Handling Nonpositive Curvature in a Limited Memory Steepest Descent Method

Frank E. Curtis, Lehigh University

joint work with

Wei Guo, Lehigh University

MOPTA Conference — Bethlehem, PA

14 August 2014

Outline

3.4	r				
- I \ /I	\cap	t.i	iva	ıt.	10

Barzilai-Borwein-type (BB-type) Method

Limited Memory Steepest Descent (LMSD) Method

Numerical Experiments

Summary

Outline

Motivation

Barzilai-Borwein-type (BB-type) Method

Limited Memory Steepest Descent (LMSD) Method

Numerical Experiments

Summary

Context

Given $f: \mathbb{R}^n \to \mathbb{R}$ with large n, consider the unconstrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x).$$

We are interested in steepest descent methods:

Algorithm 1 Steepest Descent Framework

- 1: Input $x_0 \in \mathbb{R}^n$.
- 2: **for** $k \in \mathbb{N} := \{0, 1, 2, \dots\}$ **do**
- Compute $q_k \leftarrow \nabla f(x_k)$.
- Choose $\alpha_k \in (0, \infty)$.
- Set $x_{k+1} \leftarrow x_k \alpha_k g_k$. 5:
- 6: end for

All that remains to be determined are the stepsizes $\{\alpha_k\}$.

Is it because of widespread interest in "optimal" steepest descent methods?

Is it because of widespread interest in "optimal" steepest descent methods?

▶ No. We are not interested in algorithm complexity analyses (yet).

Is it because of widespread interest in "optimal" steepest descent methods?

▶ No. We are not interested in algorithm complexity analyses (yet).

Is it because we believe they can outperform quasi-Newton methods?

Is it because of widespread interest in "optimal" steepest descent methods?

▶ No. We are not interested in algorithm complexity analyses (yet).

Is it because we believe they can outperform quasi-Newton methods?

▶ Not for convex problems. For those, we only hope to be competitive.

Is it because of widespread interest in "optimal" steepest descent methods?

▶ No. We are not interested in algorithm complexity analyses (yet).

Is it because we believe they can outperform quasi-Newton methods?

▶ Not for convex problems. For those, we only hope to be competitive.

Then why?

- When function/gradient evaluations are relatively cheap, then it may be beneficial to "move quickly" as opposed to "sitting" and computing a step.
- ▶ Handling nonpositive curvature continues to be a pervasive difficulty. There may be more efficient ways of handling it in a steepest descent context.

For a given $k \in \mathbb{N}_+ := \{1, 2, 3, \dots\}$, our strategy for computing α_k may involve

$$\{x_k, x_{k-1}, \dots, x_{k-m}\}$$
 and $\{g_k, g_{k-1}, \dots, g_{k-m}\}$.

Barzilai and Borwein (1988):

- ightharpoonup m=1
- "two-point step size gradient method"

Fletcher (2012):

- > m > 1
- "limited memory steepest descent method"

In both cases:

- Ideas based on minimizing strictly convex quadratics.
- ▶ Ideas generalize when minimizing other convex functions.
- ▶ However, unclear how to handle nonpositive curvature.

Preview of contributions

- ▶ New strategies for handling nonpositive curvature in steepest descent.
- \blacktriangleright Consider both BB-type and LMSD methods. (Former is special case of latter.)
- ▶ Ideas based on employing cubic models when nonpositive curvature is present.
- ▶ Globalization is straightforward with nonmonotone line search.
- ▶ Maintain local convergence properties near strict local minimizers.
- ▶ Numerical experiments are promising so far (though work is ongoing).

Outline

Motivation

Barzilai-Borwein-type (BB-type) Method

Limited Memory Steepest Descent (LMSD) Method

Numerical Experiments

Summary

Main idea

For a given $k \in \mathbb{N}$, how should we choose α_k ?

▶ Define the displacements

$$s_k := x_k - x_{k-1}$$
 and $y_k := g_k - g_{k-1}$.

(Recall the classical secant equation $H_k s_k = y_k$.)

