Inexact Newton Methods and Nonlinear Constrained Optimization

Frank E. Curtis

EPSRC Symposium Capstone Conference
Warwick Mathematics Institute

July 2, 2009
Outline

PDE-Constrained Optimization

Newton’s method

Inexactness

Experimental results

Conclusion and final remarks
Outline

PDE-Constrained Optimization

Newton’s method

Inexactness

Experimental results

Conclusion and final remarks
Hyperthermia treatment

- Regional hyperthermia is a **cancer therapy** that aims at heating large and deeply seated tumors by means of radio wave adsorption.
- Results in the killing of tumor cells and makes them more susceptible to other accompanying therapies; e.g., chemotherapy.
Hyperthermia treatment planning

- Computer modeling can be used to help **plan the therapy** for each patient, and it opens the door for numerical optimization.
- The goal is to heat the tumor to a target temperature of $43^\circ C$ while **minimizing damage** to nearby cells.
PDE-constrained optimization

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad c_\varepsilon(x) = 0 \\
& \quad c_I(x) \geq 0
\end{align*}
\]

- Problem is infinite-dimensional
- Controls and states: \(x = (u, y) \)
- Solution methods integrate
 - numerical simulation
 - problem structure
 - optimization algorithms
Algorithmic frameworks

We hear the phrases:

- **Discretize-then-optimize**
- **Optimize-then-discretize**

I prefer:

- **Discretize the optimization problem**

\[
\begin{align*}
\min f(x) \\
\text{s.t. } c(x) = 0
\end{align*}
\Rightarrow
\begin{align*}
\min f_h(x) \\
\text{s.t. } c_h(x) = 0
\end{align*}
\]

- **Discretize the optimality conditions**

\[
\begin{align*}
\min f(x) \\
\text{s.t. } c(x) = 0
\Rightarrow
\begin{bmatrix}
\nabla f + \langle A, \lambda \rangle \\
c
\end{bmatrix}
= 0
\Rightarrow
\begin{bmatrix}
(\nabla f + \langle A, \lambda \rangle)_h \\
c_h
\end{bmatrix}
= 0
\end{align*}
\]

- **Discretize the search direction computation**
Algorithms

- **Nonlinear elimination**

 \[
 \min_{u,y} f(u,y) \quad \text{s.t. } c(u,y) = 0 \Rightarrow \min_{u} f(u, y(u)) \Rightarrow \nabla u f + \nabla u y^T \nabla y f = 0
 \]

- **Reduced-space methods**

 \(d_y\): toward satisfying the constraints

 \(\lambda\): Lagrange multiplier estimates

 \(d_u\): toward optimality

- **Full-space methods**

 \[
 \begin{bmatrix}
 H_u & 0 & A_u^T \\
 0 & H_y & A_y^T \\
 A_u & A_y & 0
 \end{bmatrix}
 \begin{bmatrix}
 d_u \\
 d_y \\
 \delta
 \end{bmatrix}
 =
 -\begin{bmatrix}
 \nabla u f + A_u^T \lambda \\
 \nabla y f + A_y^T \lambda \\
 c
 \end{bmatrix}
 \]
Outline

PDE-Constrained Optimization

Newton’s method

Inexactness

Experimental results

Conclusion and final remarks
Nonlinear equations

- Newton’s method
 \[\mathcal{F}(x) = 0 \Rightarrow \nabla \mathcal{F}(x_k) d_k = -\mathcal{F}(x_k) \]

- Judge progress by the merit function
 \[\phi(x) \triangleq \frac{1}{2} \| \mathcal{F}(x_k) \|^2 \]

- Direction is one of descent since
 \[\nabla \phi(x_k)^T d_k = \mathcal{F}(x_k)^T \nabla \mathcal{F}(x_k) d_k = -\| \mathcal{F}(x_k) \|^2 < 0 \]

(Note the consistency between the step computation and merit function!)
Equality constrained optimization

Consider

\[\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad c(x) = 0 \]

