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Unconstrained optimization: Steepest descent

Consider the unconstrained optimization problem

min
x∈Rn

f(x), where f : Rn → R is C1.

Let us focus exclusively on a steepest descent framework:

Algorithm SD Steepest Descent

Require: x1 ∈ Rn
1: for k ∈ N do
2: Compute gk ← ∇f(xk)
3: Choose αk ∈ (0,∞)
4: Set xk+1 ← xk − αkgk
5: end for

All that remains to be determined are the stepsizes {αk}.
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Minimizing strongly convex quadratics

Suppose f(x) = 1
2
xTAx− bT x, where A has eigenvalues λ1 ≤ · · · ≤ λn.

0 1/λn 1/λ1

Convergence (rate) of the algorithm depends on choices for {αk}.
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Minimizing strongly convex quadratics

Suppose f(x) = 1
2
xTAx− bT x, where A has eigenvalues λ1 ≤ · · · ≤ λn.

0 1/λn 1/λ1

Choosing αk ← 1/λn leads to Q-linear convergence with constant (1− λ1/λn)
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Minimizing strongly convex quadratics

Suppose f(x) = 1
2
xTAx− bT x, where A has eigenvalues λ1 ≤ · · · ≤ λn.

0 1/λn 1/λ1

. . . but certain “components” of the gradient vanish in a larger range.
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Minimizing strongly convex quadratics

Suppose f(x) = 1
2
xTAx− bT x, where A has eigenvalues λ1 ≤ · · · ≤ λn.

0 1/λn 1/λ1

Goal: Allow large stepsizes, shrink range (automatically) to catch entire gradient.
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Contributions

Consider Fletcher’s limited memory steepest descent (LMSD) method.

I Extends the Barzilai-Borwein (BB) “two-point stepsize strategy”.

I BB methods known to have R-linear convergence rate; Dai and Liao (2002).

I We prove that LMSD also attains R-linear convergence.

Although proved convergence rate is not necessarily better than that for BB,
one can see reasons for improved empirical performance.
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Decomposition

min
x∈Rn

f(x), where f(x) = 1
2
xTAx− bT x

Let A have the eigendecomposition A = QΛQT , where

Q =
[
q1 · · · qn

]
is orthogonal

and Λ = diag(λ1, . . . , λn) with λn ≥ · · · ≥ λ1 > 0.

Let g := ∇f . For any x ∈ Rn, the gradient of f at x can be expressed as

g(x) =
n∑
i=1

diqi, where di ∈ R for all i ∈ [n] := {1, . . . , n}.
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Recursion

Let g := ∇f . For any x ∈ Rn, the gradient of f at x can be expressed as

g(x) =
n∑
i=1

diqi, where di ∈ R for all i ∈ [n] := {1, . . . , n}. (1)

If x+ ← x− αg(x), then the weights satisfy the recursive property:

d+i = (1− αλi)di for all i ∈ [n].

Proof (Sketch).

Since g(x) = Ax− b,
x+ = x− αg(x)

Ax+ = Ax− αg(x)

g(x+) = (I − αA)g(x)

g(x+) = (I − αQΛQT )g(x),

then decompose according to (1).

Idea: Choose stepsizes as reciprocals of (estimates of) eigenvalues of A.
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LMSD method: Main idea

Fletcher (2012):

I Repeated cycles (or “sweeps”) of m iterations.

I At start of (k + 1)st cycle, suppose one has the kth cycle values in

Gk :=
[
gk,1 · · · gk,m

]
corresponding to {xk,1, . . . , xk,m}.

I Iterate displacements lie in Krylov sequence initiated from gk,1.

I Performing a QR decomposition to obtain

Gk = QkRk,

one obtains m eigenvalue estimates (Ritz values) as eigenvalues of

(symmetric tridiagonal) Tk ← QTkAQk,

which are contained in the spectrum of A in an optimal sense (more later).

I One can also obtain these estimates more cheaply and with less storage. . .
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LMSD method: Efficient eigenvalue estimation

Storing the kth cycle reciprocal stepsizes in

Jk ←



α−1
k,1

−α−1
k,1

. . .

. . . α−1
k,m

−α−1
k,m

 ,

one finds that by computing the (partially extended) Cholesky factorization

GTk
[
Gk gk,m+1

]
= RTk

[
Rk rk

]
,

one has
Tk ←

[
Rk rk

]
JkR

−1
k .

