A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with $\mathcal{O}(\epsilon^{-3/2})$ Complexity

Mohammadreza Samadi, Lehigh University

joint work with

Frank E. Curtis (stand-in presenter), Lehigh University

OP17 — Vancouver, British Columbia, Canada

 $24\ \mathrm{May}\ 2017$

	Theoretical Results	
Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

	Theoretical Results	
Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

		Theoretical Results	
Introduct	ion		

Consider nonconvex equality constrained optimization problems of the form

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

where $f : \mathbb{R}^n \to \mathbb{R}$ and $c : \mathbb{R}^n \to \mathbb{R}^m$ are twice continuously differentiable.

- ▶ We are interested in algorithm worst-case iteration / evaluation complexity.
- ▶ Constraints are not necessarily linear! (No projection-based algorithms.)

	Theoretical Results	
Algorithms		

Sequential Quadratic Optimization (SQP) / Newton's Method

Trust Funnel; Gould & Toint (2010)

Short-Step ARC; Cartis, Gould, & Toint (2013)

		Theoretical Results	
Algorithm	IS		

Sequential Quadratic Optimization (SQP) / Newton's Method

▶ Global convergence: globally convergent (line search or trust region)

Trust Funnel; Gould & Toint (2010)

► Global convergence: globally convergent

Short-Step ARC; Cartis, Gould, & Toint (2013)

▶ Global convergence: globally convergent

		Theoretical Results	
Algorithm	IS		

Sequential Quadratic Optimization (SQP) / Newton's Method

- ▶ Global convergence: globally convergent (line search or trust region)
- ▶ Worst-case complexity: No proved bound

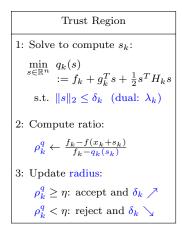
Trust Funnel; Gould & Toint (2010)

- Global convergence: globally convergent
- Worst-case complexity: No proved bound

Short-Step ARC; Cartis, Gould, & Toint (2013)

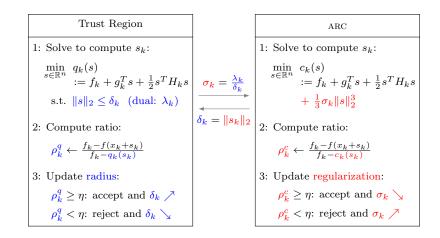
- ▶ Global convergence: globally convergent
- Worst-case complexity: $\mathcal{O}(\epsilon^{-3/2})$ (simplified; more later)

Trust region vs. ARC

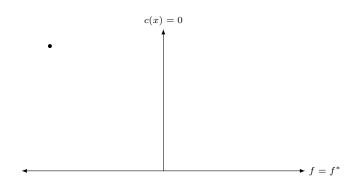


ARC			
1: Solve to compute s_k :			
$ \min_{s \in \mathbb{R}^n} c_k(s) \\ := f_k + g_k^T s + \frac{1}{2} s^T H_k s \\ + \frac{1}{3} \sigma_k \ s\ _2^3 $			
2: Compute ratio:			
$ ho_k^c \leftarrow rac{f_k - f(x_k + s_k)}{f_k - c_k(s_k)}$			
3: Update regularization:			
$ \rho_k^c \ge \eta $: accept and σ_k			
$ ho_k^c < \eta$: reject and $\sigma_k \nearrow$			

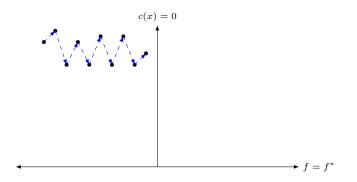
Trust region vs. ARC: Subproblem solution correspondence



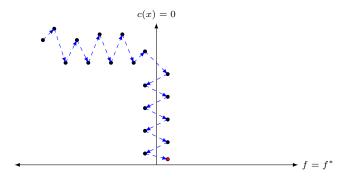
		Theoretical Results	
Short-Step	p ARC		



		Theoretical Results	
Short-Step	p ARC		



		Theoretical Results	
Short-Step	o ARC		



		Theoretical Results	
Main conce	rn		

- ▶ Completely ignores the objective function during the first phase
- ▶ Question: Can we do better?