▶ Consider the one-dimensional least-squares problems

$$\min_{\bar{q} \in \mathbb{R}} \frac{1}{2} \| (\bar{q}I) s_k - y_k \|_2^2 \text{ and } \min_{\hat{q} \in \mathbb{R}} \frac{1}{2} \| s_k - (\hat{q}^{-1}I) y_k \|_2^2,$$

which have the unique solutions¹

$$\bar{q}_k := \frac{s_k^T y_k}{s_k^T s_k} \quad \text{and} \quad \hat{q}_k := \frac{y_k^T y_k}{s_k^T y_k}.$$

Both $\bar{q}I$ and $\hat{q}I$ represent simple approximations of the Hessian $\nabla^2 f(x_k)$.

¹For simplicity, assume here that $s_k \neq 0$, $y_k \neq 0$, and $s_k^T y_k \neq 0$.

Main idea (continued)

▶ Consider minimizing, along $s = -\alpha g_k$, the quadratic model given by

$$f(x_k) + g_k^T s + \frac{1}{2} s^T (q_k I) s \approx f(x_k + s).$$

▶ For $q_k = \bar{q}_k$ and $q_k = \hat{q}_k$, respectively, we obtain the stepsizes

$$\bar{\alpha}_k := \frac{1}{\bar{q}_k} = \frac{s_k^T s_k}{s_k^T y_k} \text{ and } \hat{\alpha}_k := \frac{1}{\hat{q}_k} = \frac{s_k^T y_k}{y_k^T y_k}.$$

These represent the two BB stepsize alternatives.

Theoretical analyses and extensions

For strictly convex quadratics, R-linearly convergent / R-superlinear local rate:

- ▶ Barzilai and Borwein (1988)
- ► Raydon (1993)
- Dai and Liao (2002)

Algorithm extensions:

- ▶ Raydon (1997)
- Dai, Yuan, and Yuan (2002)
- Yuan (2006)
- De Asmundis, Serafino, Riccio, and Toraldo (2013)
- Xiao, Wang, and Wang (2010)
- Biglari and Solimanpur (2013)
- Kafaki and Fatemi (2013)

All except the last essentially ignore issues related to nonpositive curvature. The typical strategy, when $s_k^T y_k < 0$, is to set α_k to a predetermined constant.

Visualizing the BB stepsizes

Figure: Suppose $g_{k-1} = (-1, 0)$ and $\alpha_{k-1} = 1$ so that $s_k = -\alpha_{k-1} g_{k-1} = (1, 0)$. The contours illustrate the stepsize α_k as a function of the gradient g_k .

Key observations:

- ▶ Extremely different stepsizes when $s_k^T y_k > 0$ and vectors are ~orthogonal.
- ▶ No contours in left-hand sides since $s_k^T y_k < 0$ leads to constant stepsize!

A closer look

Letting θ_k be the angle between s_k and y_k , we have

$$\begin{split} \bar{q}_k &:= \frac{s_k^T y_k}{s_k^T s_k} = \cos \theta_k \frac{\|y_k\|_2}{\|s_k\|_2} \\ \text{and} \quad \hat{q}_k &:= \frac{y_k^T y_k}{s_k^T y_k} = \frac{1}{\cos \theta_k} \frac{\|y_k\|_2}{\|s_k\|_2}. \end{split}$$

Letting $y_k = u_k + v_k$ where u_k is the projection of y_k onto span (s_k) , we have

$$\begin{split} \bar{q}_k &:= \frac{s_k^T y_k}{s_k^T s_k} = \frac{s_k^T u_k}{s_k^T s_k} \\ \text{and} \ \ \hat{q}_k &:= \frac{y_k^T y_k}{s_k^T y_k} = \frac{u_k^T u_k + v_k^T v_k}{s_k^T u_k} = \bar{q}_k + \frac{v_k^T v_k}{s_k^T u_k}. \end{split}$$

Kev observations:

- $|\bar{q}_k| \leq |\hat{q}_k|$, which implies $|\bar{\alpha}_k| \geq |\hat{\alpha}_k|$.
- ▶ The "bar" quantities only observe displacement of gradient along s_k , whereas the "hat" quantities observe the entire gradient displacement.

Basics of our strategy

Compute \hat{q}_k (which seems better intuitively).

- ▶ If $\hat{q}_k > 0$, then set $\alpha_k \leftarrow 1/\hat{q}_k$.
- If $\hat{q}_k < 0$, then consider the cubic model

$$m_k(s) = f(x_k) + g_k^T s + \frac{1}{2} \hat{q}_k ||s||_2^2 + \frac{1}{6} c_k ||s||_2^3 \approx f(x_k + s).$$

Choose $c_k > 0$ so that minimizing m_k along $s = -\alpha g_k$ yields a good stepsize.