Lagrangian is

\[\mathcal{L}(x, \lambda) \triangleq f(x) + \lambda^T c(x) \]

so the first-order optimality conditions are

\[\nabla \mathcal{L}(x, \lambda) = \begin{bmatrix} \nabla f(x) + \nabla c(x) \lambda \\ c(x) \end{bmatrix} \triangleq \mathcal{F}(x, \lambda) = 0 \]
Merit function

- Simply minimizing
 \[\varphi(x, \lambda) = \frac{1}{2} \| \mathcal{F}(x, \lambda) \|^2 = \frac{1}{2} \left\| \begin{bmatrix} \nabla f(x) + \nabla c(x) \lambda \\ c(x) \end{bmatrix} \right\|^2 \]

 is generally inappropriate for constrained optimization

- We use the merit function
 \[\phi(x; \pi) \triangleq f(x) + \pi \| c(x) \| \]

 where \(\pi \) is a penalty parameter
Minimizing a penalty function

Consider the penalty function for

$$\min (x - 1)^2, \text{ s.t. } x = 0 \quad \text{i.e. } \phi(x; \pi) = (x - 1)^2 + \pi|x|$$

for different values of the penalty parameter π
Algorithm 0: Newton method for optimization

(Assume the problem is sufficiently convex and regular)

for $k = 0, 1, 2, \ldots$

- **Solve** the primal-dual (Newton) equations

\[
\begin{bmatrix}
H(x_k, \lambda_k) & \nabla c(x_k) \\
\nabla c(x_k)^T & 0
\end{bmatrix}
\begin{bmatrix}
d_k \\
\delta_k
\end{bmatrix} = -\begin{bmatrix}
\nabla f(x_k) + \nabla c(x_k)\lambda_k \\
c(x_k)
\end{bmatrix}
\]

- **Increase** π, if necessary, so that $D\phi_k(d_k; \pi_k) \ll 0$ (e.g., $\pi_k \geq \|\lambda_k + \delta_k\|$)

- **Backtrack** from $\alpha_k \leftarrow 1$ to satisfy the Armijo condition

\[
\phi(x_k + \alpha_k d_k; \pi_k) \leq \phi(x_k; \pi_k) + \eta\alpha_k D\phi_k(d_k; \pi_k)
\]

- **Update** iterate $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k (d_k, \delta_k)$
Convergence of Algorithm 0

Assumption

The sequence \(\{(x_k, \lambda_k)\} \) is contained in a convex set \(\Omega \) over which \(f, c, \) and their first derivatives are bounded and Lipschitz continuous. Also,

- (Regularity) \(\nabla c(x_k)^T \) has full row rank with singular values bounded below by a positive constant
- (Convexity) \(u^T H(x_k, \lambda_k) u \geq \mu \|u\|^2 \) for \(\mu > 0 \) for all \(u \in \mathbb{R}^n \) satisfying \(u \neq 0 \) and \(\nabla c(x_k)^T u = 0 \)

Theorem

(Han (1977)) The sequence \(\{(x_k, \lambda_k)\} \) yields the limit

\[
\lim_{k \to \infty} \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix} \right\| = 0
\]
Outline

PDE-Constrained Optimization

Newton’s method

Inexactness

Experimental results

Conclusion and final remarks
Large-scale primal-dual algorithms

- Computational issues:
 - Large matrices to be stored
 - Large matrices to be factored

- Algorithmic issues:
 - The problem may be nonconvex
 - The problem may be ill-conditioned

- Computational/Algorithmic issues:
 - No matrix factorizations makes difficulties more difficult
Nonlinear equations

- Compute
 \[
 \nabla \mathcal{F}(x_k) d_k = -\mathcal{F}(x_k) + r_k
 \]
 requiring (Dembo, Eisenstat, Steihaug (1982))
 \[
 \| r_k \| \leq \kappa \| \mathcal{F}(x_k) \|, \quad \kappa \in (0, 1)
 \]