		Theoretical Results	
Contribut	ions		

- ▶ Completely ignores the objective function during the first phase
- Question: Can we do better?
- ► Yes!(?)
- ▶ First, consider TRACE method for unconstrained nonconvex optimization
 - FEC, D. P. Robinson, M. Samadi, "A trust region algorithm with a worst-case iteration complexity of O(ε^{-3/2}) for nonconvex optimization," *Mathematical Programming*, 162(1-2), 2017.
- Second, rather than two-phase approach that ignores objective in phase 1, wrap in a trust funnel framework that observes objective in both phases.

		Theoretical Results	
Contribut	ions		

- ▶ Completely ignores the objective function during the first phase
- Question: Can we do better?
- ► Yes!(?)
- ▶ First, consider TRACE method for unconstrained nonconvex optimization
 - FEC, D. P. Robinson, M. Samadi, "A trust region algorithm with a worst-case iteration complexity of O(ε^{-3/2}) for nonconvex optimization," Mathematical Programming, 162(1-2), 2017.
- Second, rather than two-phase approach that ignores objective in phase 1, wrap in a trust funnel framework that observes objective in both phases.

Why trust funnel?

- Do not know, in general, how to bound number of updates to a penalty parameter and/or updates of filter entries!
- ▶ Trust funnel: "driving factor" is reducing constraint violation.

	Theoretical Results	
Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

		Theoretical Results	
SQP "cor	e"		

Ideally, given x_k , find s_k as a solution of

$$\min_{s \in \mathbb{R}^n} f_k + g_k^T s + \frac{1}{2} s^T H_k s$$

s.t. $c_k + J_k s = 0$

Issues:

- H_k (Hessian of Lagrangian) might not be positive definite over Null (J_k) .
- ▶ Trust region!... but constraints might be incompatible.

		Theoretical Results	
Trust funn	el basics		

Step decomposition approach:

▶ First, compute a *normal step* toward minimizing constraint violation:

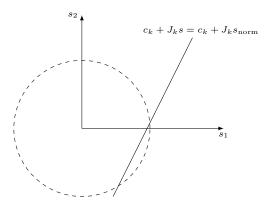
$$v(x) = \frac{1}{2} \|c(x)\|_2^2 \implies \begin{cases} \min_{s_{\text{norm}} \in \mathbb{R}^n} m_k^v(s_{\text{norm}}) \\ \text{s.t. } \|s_{\text{norm}}\|_2 \le \delta_k^v \end{cases}$$

▶ Second, compute multipliers λ_k (or take from previous iteration).

▶ Third, compute a *tangential step* toward optimality:

$$\begin{split} \min_{s_{\text{tang}} \in \mathbb{R}^n} \ m_k^f(s_{\text{norm}} + s_{\text{tang}}) \\ \text{s.t. } J_k s_{\text{tang}} = 0, \ \|s_{\text{norm}} + s_{\text{tang}}\|_2 \leq \delta_k^f. \end{split}$$

		Theoretical Results	
Tangentia	l step		



	Theoretical Results	
Main idea		

Two-phase method combining trust funnel and TRACE.

- Trust funnel for globalization
- ▶ TRACE for good complexity bounds

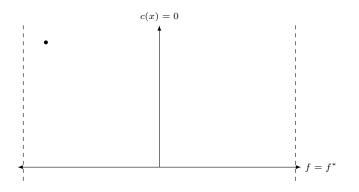
Phase 1 towards feasibility, two types of iterations:

- ▶ F-ITERATIONS improve objective and reduce constraint violation.
- ▶ V-ITERATIONS reduce constraint violation.

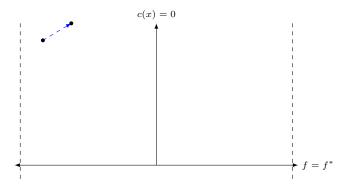
Our algorithm vs. basic trust funnel

- ▶ modified F-ITERATION conditions and a different funnel updating procedure
- ▶ uses TRACE instead of tradition trust region ideas (for radius updates)
- ▶ after getting relatively feasible, switches to "phase 2".

