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Motivation

Context

Given f :R™ — R with large n, consider the unconstrained optimization problem
min f(x).
xER™ f( )

We are interested in steepest descent methods:

Algorithm 1 Steepest Descent Framework
1: Input g € R™.

2: for ke N:={0,1,2,...} do

3 Compute g «— Vf(zg).

4: Choose oy, € (0, 00).

5

6

Set T41 — T — AkYk-

: end for

All that remains to be determined are the stepsizes {ay}.
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Why steepest descent?

Is it because of widespread interest in “optimal” steepest descent methods?
> No. We are not interested in algorithm complexity analyses (yet).
Is it because we believe they can outperform quasi-Newton methods?
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Motivation

epest descent?

Is it because of widespread interest in “optimal” steepest descent methods?
> No. We are not interested in algorithm complexity analyses (yet).
Is it because we believe they can outperform quasi-Newton methods?
» Not for convex problems. For those, we only hope to be competitive.
Then why?
» When function/gradient evaluations are relatively cheap, then it may be
beneficial to “move quickly” as opposed to “sitting” and computing a step.
» Handling nonpositive curvature continues to be a pervasive difficulty. There
may be more efficient ways of handling it in a steepest descent context.
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Motivation

E

bloiting previously computed information

For a given k € N, := {1,2,3,...}, our strategy for computing oy, may involve

{zk 21, 2k—m} and {gk,gk—1, s Gk—m}-

Barzilai and Borwein (1988):
> m=1
> “two-point step size gradient method”
Fletcher (2012):
> m>1
> “limited memory steepest descent method”
In both cases:
> Ideas based on minimizing strictly convex quadratics.
> Ideas generalize when minimizing other convex functions.

» However, unclear how to handle nonpositive curvature.
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Motivation

Preview of contributions

» New strategies for handling nonpositive curvature in steepest descent.
» Consider both BB-type and LMSD methods. (Former is special case of latter.)

v

Ideas based on employing cubic models when nonpositive curvature is present.
Globalization is straightforward with nonmonotone line search.

Maintain local convergence properties near strict local minimizers.

v VvV Vv

Numerical experiments are promising so far (though work is ongoing).
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BB-type Method

Main idea

For a given k € N, how should we choose a7

» Define the displacements

Sg =T —Tp—1 and Y = gk — Gr—1-

(Recall the classical secant equation Hysi = yy.)

» Consider the one-dimensional least-squares problems

min I)sk — 2 and min sk — (G 2
min 31|(@0)sk — well3 and min Fllsi = (@~ Dwl,

which have the unique solutionst

T T
— S k ~ k
qy = ];,y and §g := y’;ﬂy .
S, Sk Sj. Yk

Both gl and ¢I represent simple approximations of the Hessian V2 f(xy).

1For simplicity, assume here that sj # 0, y, # 0, and Sk Y # 0.
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BB-type Method

Main idea (continue

> Consider minimizing, along s = —agy, the quadratic model given by
flzp) +gFs + %ST(ku)S ~ f(xk + s).

» For q;, = q;, and gq) = g, respectively, we obtain the stepsizes

1 sT's 1 sT
ap = — = ’;k and G&p = — = ’;yk.
qdk Sk Yk dk Y. Yk

These represent the two BB stepsize alternatives.
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BB-type Method

Theoretical analyses and extensions

For strictly convex quadratics, R-linearly convergent / R-superlinear local rate:

>

>

>

Barzilai and Borwein (1988)
Raydon (1993)
Dai and Liao (2002)

Algorithm extensions:

>

>

v vV v VY

>

Raydon (1997)

Dai, Yuan, and Yuan (2002)

Yuan (2006)

De Asmundis, Serafino, Riccio, and Toraldo (2013)
Xiao, Wang, and Wang (2010)

Biglari and Solimanpur (2013)

Kafaki and Fatemi (2013)

All except the last essentially ignore issues related to nonpositive curvature. The
typical strategy, when s;{yk < 0, is to set ay, to a predetermined constant.
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BB-type Method

Visualizing the BB stepsizes

Figure: Suppose gr—1 = (—1,0) and ax—1 = 1 so that s = —ag—19x—1 = (1,0). The
contours illustrate the stepsize oy as a function of the gradient gg.

