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Unconstrained optimization: Steepest descent

Consider the unconstrained optimization problem

min f(z), where f:R"™ - R is ct.

TERM

Let us focus exclusively on a steepest descent framework:

Algorithm SD Steepest Descent
Require: z; € R"

1: for £k € N do

2: Compute g <+ Vf(xk)

3: Choose ay, € (0,00)

4: Set Tpy1 +— K — gk

5: end for

All that remains to be determined are the stepsizes {ay }.




Minimizing strongly convex quadratics

Suppose f(z) = %xTAa: — b7z, where A has eigenvalues A\; < -+ < \j.

0 1/ n 1/

Convergence (rate) of the algorithm depends on choices for {oy}.




Minimizing strongly convex quadratics

Suppose f(z) = %xTAa: — b7z, where A has eigenvalues A\; < -+ < \j.

0 1/ n 1/

Choosing ay, < 1/Ay, leads to Q-linear convergence with constant (1 — A1 /Ap)




Minimizing strongly convex quadratics

Suppose f(z) = %zTAm — bTz, where A has eigenvalues A\ < --- < \,.

—
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...but certain “components” of the gradient vanish in a larger range.




Minimizing strongly convex quadratics

Suppose f(z) = %xTAa: — b7z, where A has eigenvalues A\; < -+ < \j.

—

0 1/ n < 1/

Goal: Allow large stepsizes, shrink range (automatically) to catch entire gradient.




Contributions

Consider Fletcher’s limited memory steepest descent (LMSD) method.
» Extends the Barzilai-Borwein (BB) “two-point stepsize strategy”.
» BB methods known to have R-linear convergence rate; Dai and Liao (2002).

» We prove that LMSD also attains R-linear convergence.

Although proved convergence rate is not necessarily better than that for BB,
one can see reasons for improved empirical performance.




Outline

Limited Memory Steepest Descent (LMSD)




Decomposition

. _1,.T T
min f(z), where f(z)= 32" Az —b'=x

Let A have the eigendecomposition A = QAQT, where

Q= [Q1 s qn} is orthogonal
and A =diag(Ai,...,An) with Ay > > X1 >0.
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Recursion

Let g := Vf. For any « € R", the gradient of f at x can be expressed as

g(z) = Zdiqi, where d; €R forall ¢ € [n]:={1,...,n}. (1)
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Recursion

Let g := Vf. For any « € R", the gradient of f at x can be expressed as
n
g(z) = Zdiqi, where d; €R forall ¢ € [n]:={1,...,n}. (1)
i=1
If z1 + x — ag(x), then the weights satisfy the recursive property:

dj = (1—a);)d; for all i€ [n].




Recursion

Let g := Vf. For any « € R", the gradient of f at x can be expressed as

n
g(z) = Zdiqi, where d; €R forall ¢ € [n]:={1,...,n}.

i=1
If z1 + x — ag(x), then the weights satisfy the recursive property:

dr = (1—a);)d; for all i€ [n].

Proof (Sketch).
Since g(z) = Az — b,
zt =z — ag(x)
Azt = Az — ag(z)
g(*) = (I - ad)g(@)
9(*) = (I - aQAQT)g(x),

then decompose according to (1).
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Recursion

Let g := Vf. For any « € R", the gradient of f at x can be expressed as

n
g(z) = Zdiqi, where d; €R forall ¢ € [n]:={1,...,n}. (1)

i=1
If z1 + x — ag(x), then the weights satisfy the recursive property:

dr = (1—a);)d; for all i€ [n].

Proof (Sketch).
Since g(z) = Az — b,
zt =z — ag(x)
Azt = Az — ag(z)
g(*) = (I - ad)g(@)
9(*) = (I - aQAQT)g(x),

then decompose according to (1).

Idea: Choose stepsizes as reciprocals of (estimates of) eigenvalues of A.
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LMSD method: Main idea

Fletcher (2012):
» Repeated cycles (or “sweeps”) of m iterations.