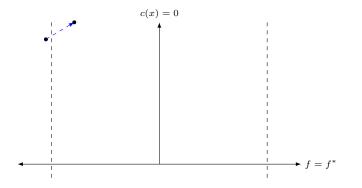
		Theoretical Results	
Illustration	1		



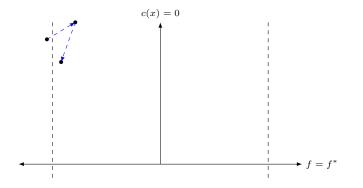
		Theoretical Results	
Illustratio	n		



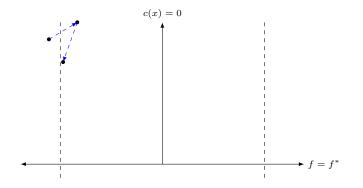
		Theoretical Results	
Illustratio	n		



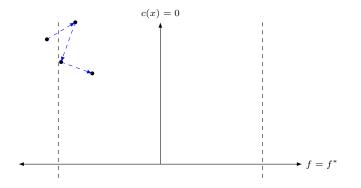
		Theoretical Results	
Illustratio	n		



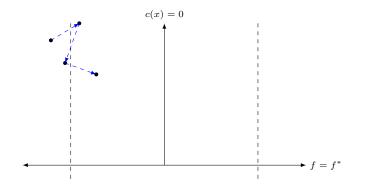
		Theoretical Results	
Illustration	1		



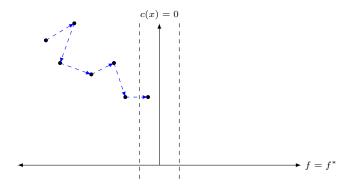
		Theoretical Results	
Illustratio	n		



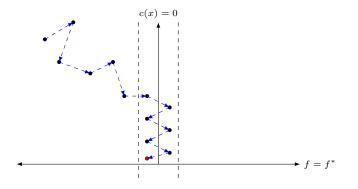
		Theoretical Results	
Illustratio	n		



		Theoretical Results	
Illustratio	n		



		Theoretical Results	
Illustratio	n		



Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

Phase 1		

Recall that $\nabla v(x) = J(x)^T c(x)$ and define the iteration index set

$$\mathcal{I} := \{ k \in \mathbb{N} : \| J_k^T c_k \|_2 > \epsilon_v \}.$$

Theorem 1

For any $\epsilon_v \in (0,\infty)$, the cardinality of \mathcal{I} is at most $K(\epsilon_v)$, which accounts for

- $\mathcal{O}(\epsilon_v^{-3/2})$ successful steps and
- ▶ finite contraction and expansion steps between successful steps.

Hence, the cardinality of \mathcal{I} is $K(\epsilon_v) = \mathcal{O}(\epsilon_v^{-3/2})$.

Phase 1		

Recall that $\nabla v(x) = J(x)^T c(x)$ and define the iteration index set

$$\mathcal{I} := \{ k \in \mathbb{N} : \| J_k^T c_k \|_2 > \epsilon_v \}.$$

Theorem 1

For any $\epsilon_v \in (0,\infty)$, the cardinality of \mathcal{I} is at most $K(\epsilon_v)$, which accounts for

- $\mathcal{O}(\epsilon_v^{-3/2})$ successful steps and
- ▶ finite contraction and expansion steps between successful steps.

Hence, the cardinality of \mathcal{I} is $K(\epsilon_v) = \mathcal{O}(\epsilon_v^{-3/2})$.

Corollary 2

If $\{J_k\}$ have full row rank with singular values bounded below by $\zeta \in (0,\infty)$, then

$$\mathcal{I}_c := \{k \in \mathbb{N} : \|c_k\|_2 > \epsilon_v / \zeta\}$$

has cardinality $\mathcal{O}(\epsilon_v^{-3/2})$.