(a) gx = gy, (b) qr = di
Key observations:
» Extremely different stepsizes when sgyk > 0 and vectors are ~orthogonal.

» No contours in left-hand sides since s{yk < 0 leads to constant stepsize!
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BB-type Method

A closer look

Letting 05 be the angle between sy,

9 -

and §i :=

and yi, we have

T
S
£ _ gy, lelz
T eIz
T
vEve _ 1 llwle
T

sTyr  cosO |Iskllz’

Letting yr = uk + v where uy, is the projection of y; onto span(sy), we have

T T
G = Sk Yk _ Sk Uk
s{sk sgsk
T T T T
o YUk Up U + Uy Vg _ Vi Vk
and g := T = T =qp+ —F
Sp Yk shug sp ug

Key observations:

> || < |Gk, which implies |ay| > |Gyl

> The “bar” quantities only observe displacement of gradient along s, whereas
the “hat” quantities observe the entire gradient displacement.
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BB-type Method

Basics of our strategy

Compute gy, (which seems better intuitively).
> If G > 0, then set ay, «— 1/
> If g < 0, then consider the cubic model

mi(s) = flaex) + g s + aellsl3 + gerllsll3 ~ flax + ).

Choose ¢ > 0 so that minimizing my along s = —agy yields a good stepsize.

> If G = 0, then handle as a special case (see later).
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BB-type Method

Choosing the cubic term coefficient

Idea #1:
» Choosing cj to minimize the least-squares error
Vme(—sk) — gr-1ll3

> ...leads to the choice 1

-
2[|skl2

ck (@ — dk)-

Idea #2:
» Choosing cj, so the curvature of my, at —si along sy is equal to gy, i.e.,
sk Vimy(=sk)se = @ llskl3,
> ...leads to the choice

1 R
ek — —— (@ — dr)-
llskl2

Key observations:
> Both suggest a similar strategy! (Coefficients only differ by a constant.)
> If Szyk < 0 and s }f yg, then g > G, so cx > 0.
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BB-type Method

Visualizing our stepsizes

Figure: Suppose gr—1 = (—1,0) and ar—1 = 1 so that s, = —ag—19x—1 = (1,0). The
contours illustrate the stepsize oy as a function of the gradient gg.

(a) qr = gk, constant stepsize for g < 0 (b) gk = Gk, ck >0
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BB-type Method

Special cas

Terminating if g = 0 and always choosing «y, > 0 ensures si # 0 for all k£ € N.
» If y, = 0, then function “appears affine”, so set aj «— Q (large constant).

> If y # 0, but sgyk = 0, then we have no useful information along the new
direction —gg, so set ai < w (small constant).

> If y, #0, sy, <0, and sy, || Yk, then function “appears affine” along —gi, so
set ap < 2 (large constant).

Observe consistency between these and the extremes in plot on previous slide.

Handling Nonp ed Me 5 t Method



BB-type Method

Complete algorithm

Algorithm 2 BB-type Method with Cubic Regularization

Set gp — Vf(wg), sp — @ —wp_1, and yg — g — 9 _1-
if g, = 0 then return the stationary point @j. end if

1: Choose (w,Q) € R X R satisfying 0 < w < Q@ and ¢ €R :={c €R:c >0}
2: Choose =g € R™ and set fo « f(zq).

3: Choose ag € [w, Q].

4: Set g — V f(xg)-

5: if gg = 0 then return the stationary point zg. end if

6: Set 1 «— xg — aggg and f1 — f(z1).

7: Set k — 1.

8: loop

9:

if yp =0 or sFyp = —llskll2llvgllz < O then
Set aj, «— Q.

else if sgyk = 0 then
Set ap — w.

else
Set qp, «— yzyk/afyk‘

17: if g > 0 then Set ¢), — 0. else Set ¢ — TS ( ke _ qk)_ end if
splliz \ sTs

18: if q), > 0 then Set oy, «— 1/q},. else Set o, — Rl . end if
N k19K 112

19: Replace oy, by its projection onto the interval [w, Q].

20: end if

21: Set wp 1 «— xp — opgy and f g — flzpy)

22: Set k «— k + 1.