- Progress judged by the merit function
 \[
 \phi(x) \triangleq \frac{1}{2} \| \mathcal{F}(x_k) \|^2
 \]

- Again, note the consistency...
 \[
 \nabla \phi(x_k)^T d_k = \mathcal{F}(x_k)^T \nabla \mathcal{F}(x_k) d_k = -\| \mathcal{F}(x_k) \|^2 + \mathcal{F}(x_k)^T r_k \leq (\kappa - 1) \| \mathcal{F}(x_k) \|^2 < 0
 \]
Optimization

- Compute

\[
\begin{bmatrix}
H(x_k, \lambda_k) & \nabla c(x_k) \\
\nabla c(x_k)^T & 0
\end{bmatrix}
\begin{bmatrix}
d_k \\
\delta_k
\end{bmatrix}
= - \begin{bmatrix}
\nabla f(x_k) + \nabla c(x_k) \lambda_k \\
c(x_k)
\end{bmatrix}
+ \begin{bmatrix}
\rho_k \\
r_k
\end{bmatrix}
\]

satisfying

\[
\left\| \begin{bmatrix}
\rho_k \\
r_k
\end{bmatrix} \right\| \leq \kappa \left\| \begin{bmatrix}
\nabla f(x_k) + \nabla c(x_k) \lambda_k \\
c(x_k)
\end{bmatrix} \right\|, \quad \kappa \in (0, 1)
\]

- If κ is not sufficiently small (e.g., 10^{-3} vs. 10^{-12}), then d_k may be an ascent direction for our merit function; i.e.,

\[
D\phi_k(d_k; \pi_k) > 0 \quad \text{for all } \pi_k \geq \pi_{k-1}
\]

- Our work begins here... inexact Newton methods for optimization
- We cover the convex case, nonconvexity, irregularity, inequality constraints
Model reductions

- Define the model of $\phi(x; \pi)$:
 \[m(d; \pi) \triangleq f(x) + \nabla f(x)^T d + \pi(\|c(x) + \nabla c(x)^T d\|) \]

- d_k is acceptable if
 \[\Delta m(d_k; \pi_k) \triangleq m(0; \pi_k) - m(d_k; \pi_k) \]
 \[= -\nabla f(x_k)^T d_k + \pi_k(\|c(x_k)\| - \|c(x_k) + \nabla c(x_k)^T d_k\|) \gg 0 \]

- This ensures $D\phi_k(d_k; \pi_k) \ll 0$ (and more)
Termination test 1

The search direction \((d_k, \delta_k)\) is acceptable if

\[
\left\| \begin{bmatrix} \rho_k \\ r_k \end{bmatrix} \right\| \leq \kappa \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix} \right\|, \quad \kappa \in (0, 1)
\]

and if for \(\pi_k = \pi_{k-1}\) and some \(\sigma \in (0, 1)\) we have

\[
\Delta m(d_k; \pi_k) \geq \max \left\{ \frac{1}{2} d_k^T H(x_k, \lambda_k) d_k, 0 \right\} + \sigma \pi_k \max \left\{ \|c(x_k)\|, \|r_k\| - \|c(x_k)\| \right\} \geq 0 \text{ for any } d
\]
Termination test 2

The search direction \((d_k, \delta_k)\) is acceptable if

\[
\|\rho_k\| \leq \beta \|c(x_k)\|, \quad \beta > 0
\]

and

\[
\|r_k\| \leq \epsilon \|c(x_k)\|, \quad \epsilon \in (0, 1)
\]

Increasing the penalty parameter \(\pi\) then yields

\[
\Delta m(d_k; \pi_k) \geq \max\{\frac{1}{2} d_k^T H(x_k, \lambda_k) d_k, 0\} + \sigma \pi_k \|c(x_k)\|\geq 0 \text{ for any } d
\]
Algorithm 1: Inexact Newton for optimization
(Byrd, Curtis, Nocedal (2008))
for $k = 0, 1, 2, \ldots$