Long story short: One can obtain Ritz values (and stepsizes) in ∼ 1
2
m2n flops

I . . . and this is done only once every m steps.
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LMSD

Algorithm LMSD Limited Memory Steepest Descent

Require: x1,1 ∈ Rn, m ∈ N, and ε ∈ R+
1: Choose stepsizes {α1,j}j∈[m] ⊂ R++
2: Compute g1,1 ← ∇f(x1,1)
3: if ‖g1,1‖ ≤ ε, then return x1,1
4: for k ∈ N do
5: for j ∈ [m] do
6: Set xk,j+1 ← xk,j − αk,jgk,j
7: Compute gk,j+1 ← ∇f(xk,j+1)
8: if ‖gk,j+1‖ ≤ ε, then return xk,j+1

9: end for
10: Set xk+1,1 ← xk,m+1 and gk+1,1 ← gk,m+1

11: Set Gk and Jk
12: Compute (Rk, rk), then compute Tk
13: Compute {θk,j}j∈[m] ⊂ R++ as the eigenvalues of Tk

14: Compute {αk+1,j}j∈[m] ← {θ−1
k,j}j∈[m] ⊂ R++

15: end for

(Note: There is also a version using harmonic Ritz values.)
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Known convergence properties

BB methods (m = 1):

I R-superlinear when n = 2; Barzilai and Borwein (1988)

I Convergent for any n from any starting point; Raydan (1993)

I R-linear for any n; Dai and Liao (2002)

LMSD methods (m ≥ 1):

I Convergent for any n from any starting point; Fletcher (2012)

I Prior to our work: Convergence rate not yet analyzed.
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Basic Assumptions

Assumption 1

(i) Algorithm LMSD is run with ε = 0 and gk,j 6= 0 for all (k, j) ∈ N × [m].

(ii) For all k ∈ N, the matrix Gk has linearly independent columns. Further,
there exists ρ ∈ [1,∞) such that, for all k ∈ N,

‖R−1
k ‖ ≤ ρ‖gk,1‖

−1. (2)

To justify (2), note that when m = 1, one has

QkRk = Gk = gk,1 where Qk = gk,1/‖gk,1‖ and Rk = ‖gk,1‖.

Hence, (2) holds with ρ = 1.
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Intuition

Lemma 2

For all k ∈ N, the eigenvalues of Tk satisfy

θk,j ∈ [λm+1−j , λn+1−j ] ⊆ [λ1, λn] for all j ∈ [m].

Recall. . .

0 1/λn 1/λ1

We essentially prove that. . .
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Worst-case “blow-up” of weights over a cycle

Lemma 3

For each (k, j, i) ∈ N × [m]× [n]:

|dk,j+1,i| ≤ δj,i|dk,j,i| where δj,i := max

{∣∣∣∣1− λi

λm+1−j

∣∣∣∣ , ∣∣∣∣1− λi

λn+1−j

∣∣∣∣} .
Hence, for each (k, j, i) ∈ N × [m]× [n]:

|dk+1,j,i| ≤ ∆i|dk,j,i| where ∆i :=

m∏
j=1

δj,i.

Furthermore, for each (k, j, p) ∈ N × [m]× [n]:√√√√ p∑
i=1

d2k,j+1,i ≤ δ̂j,p

√√√√ p∑
i=1

d2k,j,i where δ̂j,p := max
i∈[p]

δj,i,

while, for each (k, j) ∈ N × [m]:

‖gk+1,j‖ ≤ ∆‖gk,j‖ where ∆ := max
i∈[n]

∆i.

R-Linear Convergence of Limited Memory Steepest Descent 17 of 26



Introduction LMSD Method R-Linear Convergence Numerics Summary

Q-linear convergence of weight i = 1

Lemma 4

If ∆1 = 0, then d1+k̂,ĵ,1 = 0 for all (k̂, ĵ) ∈ N × [m]. Otherwise, if ∆1 > 0, then:

(i) for (k, j) ∈ N × [m] with dk,j,1 = 0, it follows that dk+k̂,ĵ,1 = 0 for all

(k̂, ĵ) ∈ N × [m];

(ii) for (k, j) ∈ N × [m] with |dk,j,1| > 0 and any ε1 ∈ (0, 1), it follows that

|dk+k̂,ĵ,1|
|dk,j,1|

≤ ε1 for all k̂ ≥ 1 +

⌈
log ε1

log ∆1

⌉
and ĵ ∈ [m].
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Ritz value representation

Lemma 5

For all (k, j) ∈ N × [m], let qk,j ∈ Rm denote the unit eigenvector corresponding
to the eigenvalue θk,j of Tk, i.e., that with Tkqk,j = θk,jqk,j and ‖qk,j‖ = 1.
Then, defining

Dk :=

dk,1,1 · · · dk,m,1
.
..