23: end loop
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Limited Memory Steepest Descent (LMSD) Method
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LMSD Method

Key result

Consider the minimization of %JJTA.I for A > 0.

Theorem (Finite termination of steepest descent)

Suppose that A has n distinct eigenvalues
0< A <A<+ < A

If agyi—1 — )\i_l for alli € {1,...,n}, then ggy, =0.
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LMSD Method

Fletcher’s main idea

Obtain stepsizes by approximating reciprocals of the eigenvalues of A.

> At zp and with m > 1, consider the matrix of previous gradients
G = [gr=m - Gr-1]-
» For all j € {1,...,m}, we have the following property:
x —xp_j € span{gr_j, Agk—j, A%gk—j, ., AT gr_j}.

» This Krylov sequence provides m distinct eigenvalue estimates (Ritz values).

» In particular, with the QR-decomposition G, = Qg Ry, the Ritz values are

eigenvalues of T}, where T, = QzAQk is tridiagonal.
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LMSD Method

Computational efficien

In fact, Ty can be obtained without access to A.

» Computing the partially extended Cholesky factorization
Gk [Gr ge] = R [Ri 7],

we have
Ty = [Ry ] TRy
where J is a matrix with only 2m nonzeros depending on previous stepsizes.
> With m = 1, we obtain the first BB alternative! That is, T}, = gj,.

The second BB alternative can be obtained by computing harmonic Ritz values.
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LMSD Method

Fletcher’s LMSD method

Main components:

» Construct G and compute factorization of Gg [Gk gk] € Rmx(m+1),

» Construct Ty € R™>*™ and compute its eigenvalues.

» Employ reciprocals of eigenvalues as stepsizes in next m iterations.
Issues for nonquadratics:

» T}, is not tridiagonal (but is upper Hessenberg).

» Eigenvalues are not necessarily real.

> Real eigenvalues are not necessarily positive.

» Globalization?
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LMSD Method

Our approach

We essentially employ the following procedure:

v

Follow Fletcher’s strategy of computing Ty (by symmetrizing Tj).

v

Compute Ritz and harmonic Ritz values (ordered largest to smallest):
@ Q1> Tugm—1t
and {4k, Gk+1s-- > dktm—1}
» Under favorable conditions, these eigenvalues are interlaced! That is,
Gktm—1 < Qpgm—1 < <0< <qp < g

» For iterations k,k + 1,...,k 4+ m — 1, take the corresponding pair and apply a
similar approach as in the m =1 case.

Since this is ongoing work, the details are secret ;-)
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Numerical Experiments

Implementation

>

Matlab implementation of our approach versus. ..

v

Matlab implementation of Fletcher’s method.

» Minor modifications to ensure consistency with our method.

For m = 1, reduces to a BB-type method.

For handling nonpositive curvature, perform line search and “clear the stack”.
If nonpositive curvature, line search initialized with w or Q (two variants).

Yyvy

v

Test only m € {1, 2} for now. (Working on larger m.)

v

Ran all unconstrained CUTEst problems with n > 3, successful if/when

lgklloe < 10~* max{llgolloo, 1}-

v

Results only for problems on which at least one algorithm was successful. ..
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Numerical Experiments

Performance profile tcher with g < (Q initially for line search

| lkerations 4 Function evaluations ] Gradient evaluations

nat nats 09}

[1R:} 0s 0g

07 o7 o7

0.6 06 06

05 13 0s

04 04 04

03 03 03

0.2 0z 0.2

o o — teiomegme|| " — Fetomeame
UU 2 4 UU 2 4 UEI 2 4

Larger m is still beneficial in Fletcher’s method.

in a Limited M



Numerical Experiments

Performance profiles: Our method
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Larger m is beneficial in our method (though we believe we can improve further).
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Numerical Experiments

Gradient evaluations
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Summary

Contributions

» New strategies for handling nonpositive curvature in steepest descent.
» Consider both BB-type and LMSD methods. (Former is special case of latter.)

v

Ideas based on employing cubic models when nonpositive curvature is present.
Globalization is straightforward with nonmonotone line search.

Maintain local convergence properties near strict local minimizers.

v VvV Vv

Numerical experiments are promising so far (though work is ongoing).
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