▶ Iteratively solve
\[
\begin{bmatrix}
H(x_k, \lambda_k) & \nabla c(x_k) \\
\nabla c(x_k)^T & 0
\end{bmatrix}
\begin{bmatrix}
d_k \\
\delta_k
\end{bmatrix}
= -\begin{bmatrix}
\nabla f(x_k) + \nabla c(x_k)\lambda_k \\
c(x_k)
\end{bmatrix}
\]
until termination test 1 or 2 is satisfied

▶ If only termination test 2 is satisfied, increase π so
\[
\pi_k \geq \max \left\{ \pi_{k-1}, \frac{\nabla f(x_k)^T d_k + \max\{\frac{1}{2} d_k^T H(x_k, \lambda_k) d_k, 0\}}{(1 - \tau)(\|c(x_k)\| - \|r_k\|)} \right\}
\]

▶ Backtrack from $\alpha_k \leftarrow 1$ to satisfy
\[
\phi(x_k + \alpha_k d_k; \pi_k) \leq \phi(x_k; \pi_k) - \eta \alpha_k \Delta m(d_k; \pi_k)
\]

▶ Update iterate $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k (d_k, \delta_k)$
Convergence of Algorithm 1

Assumption

The sequence \(\{(x_k, \lambda_k)\} \) is contained in a convex set \(\Omega \) over which \(f, c, \) and their first derivatives are bounded and Lipschitz continuous. Also,

- **(Regularity)** \(\nabla c(x_k)^T \) has full row rank with singular values bounded below by a positive constant

- **(Convexity)** \(u^T H(x_k, \lambda_k) u \geq \mu \| u \|^2 \) for \(\mu > 0 \) for all \(u \in \mathbb{R}^n \) satisfying \(u \neq 0 \) and \(\nabla c(x_k)^T u = 0 \)

Theorem

(Byrd, Curtis, Nocedal (2008)) The sequence \(\{(x_k, \lambda_k)\} \) yields the limit

\[
\lim_{k \to \infty} \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix} \right\| = 0
\]
Handling nonconvexity and rank deficiency

- There are two assumptions we aim to drop:
 - (Regularity) $\nabla c(x_k)^T$ has full row rank with singular values bounded below by a positive constant
 - (Convexity) $u^T H(x_k, \lambda_k) u \geq \mu \|u\|^2$ for $\mu > 0$ for all $u \in \mathbb{R}^n$ satisfying $u \neq 0$ and $\nabla c(x_k)^T u = 0$

 e.g., the problem is not regular if it is infeasible, and it is not convex if there are maximizers and/or saddle points

- Without them, Algorithm 1 may stall or may not be well-defined
No factorizations means no clue

- We might not store or factor

\[
\begin{bmatrix}
H(x_k, \lambda_k) & \nabla c(x_k) \\
\nabla c(x_k)^T & 0
\end{bmatrix}
\]

so we might not know if the problem is nonconvex or ill-conditioned

- Common practice is to perturb the matrix to be

\[
\begin{bmatrix}
H(x_k, \lambda_k) + \xi_1 I & \nabla c(x_k) \\
\nabla c(x_k)^T & -\xi_2 I
\end{bmatrix}
\]

where \(\xi_1\) convexifies the model and \(\xi_2\) regularizes the constraints

- Poor choices of \(\xi_1\) and \(\xi_2\) can have terrible consequences in the algorithm
Our approach for global convergence

- Decompose the direction d_k into a normal component (toward the constraints) and a tangential component (toward optimality).