» At start of (k + 1)st cycle, suppose one has the kth cycle values in

Gr=[9k1 ** Gk,m] corresponding to {zg1,...,Tk,m}

» Iterate displacements lie in Krylov sequence initiated from gy, ;.




LMSD method: Main idea

Fletcher (2012):

>

>

Repeated cycles (or “sweeps”) of m iterations.

At start of (k + 1)st cycle, suppose one has the kth cycle values in
Gy = [Qk,l e gk,m} corresponding to {Tx 1,...,Tk,m}-

Iterate displacements lie in Krylov sequence initiated from gy, .

Performing a QR decomposition to obtain
G = Qi Ry,
one obtains m eigenvalue estimates (Ritz values) as eigenvalues of
(symmetric tridiagonal) Ty, < QF AQ,

which are contained in the spectrum of A in an optimal sense (more later).

One can also obtain these estimates more cheaply and with less storage. . .




LMSD method: Efficient eigenvalue estimation

Storing the kth cycle reciprocal stepsizes in

—1
A1
-1
—a .
k,1
J )
: —1
akﬂrf
_ak,m

one finds that by computing the (partially extended) Cholesky factorization
G{ (G gkym+1] = RE [Re 7],

one has
Ty < [Re 7] JeRy "

Long story short: One can obtain Ritz values (and stepsizes) in ~ %771271 flops

» ...and this is done only once every m steps.




Algorithm LMSD Limited Memory Steepest Descent

Require: z1,1 ER", m €N, ande € R

1: Choose stepsizes {a1,j}jem) C Ry 4

2: Compute g1,1 < Vf(z1,1)

3: if ||g1,1]| <€, then return z

4: for k € N do

5: for j € [m] do

6: Set Tk, j+1 < Tk,j — Ok, j9k,j

7 Compute gi,j+1 — Vf(Tk,j4+1)

8: if ||gx,j+1/l <€, then return xy ;1

9: end for
10: Set T 11,1 ¢ Tkmi1 and gry1,1 < Gr,mt1
11: Set G and Ji
12: Compute (Rg, 1), then compute Ty

13: Compute {0, ; }je[m] C R, , as the eigenvalues of T},
14: Compute {ak+1,]‘}j€[m] — {01;;}]6[7%] C R++
15: end for

(Note: There is also a version using harmonic Ritz values.)




Known convergence properties

BB methods (m = 1):
» R-superlinear when n = 2; Barzilai and Borwein (1988)
» Convergent for any n from any starting point; Raydan (1993)
> R-linear for any n; Dai and Liao (2002)
LMSD methods (m > 1):
» Convergent for any n from any starting point; Fletcher (2012)

» Prior to our work: Convergence rate not yet analyzed.
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R-Linear Convergence of LMSD




Basic Assumptions

Assumption 1
(i) Algorithm LMSD is run with e =0 and g ; # 0 for all (k,j) € N x [m].

(ii) For all k € N, the matriz Gy, has linearly independent columns. Further,
there exists p € [1,00) such that, for all k € N,

IR < pllgea = (2)

To justify (2), note that when m = 1, one has

QiR = Gy = g1 where Qp = gi,1/|lgr1ll and Ry =gk 1l
Hence, (2) holds with p = 1.
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Intuition

Lemma 2
For all k € N, the eigenvalues of Ty, satisfy

O3 € Pm+1—js Ant1—35] C [A1,An] for all j € [m].

—

0 1/An /M

Recall. ..

We essentially prove that. ..