Phase 2			

Options for phase 2:

- ▶ trust funnel method (no complexity guarantees) or
- ▶ "target-following" approach similar to Short-Step ARC to minimize

$$\Phi(x,t) = \|c(x)\|_2^2 + |f(x) - t|^2$$

Theorem 3

For $\epsilon_f \in (0, \epsilon_v^{1/3}]$, the number of iterations until $\|g_k + J_k^T y_k\|_2 \le \epsilon_f \|(y_k, 1)\|_2$ or $\|J_k^T c_k\|_2 \le \epsilon_f \|c_k\|_2$ is $\mathcal{O}(\epsilon_f^{-3/2} \epsilon_v^{-1/2})$.

Same complexity as Short-Step ARC:

- If $\epsilon_f = \epsilon_v^{2/3}$, then overall $\mathcal{O}(\epsilon_v^{-3/2})$ (though loose KKT tolerance).
- If $\epsilon_f = \epsilon_v$, then overall $\mathcal{O}(\epsilon_v^{-2})$.

	Theoretical Results	
Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

		Theoretical Results		
Implemen	Itation			

Matlab implementation:

▶ Phase 1: our algorithm vs. one doing V-ITERATIONS only

▶ Phase 2: trust funnel method [Curtis, Gould, Robinson, & Toint (2016)] Termination conditions:

▶ Phase 1:

$$\|c_k\|_{\infty} \le 10^{-6} \max\{\|c_0\|_{\infty}, 1\} \text{ or } \begin{cases} \|J_k^T c_k\|_{\infty} \le 10^{-6} \max\{\|J_0^T c_0\|_{\infty}, 1\}\\ \text{and } \|c_k\|_{\infty} > 10^{-3} \max\{\|c_0\|_{\infty}, 1\} \end{cases}$$

▶ Phase 2:

$$||g_k + J_k^T y_k||_{\infty} \le 10^{-6} \max\{||g_0 + J_0^T y_0||_{\infty}, 1\}.$$

	Theoretical Results		
Test set			

Equality constrained problems (190) from the CUTEst test set:

78	constant (or null) objective
60	time limit (1 hour)
13	feasible initial point
3	infeasible phase 1
2	function evaluation error
1	small stepsizes (less than 10^{-20})

Remaining set consists of 33 problems.