- We impose a specific type of trust region constraint on the ν_k step in case the constraint Jacobian is (near) rank deficient.
Handling nonconvexity

- In computation of \(d_k = v_k + u_k \), **convexify** the Hessian as in

\[
\begin{bmatrix}
H(x_k, \lambda_k) + \xi_1 I & \nabla c(x_k) \\
\nabla c(x_k)^T & 0
\end{bmatrix}
\]

by monitoring iterates

- Hessian modification strategy: Increase \(\xi_1 \) whenever

\[
\| u_k \|^2 > \psi \| v_k \|^2, \quad \psi > 0
\]

\[
\frac{1}{2} u_k^T (H(x_k, \lambda_k) + \xi_1 I) u_k < \theta \| u_k \|^2, \quad \theta > 0
\]
Algorithm 2: Inexact Newton (Regularized)
(Curtis, Nocedal, Wächter (2009))
for $k = 0, 1, 2, \ldots$

- Approximately solve
 \[
 \min \frac{1}{2} \| c(x_k) + \nabla c(x_k)^T v \|^2, \quad \text{s.t.} \quad \|v\| \leq \omega \|c(x_k)\| c(x_k) \|
 \]
to compute v_k satisfying Cauchy decrease

- Iteratively solve
 \[
 \begin{bmatrix}
 H(x_k, \lambda_k) + \xi_1 I & \nabla c(x_k) \\
 \nabla c(x_k)^T & 0
 \end{bmatrix}
 \begin{bmatrix}
 d_k \\
 \delta_k
 \end{bmatrix}
 = - \begin{bmatrix}
 \nabla f(x_k) + \nabla c(x_k) \lambda_k \\
 -\nabla c(x_k)^T v_k
 \end{bmatrix}
 \]
 until termination test 1 or 2 is satisfied, increasing ξ_1 as described

- If only termination test 2 is satisfied, increase π so
 \[
 \pi_k \geq \max \left\{ \pi_{k-1}, \frac{\nabla f(x_k)^T d_k + \max\left\{ \frac{1}{2} u_k^T (H(x_k, \lambda_k) + \xi_1 I) u_k, \theta \| u_k \|^2 \} \right\}}{(1 - \tau)(\| c(x_k) \| - \| c(x_k) + \nabla c(x_k)^T d_k \|)} \right\}
 \]

- Backtrack from $\alpha_k \leftarrow 1$ to satisfy
 \[
 \phi(x_k + \alpha_k d_k; \pi_k) \leq \phi(x_k; \pi_k) - \eta \alpha_k \Delta m(d_k; \pi_k)
 \]

- Update iterate $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k (d_k, \delta_k)$
Convergence of Algorithm 2

Assumption

The sequence \(\{(x_k, \lambda_k)\} \) is contained in a convex set \(\Omega \) over which \(f, c, \) and their first derivatives are bounded and Lipschitz continuous.

Theorem

(Curtis, Nocedal, Wächter (2009)) If all limit points of \(\{\nabla c(x_k)^T\} \) have full row rank, then the sequence \(\{(x_k, \lambda_k)\} \) yields the limit

\[
\lim_{k \to \infty} \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k)\lambda_k \\ c(x_k) \end{bmatrix} \right\| = 0.
\]

Otherwise,

\[
\lim_{k \to \infty} \| (\nabla c(x_k))c(x_k) \| = 0
\]

and if \(\{\pi_k\} \) is bounded, then

\[
\lim_{k \to \infty} \| \nabla f(x_k) + \nabla c(x_k)\lambda_k \| = 0
\]
Handling inequalities

- **Interior point methods** are attractive for large applications
- Line-search interior point methods that enforce

 \[c(x_k) + \nabla c(x_k)^T d_k = 0 \]

 may fail to converge globally (Wächter, Biegler (2000))
- Fortunately, the trust region subproblem we use to regularize the constraints also saves us from this type of failure!
Algorithm 2 (Interior-point version)

