}{2\mu} ||y-x||^2 + g(y)$$

• If $\mu \leq 1/L$ then in $O(L/\epsilon)$ iterations finds solution

$$\bar{x}: F(\bar{x}) \le F(x^*) + \epsilon$$

Fast first-order method

Nesterov, Beck & Teboulle

$$\min_{x} F(x) = f(x) + g(x)$$

Minimize upper approximation at an "accelerated" point.

$$x^k = \operatorname{argmin}_y Q_f(\mathbf{y}^k, y)$$

$$t_{k+1} := (1 + \sqrt{1 + 4t_k^2})/2$$

$$y^{k+1} := x^k + \frac{t_k - 1}{t_{k+1}} [x^k - x^{k-1}]$$

• If $\mu \leq 1/L$ then in $O(\sqrt{L/\epsilon})$ iterations finds solution

$$\bar{x}: F(\bar{x}) \le F(x^*) + \epsilon$$

Practical first order algorithms using backtracking search

Iterative Shrinkage Threshholding Algorithm (ISTA)

$$\min_{x} F(x) = f(x) + g(x)$$

Minimize quadratic upper relaxation on each iteration

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f}(\mathbf{x}^{k}, y) = f(\mathbf{x}^{k}) + \frac{1}{2\mu_{k}} ||\mathbf{x}^{k} - \mu_{k} \nabla f(\mathbf{x}^{k})^{\top} - y||^{2} + g(y)$$

• Using line search find μ_k such that

$$F(x^{k+1}) \le Q_f(\mathbf{x}^k, x^{k+1})$$

• In $O(1/\mu_{min}\epsilon)$ iterations finds ϵ -optimal solution (in practice better)

Nesterov, 07 Beck&Teboulle, Tseng, Auslender&Teboulle, 08

Fast Iterative Shrinkage Threshholding Algorithm (FISTA)

$$\min_{x} F(x) = f(x) + g(x)$$

Minimize quadratic upper relaxation on each iteration

$$x^k = \operatorname{argmin}_y Q_f(\mathbf{y}^k, y) = f(\mathbf{y}^k) + \frac{1}{2\mu_k} ||\mathbf{y}^k - \mu_k \nabla f(\mathbf{y}^k)^\top - y||^2 + g(\mathbf{y})$$

• Using line search find $\mu_k \le \mu_{k-1}$ such that

Very restrictive

$$F(x^k) \le Q_f(y^k, x^k)$$

$$t_{k+1} := (1 + \sqrt{1 + 4t_k^2})/2$$

$$y^{k+1} := x^k + \frac{t_k - 1}{t_{k+1}} [x^k - x^{k-1}]$$

• In $O(\sqrt{1/\mu_{min}\epsilon})$ iterations finds ϵ -optimal solution

Nesterov, Beck&Teboulle, Tseng

FISTA with line search

Goldfarb and S. 2010

- ISTA's complexity is $O(L/\epsilon)$ while FISTA's is $O(\sqrt{L/\epsilon})$
- However, FISTA's condition $\mu_k \leq \mu_{k-1}$ often slows down practical performance and simply ignoring the condition does not help.

$$F(x^{k+1}) \le Q_f(y^k, x^{k+1})$$

$$t_{k+1} := (1 + \sqrt{1 + 4\theta_k t_k^2})/2$$

$$y^{k+1} := x^k + \frac{t_{k-1}}{t_{k+1}} [x^k - x^{k-1}]$$

• We want to modify FISTA algorithm to relax $\mu_k \leq \mu_{k-1}$, while maintaining $O(\sqrt{L/\epsilon})$ complexity bound or maybe even improving it

Cycle to find
$$\mu_{\mathbf{k}}$$

$$F(x^k) \leq Q_f(\mathbf{y^k}, x^k)$$

$$t_{k+1} := (1 + \sqrt{1 + 4t_k^2})/2$$

$$y^{k+1} := x^k + \frac{t_k - 1}{t_{k+1}} [x^k - x^{k-1}]$$

Convergence rate:
$$F(x^k) - F(x^*) \leq \frac{2L\|x^0 - x^*\|^2}{k^2}$$

Find μ_k such that

$$x^{k} = \operatorname{argmin}_{y} Q_{f}(y^{k}, y)$$
$$F(x^{k}) \leq Q_{f}(y^{k}, x^{k})$$

This condition....

$$\mu_k t_k^2 \ge \mu_{k+1} t_{k+1} (t_{k+1} - 1)$$

$$y^{k+1} := x^k + \frac{t_k - 1}{t_{k+1}} [x^k - x^{k-1}]$$

$$F(x^k) - F(x^*) \le \frac{\|x^0 - x^*\|^2}{2\mu_k t_k^2}$$

... gives this bound on the error

Goldfarb & S. 2011

FISTA with full line search

Find μ_k such that

$$x^k = \operatorname{argmin}_y Q_f(y^k, y)$$

 $F(x^k) \le Q_f(y^k, x^k)$

$$\mu_k t_k^2 = \mu_{k+1} t_{k+1} (t_{k+1} - 1)$$

$$y^{k+1} := x^k + \frac{t_k - 1}{t_{k+1}} [x^k - x^{k-1}]$$

$$\mu_k t_k^2 \ge (\sum_{i=1}^k \sqrt{\mu_i}/2)^2 \ge \frac{k^2}{4L}$$

$$F(x^k) - F(x^*) \le \frac{\|x^0 - x^*\|^2}{(2\sum_{i=1}^k \sqrt{\mu_i}/2)^2}$$

Goldfarb & S. 2011