▶ If $\hat{q}_k = 0$, then handle as a special case (see later).

Choosing the cubic term coefficient

Idea #1:

 \triangleright Choosing c_k to minimize the least-squares error

$$\|\nabla m_k(-s_k) - g_{k-1}\|_2^2$$

▶ ...leads to the choice

$$c_k \leftarrow \frac{1}{2\|s_k\|_2} (\bar{q}_k - \hat{q}_k).$$

Idea #2:

• Choosing c_k so the curvature of m_k at $-s_k$ along s_k is equal to \bar{q}_k , i.e.,

$$s_k^T \nabla^2 m_k(-s_k) s_k = \bar{q}_k ||s_k||_2^2,$$

...leads to the choice

$$c_k \leftarrow \frac{1}{\|s_k\|_2} (\bar{q}_k - \hat{q}_k).$$

Key observations:

- ▶ Both suggest a similar strategy! (Coefficients only differ by a constant.)
- ▶ If $s_k^T y_k < 0$ and $s_k \not\parallel y_k$, then $\bar{q}_k > \hat{q}_k$, so $c_k > 0$.

Visualizing our stepsizes

BB-type Method

Figure: Suppose $g_{k-1} = (-1,0)$ and $\alpha_{k-1} = 1$ so that $s_k = -\alpha_{k-1}g_{k-1} = (1,0)$. The contours illustrate the stepsize α_k as a function of the gradient g_k .

(a)
$$q_k = \hat{q}_k$$
, constant stepsize for $q_k < 0$

(b)
$$q_k = \hat{q}_k, c_k \ge 0$$

Special cases

Terminating if $g_k = 0$ and always choosing $\alpha_k > 0$ ensures $s_k \neq 0$ for all $k \in \mathbb{N}$.

- ▶ If $y_k = 0$, then function "appears affine", so set $\alpha_k \leftarrow \Omega$ (large constant).
- ▶ If $y_k \neq 0$, but $s_k^T y_k = 0$, then we have no useful information along the new direction $-g_k$, so set $\alpha_k \leftarrow \omega$ (small constant).
- ▶ If $y_k \neq 0$, $s_k^T y_k < 0$, and $s_k \parallel y_k$, then function "appears affine" along $-g_k$, so set $\alpha_k \leftarrow \Omega$ (large constant).

Observe consistency between these and the extremes in plot on previous slide.

Complete algorithm

Algorithm 2 BB-type Method with Cubic Regularization

```
1: Choose (\omega, \Omega) \in \mathbb{R} \times \mathbb{R} satisfying 0 < \omega \le \Omega and c \in \mathbb{R}_+ := \{c \in \mathbb{R} : c > 0\}.
 2: Choose x_0 \in \mathbb{R}^n and set f_0 \leftarrow f(x_0).
 3: Choose \alpha_{\Omega} \in [\omega, \Omega].
 4: Set q<sub>0</sub> ← ∇ f(x<sub>0</sub>).
 5: if q_0 = 0 then return the stationary point x_0, end if
 6: Set x_1 \leftarrow x_0 - \alpha_0 q_0 and f_1 \leftarrow f(x_1).
 7: Set k ← 1.
 8: loop
 9:
           Set g_k \leftarrow \nabla f(x_k), s_k \leftarrow x_k - x_{k-1}, and y_k \leftarrow g_k - g_{k-1}.
10:
            if g_k = 0 then return the stationary point x_k. end if
11:
            if y_k = 0 or s_k^T y_k = -\|s_k\|_2 \|y_k\|_2 < 0 then
12:
                Set \alpha_k \leftarrow \Omega.
           else if s_L^T y_L = 0 then
13:
14.
                Set \alpha_1 \leftarrow \omega.
15:
            else
                Set q_k \leftarrow y_h^T y_k / s_h^T y_k.
16:
                 \text{if } q_k > 0 \text{ then Set } c_k \leftarrow 0. \text{ else Set } c_k \leftarrow \frac{c}{\|s_k\|_2} \left(\frac{s_k^T y_k}{s_s^T s_k} - q_k\right) \text{, end if }
17:
                 if q_k > 0 then Set \alpha_k \leftarrow 1/q_k. else Set \alpha_k \leftarrow \frac{-q_k + \sqrt{q_k^2 + 2c_k \|g_k\|_2}}{c_k \|g_k\|_2}. end if
18:
19:
                 Replace \alpha_k by its projection onto the interval [\omega, \Omega].
20:
21:
            Set x_{k+1} \leftarrow x_k - \alpha_k g_k and f_{k+1} \leftarrow f(x_{k+1}).
22:
            Set k \leftarrow k + 1.
23: end loop
```