- Apply Algorithm 2 to the logarithmic-barrier subproblem

$$\min f(x) - \mu \sum_{i=1}^{q} \ln s^i, \quad \text{s.t. } c_E(x) = 0, \ c_I(x) - s = 0$$

for $\mu \to 0$

- Define

$$
\begin{bmatrix}
H(x_k, \lambda_E, k, \lambda_I, k) & 0 & \nabla c_E(x_k) & \nabla c_I(x_k) \\
0 & \mu l & 0 & -S_k \\
\nabla c_E(x_k)^T & 0 & 0 & 0 \\
\nabla c_I(x_k)^T & -S_k & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
d^x_k \\
d^s_k \\
\delta_E, k \\
\delta_I, k \\
\end{bmatrix}
$$

so that the iterate update has

$$
\begin{bmatrix}
x_{k+1} \\
s_{k+1} \\
\end{bmatrix}
\leftarrow
\begin{bmatrix}
x_k \\
s_k \\
\end{bmatrix} + \alpha_k
\begin{bmatrix}
d^x_k \\
S_k d^s_k \\
\end{bmatrix}
$$

- Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in the algorithm to maintain $s \geq \max\{0, c_I(x)\}$
Convergence of Algorithm 2 (Interior-point)

Assumption
The sequence \(\{ (x_k, \lambda_{E,k}, \lambda_{I,k}) \} \) is contained in a convex set \(\Omega \) over which \(f, c_E, c_I \), and their first derivatives are bounded and Lipschitz continuous.

Theorem
(Curtis, Schenk, Wächter (2009))

- For a given \(\mu \), Algorithm 2 yields the same limits as in the equality constrained case.

- If Algorithm 2 yields a sufficiently accurate solution to the barrier subproblem for each \(\{ \mu_j \} \to 0 \) and if the linear independence constraint qualification (LICQ) holds at a limit point \(\bar{x} \) of \(\{ x_j \} \), then there exist Lagrange multipliers \(\bar{\lambda} \) such that the first-order optimality conditions of the nonlinear program are satisfied.
Outline

PDE-Constrained Optimization

Newton’s method

Inexactness

Experimental results

Conclusion and final remarks
Implementation details

- Incorporated in IPOPT software package (Wächter)
 - `inexact_algorithm` yes
- Linear systems solved with PARDISO (Schenk)
 - SQMR (Freund (1994))
- Preconditioning in PARDISO
 - incomplete multilevel factorization with inverse-based pivoting
 - stabilized by symmetric-weighted matchings
- Optimality tolerance: 1e-8
CUTEr and COPS collections

- 745 problems written in AMPL
- 645 solved successfully
- 42 “real” failures
- Robustness between 87%-94%
- Original IPOPT: 93%
Helmholtz

<table>
<thead>
<tr>
<th>N</th>
<th>n</th>
<th>p</th>
<th>q</th>
<th># iter</th>
<th>CPU sec (per iter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>14724</td>
<td>13824</td>
<td>1800</td>
<td>37</td>
<td>807.823 (21.833)</td>
</tr>
<tr>
<td>64</td>
<td>56860</td>
<td>53016</td>
<td>7688</td>
<td>25</td>
<td>3741.42 (149.66)</td>
</tr>
<tr>
<td>128</td>
<td>227940</td>
<td>212064</td>
<td>31752</td>
<td>20</td>
<td>54581.8 (2729.1)</td>
</tr>
</tbody>
</table>

Inexact Newton Methods and Nonlinear Constrained Optimization

EPSRC Symposium Capstone Conference, WMI
Helmholtz

Not taking nonconvexity into account:
Boundary control

\[
\begin{align*}
\min & \quad \frac{1}{2} \int_{\Omega} (y(x) - y_t(x))^2 dx \\
\text{s.t.} & \quad -\nabla \cdot (e^{y(x)} \cdot \nabla y(x)) = 20 \quad \text{in } \Omega \\
& \quad y(x) = u(x) \quad \text{on } \partial \Omega \\
& \quad 2.5 \leq u(x) \leq 3.5 \quad \text{on } \partial \Omega
\end{align*}
\]

where

\[
y_t(x) = 3 + 10x_1(x_1 - 1)x_2(x_2 - 1) \sin(2\pi x_3)
\]