Il di il

jET




Worst-case “blow-up” of weights over a cycle

Lemma 3
For each (k,j,7) € N x [m] X [n]:
A

m+1—j

‘dk,j+1,i| S 6',i|dk,j,i‘ where 5]‘72‘ = max{‘l — Y

I
Anti—j

Hence, for each (k,j,i) € N X [m] x [n]:

m
|drt1,5,5] < Agldy, ;| where A;:= H 0ji-
j=1

Furthermore, for each (k,j,p) € N x [m] x [n]:

P P

2 5. 2 5. . .
E :dk,j+1,i <jp E :dk,j,i where 0 p = gg?;i‘sym
=1 i=1

while, for each (k,j) € N x [m]:

lgr+1,51 < Allgk,;l| where A := max A;.
1€[n]
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Q-linear convergence of weight ¢ = 1

Lemma 4
If Ay =0, then d, 4 5 =0 for all (k,7) € N x [m]. Otherwise, if Ay > 0, then:
(i) for (k,j) € N x [m] with dy ;1 =0, it follows that d =0 for all
(k,j) € N x [ml;
(ii) for (k,7) € N x [m] with |dy ;1] > 0 and any €1 € (0,1), it follows that

k+k,j,1

log e1
log A1

|dk+l},,§<1‘

<e forallchl—i—" -‘ and j € [m].

|di,j,11

[l di il

o
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Ritz value representation

Lemma 5

For all (k,j) € N x [m], let qi,; € R™ denote the unit eigenvector corresponding

to the eigenvalue Oy ; of Ty, i.e., that with Trqr ; = Ok jqr,; and ||qk ;|| = 1.
Then, defining

dp11 0 dgmt
— — -1
Dy, := : ) : and cg,j := Dy R} " qr 5,
dk:,l,n o dk,m,n

it follows that, with the diagonal matriz of eigenvalues (namely, A = QT AQ),

_ T ) o
BkJ = CkyjACk,] and Ch,jChyj = 1.




“If first p weights small, then bound for weight p +1...”

(We express Sp € [1,00) dependent only on m, p, and the spectrum of A.)

Lemma 6 (simplified)

For any (k,p) € N x [n — 1], if there exists (ep, Kp) € (0, ) x N with
p ~
D ody i S llgrall® for all k> Ky,
i=1

then there exists Kpy1 > Kp dependent only on ep, p, and the spectrum of A with

2 22
dk+Kp+1,1,p+1 <46 pP €p||9k 1||

Proof (Key step).

First p elements of Chthj small enough such that

0

n
2 3 7 ;
b = Z/\ick+157j,i > Spy1 for k> Kp and j € [m].

y
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“If first p weights small, then bound for all first p + 1 weights...”

Lemma 7

For any (k,p) € N x [n — 1], if there exists (ep, Kp) € (0, ) x N with
2 ~
Do i Seplorall® for all k> Kp,
i=1

then, with 6127+1 = (14 4max{1,A;+1}(§%p2)eZ and Kpy1 €N,

p+1 R
Zd}w“_ epy1llgr,all®> for all k> Kpia.
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R-linear convergence of LMSD

Lemma 8

There exists K € N dependent only on the spectrum of A such that

lgr+x,1ll < 3llgk,1ll for all k€N.

Theorem 9

The sequence {||gr,1||} vanishes R-linearly in the sense that

lgk,1ll < crchllgn,all,

where

c1:=2A0K"1 qnd co:=2"VK ¢ (0,1).
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Numerical demonstrations with
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Numerical demonstrations with n = 100: m =1 and m =5
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Numerical demonstrations with n = 100: m =1 and m =5
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Numerical demonstrations with n = 100: m =1 and m =5
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Numerical demonstrations with n = 100: m =1 and m =5
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Summary

Consider Fletcher’s limited memory steepest descent (LMSD) method.
> Extends the Barzilai-Borwein (BB) “two-point stepsize strategy”.
» BB methods known to have R-linear convergence rate; Dai and Liao (2002).
» We prove that LMSD also attains R-linear convergence.

Although proved convergence rate is not necessarily better than that for BB,
one can see reasons for improved empirical performance.

* F. E. Curtis and W. Guo.
R-Linear Convergence of Limited Memory Steepest Descent.
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