							_						
		1 1	<u> </u>			TF					TF-V-ONLY		
		(I	<u> </u>		Phase 1	T		lse 2	L	Phase	-		se 2
Problem	n	m	#V	#F	f	$\ g + J^T y\ $	#V	#F	#V	f	$ g + J^T y $	#V	#F
BT1	2	1	4	0	-8.02e-01	+4.79e-01	0	139	4	-8.00e-01	+7.04e-01	7	136
BT10	2	2	10	0	-1.00e+00	+5.39e-04	1	0	10	-1.00e+00	+6.74e-05	1	0
BT11	5	3	6	1	+8.25e-01	+4.84e-03	2	0	1	+4.55e+04	+2.57e+04	16	36
BT12	5	3	12	1	+6.19e+00	+1.18e-05	0	0	16	+3.34e+01	+4.15e+00	4	8
BT2	3	1	22	8	+1.45e+03	+3.30e+02	3	12	21	+6.14e+04	+1.82e+04	0	40
BT3	5	3	1	0	+4.09e+00	+6.43e+02	1	0	1	+1.01e+05	+8.89e+02	0	1
BT4	3	2	1	0	-1.86e+01	+1.00e+01	20	12	1	-1.86e+01	+1.00e+01	20	12
BT5	3	2	15	2	+9.62e+02	+2.80e+00	14	2	8	+9.62e+02	+3.83e-01	3	1
BT6	5	2	11	45	+2.77e-01	+4.64e-02	1	0	14	+5.81e+02	+4.50e+02	5	59
BT7	5	3	15	6	+1.31e+01	+5.57e+00	5	1	12	+1.81e+01	+1.02e+01	19	28
BT8	5	2	50	26	+1.00e+00	+7.64e-04	1	1	10	+2.00e+00	+2.00e+00	1	97
BT9	4	2	11	1	-1.00e+00	+8.56e-05	1	0	10	-9.69e-01	+2.26e-01	5	1
BYRDSPHR	3	2	29	2	-4.68e+00	+1.28e-05	0	0	19	-5.00e-01	+1.00e+00	16	5
CHAIN	800	401	9	0	+5.12e+00	+2.35e-04	3	20	9	+5.12e+00	+2.35e-04	3	20
FLT	2	2	15	4	+2.68e+10	+3.28e+05	0	13	19	+2.68e+10	+3.28e+05	0	17
GENHS28	10	8	1	0	+9.27e-01	+5.88e+01	0	0	1	+2.46e+03	+9.95e+01	0	1
HS100LNP	7	2	16	2	+6.89e+02	+1.74e+01	4	1	5	+7.08e+02	+1.93e+01	14	3
HS111LNP	10	3	9	1	-4.78e+01	+4.91e-06	2	0	10	-4.62e+01	+7.49e-01	10	1
HS27	3	1	2	0	+8.77e+01	+2.03e+02	3	5	1	+2.54e+01	+1.41e+02	11	34
HS39	4	2	11	1	-1.00e+00	+8.56e-05	1	0	10	-9.69e-01	+2.26e-01	5	1
HS40	4	3	4	0	-2.50e-01	+1.95e-06	0	0	3	-2.49e-01	+3.35e-02	2	1
HS42	4	2	4	1	+1.39e+01	+3.94e-04	1	0	1	+1.50e+01	+2.00e+00	3	1
HS52	5	3	1	0	+5.33e+00	+1.54e+02	1	0	1	+8.07e+03	+4.09e+02	0	1
HS6	2	1	1	0	+4.84e+00	+1.56e+00	32	136	1	+4.84e+00	+1.56e+00	32	136
HS7	2	1	7	1	-2.35e-01	+1.18e+00	7	2	8	+3.79e-01	+1.07e+00	5	2
HS77	5	2	13	30	+2.42e-01	+1.26e-02	0	0	17	+5.52e+02	+4.54e+02	3	11
HS78	5	3	6	0	-2.92e+00	+3.65e-04	1	0	10	-1.79e+00	+1.77e+00	2	30
HS79	5	3	13	21	+7.88e-02	+5.51e-02	0	2	10	+9.70e+01	+1.21e+02	0	24
MARATOS	2	1	4	0	-1.00e+00	+8.59e-05	1	0	3	-9.96e-01	+9.02e-02	2	1
MSS3	2070	1981	12	0	-4.99e+01	+2.51e-01	50	0	12	-4.99e+01	+2.51e-01	50	0
MWRIGHT	5	3	17	6	+2.31e+01	+5.78e-05	1	0	7	+5.07e+01	+1.04e+01	12	20
ORTHREGB	27	6	10	15	+7.02e-05	+4.23e-04	0	6	10	+2.73e+00	+1.60e+00	0	10
SPIN20P	102	100	57	18	+2.04e-08	+2.74e-04	0	1	time	+1.67e+01	+3.03e-01	time	time

				TF			TF-V-ONLY							
			Phase 1				Phase 2			Phase 1			Phase 2	
Problem	n	m	#V	#F	f	$ g + J^T y $	#V	#F	#V	f	$ g + J^T y $	#V	#F	
BT11	5	3	6	1	+8.25e-01	+4.84e-03	2	0	1	+4.55e+04	+2.57e+04	16	36	
BT7	5	3	15	6	+1.31e+01	+5.57e+00	5	1	12	+1.81e+01	+1.02e+01	19	28	

Our algorithm, at the end of phase 1

- $\blacktriangleright\,$ for 26 problems, reaches a smaller function value
- ▶ for 6 problems, reaches the same function value

Total number of iterations of our algorithm

- ▶ for 18 problems is smaller
- ▶ for 8 problems is equal

	Theoretical Results	
Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

	Theoretical Results	
C		
Summary		

- ▶ Proposed an algorithm for equality constrained optimization
- ▶ Trust funnel algorithm with improved complexity properties
- ▶ Promising performance in practice based on our preliminary experiment
- ▶ A step toward practical algorithms with good iteration complexity

$\star\,$ F. E. Curtis, D. P. Robinson, and M. Samadi.

Complexity Analysis of a Trust Funnel Algorithm for Equality Constrained Optimization.

Technical Report 16T-013, COR@L Laboratory, Department of ISE, Lehigh University, 2016.