<table>
<thead>
<tr>
<th>N</th>
<th>n</th>
<th>p</th>
<th>q</th>
<th># iter</th>
<th>CPU sec (per iter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4096</td>
<td>2744</td>
<td>2704</td>
<td>13</td>
<td>2.8144 (0.2165)</td>
</tr>
<tr>
<td>32</td>
<td>32768</td>
<td>27000</td>
<td>11536</td>
<td>13</td>
<td>103.65 (7.9731)</td>
</tr>
<tr>
<td>64</td>
<td>262144</td>
<td>238328</td>
<td>47632</td>
<td>14</td>
<td>5332.3 (380.88)</td>
</tr>
</tbody>
</table>

Original IPOPT with \(N = 32 \) requires 238 seconds per iteration
Hyperthermia Treatment Planning

\[
\min \frac{1}{2} \int_{\Omega} (y(x) - y_t(x))^2 \, dx \\
\text{s.t. } - \Delta y(x) - 10(y(x) - 37) = u^* M(x) u \text{ in } \Omega \\
37.0 \leq y(x) \leq 37.5 \text{ on } \partial \Omega \\
42.0 \leq y(x) \leq 44.0 \text{ in } \Omega_0
\]

where

\[
u_j = a_j e^{i\phi_j}, \quad M_{jk}(x) = \langle E_j(x), E_k(x) \rangle, \quad E_j = \sin(jx_1x_2x_3\pi)
\]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(n)</th>
<th>(p)</th>
<th>(q)</th>
<th># iter</th>
<th>CPU sec (per iter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4116</td>
<td>2744</td>
<td>2994</td>
<td>68</td>
<td>22.893 (0.3367)</td>
</tr>
<tr>
<td>32</td>
<td>32788</td>
<td>27000</td>
<td>13034</td>
<td>51</td>
<td>3055.9 (59.920)</td>
</tr>
</tbody>
</table>

Original IPOPT with \(N = 32\) requires 408 seconds per iteration
Groundwater modeling

\[
\min \frac{1}{2} \int_{\Omega} (y(x) - y_t(x))^2 \, dx + \frac{1}{2} \alpha \int_{\Omega} [\beta (u(x) - u_t(x))^2 + |\nabla (u(x) - u_t(x))|^2] \, dx
\]

s.t. \[-\nabla \cdot (e^{u(x)} \cdot \nabla y_i(x)) = q_i(x) \quad \text{in } \Omega, \quad i = 1, \ldots, 6 \]

\[\nabla y_i(x) \cdot n = 0 \quad \text{on } \partial \Omega \]

\[\int_{\Omega} y_i(x) \, dx = 0, \quad i = 1, \ldots, 6 \]

\[-1 \leq u(x) \leq 2 \quad \text{in } \Omega \]

where

\[q_i = 100 \sin(2\pi x_1) \sin(2\pi x_2) \sin(2\pi x_3) \]

<table>
<thead>
<tr>
<th>N</th>
<th>n</th>
<th>p</th>
<th>q</th>
<th># iter</th>
<th>CPU sec (per iter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>28672</td>
<td>24576</td>
<td>8192</td>
<td>18</td>
<td>206.416 (11.4676)</td>
</tr>
<tr>
<td>32</td>
<td>229376</td>
<td>196608</td>
<td>65536</td>
<td>20</td>
<td>1963.64 (98.1820)</td>
</tr>
<tr>
<td>64</td>
<td>1835008</td>
<td>1572864</td>
<td>524288</td>
<td>21</td>
<td>134418. (6400.85)</td>
</tr>
</tbody>
</table>

Original IPOPT with $N = 32$ requires approx. 20 hours for the first iteration
Outline

PDE-Constrained Optimization

Newton’s method

Inexactness

Experimental results

Conclusion and final remarks
Conclusion and final remarks

- **PDE-Constrained optimization** is an active and exciting area
- **Inexact Newton method** with theoretical foundation
- **Convergence guarantees** are as good as exact methods, sometimes better
- **Numerical experiments** are promising so far, and more to come