. . .
.
..

dk,1,n · · · dk,m,n

 and ck,j := DkR
−1
k qk,j ,

it follows that, with the diagonal matrix of eigenvalues (namely, Λ = QTAQ),

θk,j = cTk,jΛck,j and cTk,jck,j = 1.
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“If first p weights small, then bound for weight p + 1. . . ”

(We express δ̂p ∈ [1,∞) dependent only on m, p, and the spectrum of A.)

Lemma 6 (simplified)

For any (k, p) ∈ N × [n− 1], if there exists (εp,Kp) ∈ (0, 1

2δ̂pρ
)× N with

p∑
i=1

d2
k+k̂,1,i

≤ ε2p‖gk,1‖2 for all k̂ ≥ Kp,

then there exists Kp+1 ≥ Kp dependent only on εp, ρ, and the spectrum of A with

d2k+Kp+1,1,p+1 ≤ 4δ̂2pρ
2ε2p‖gk,1‖2;

Proof (Key step).

First p elements of ck+k̂,j small enough such that

θk+k̂,j =
n∑
i=1

λic
2
k+k̂,j,i

≥ 3
4
λp+1 for k̂ ≥ Kp and j ∈ [m].
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“If first p weights small, then bound for all first p + 1 weights. . . ”

Lemma 7

For any (k, p) ∈ N × [n− 1], if there exists (εp,Kp) ∈ (0, 1

2δ̂pρ
)× N with

p∑
i=1

d2
k+k̂,1,i

≤ ε2p‖gk,1‖2 for all k̂ ≥ Kp,

then, with ε2p+1 := (1 + 4 max{1,∆4
p+1}δ̂2pρ2)ε2p and Kp+1 ∈ N,

p+1∑
i=1

d2
k+k̂,1,i

≤ ε2p+1‖gk,1‖2 for all k̂ ≥ Kp+1.
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R-linear convergence of LMSD

Lemma 8

There exists K ∈ N dependent only on the spectrum of A such that

‖gk+K,1‖ ≤ 1
2
‖gk,1‖ for all k ∈ N.

Theorem 9

The sequence {‖gk,1‖} vanishes R-linearly in the sense that

‖gk,1‖ ≤ c1ck2‖g1,1‖,

where
c1 := 2∆K−1 and c2 := 2−1/K ∈ (0, 1).
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Numerical demonstrations with n = 100: m = 1 and m = 5

Figure: {λ1, . . . , λ100} ⊂ [1, 1.9]
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Numerical demonstrations with n = 100: m = 1 and m = 5

Figure: {λ1, . . . , λ100} ⊂ [1, 100]
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Numerical demonstrations with n = 100: m = 1 and m = 5

Figure: {λ1, . . . , λ100} ⊂ 5 clusters, m = 5
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Numerical demonstrations with n = 100: m = 1 and m = 5

Figure: {λ1, . . . , λ100} ⊂ 2 clusters (low heavy), m = 5
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Numerical demonstrations with n = 100: m = 1 and m = 5

Figure: {λ1, . . . , λ100} ⊂ 2 clusters (high heavy), m = 5
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Summary

Consider Fletcher’s limited memory steepest descent (LMSD) method.

I Extends the Barzilai-Borwein (BB) “two-point stepsize strategy”.

I BB methods known to have R-linear convergence rate; Dai and Liao (2002).

I We prove that LMSD also attains R-linear convergence.

Although proved convergence rate is not necessarily better than that for BB,
one can see reasons for improved empirical performance.

? F. E. Curtis and W. Guo.

R-Linear Convergence of Limited Memory Steepest Descent.

Technical Report 16T-010, COR@L Laboratory, Department of ISE, Lehigh
University, 2016.

Soon in IMA Journal of Numerical Analysis: https://doi.org/10.1093/imanum/drx016
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