Outline

Motivation

Barzilai-Borwein-type (BB-type) Method

Limited Memory Steepest Descent (LMSD) Method

Numerical Experiments

Summary

Key result

Consider the minimization of $\frac{1}{2}x^TAx$ for $A \succ 0$.

Theorem (Finite termination of steepest descent)

Suppose that A has n distinct eigenvalues

$$0 < \lambda_1 < \lambda_2 < \dots < \lambda_n$$
.

If
$$\alpha_{k+i-1} \leftarrow \lambda_i^{-1}$$
 for all $i \in \{1, ..., n\}$, then $g_{k+n} = 0$.

Fletcher's main idea

Obtain stepsizes by approximating reciprocals of the eigenvalues of A.

▶ At x_k and with $m \ge 1$, consider the matrix of previous gradients

$$G_k := \begin{bmatrix} g_{k-m} & \cdots & g_{k-1} \end{bmatrix}.$$

▶ For all $j \in \{1, ..., m\}$, we have the following property:

$$x_k - x_{k-j} \in \text{span}\{g_{k-j}, Ag_{k-j}, A^2g_{k-j}, \dots, A^{j-1}g_{k-j}\}.$$

- This Krylov sequence provides m distinct eigenvalue estimates (Ritz values).
- In particular, with the QR-decomposition $G_k = Q_k R_k$, the Ritz values are eigenvalues of T_k , where $T_k = Q_k^T A Q_k$ is tridiagonal.

Handling Nonpositive Curvature in a Limited Memory Steepest Descent Method

Computational efficiency

In fact, T_k can be obtained without access to A.

▶ Computing the partially extended Cholesky factorization

$$G_k^T \begin{bmatrix} G_k & g_k \end{bmatrix} = R_k^T \begin{bmatrix} R_k & r_k \end{bmatrix},$$

we have

$$T_k = \begin{bmatrix} R_k & r_k \end{bmatrix} J_k R_k^{-1},$$

where J_k is a matrix with only 2m nonzeros depending on previous stepsizes.

▶ With m = 1, we obtain the first BB alternative! That is, $T_k = \bar{q}_k$.

The second BB alternative can be obtained by computing harmonic Ritz values.

Fletcher's LMSD method

Main components:

- ▶ Construct G_k and compute factorization of $G_k^T \begin{bmatrix} G_k & g_k \end{bmatrix} \in \mathbb{R}^{m \times (m+1)}$.
- ▶ Construct $T_k \in \mathbb{R}^{m \times m}$ and compute its eigenvalues.
- \triangleright Employ reciprocals of eigenvalues as stepsizes in next m iterations.

Issues for nonquadratics:

- $ightharpoonup T_k$ is not tridiagonal (but is upper Hessenberg).
- Eigenvalues are not necessarily real.
- Real eigenvalues are not necessarily positive.
- Globalization?

Our approach

We essentially employ the following procedure:

- ▶ Follow Fletcher's strategy of computing \tilde{T}_k (by symmetrizing T_k).
- Compute Ritz and harmonic Ritz values (ordered largest to smallest):

$$\{ar{q}_k, ar{q}_{k+1}, \dots, ar{q}_{k+m-1}\}$$
 and $\{\hat{q}_k, \hat{q}_{k+1}, \dots, \hat{q}_{k+m-1}\}$

▶ Under favorable conditions, these eigenvalues are interlaced! That is,

$$\hat{q}_{k+m-1} \le \bar{q}_{k+m-1} \le \dots \le 0 \le \dots \le \bar{q}_k \le \hat{q}_k$$

▶ For iterations $k, k+1, \ldots, k+m-1$, take the corresponding pair and apply a similar approach as in the m=1 case.

Since this is ongoing work, the details are secret ;-)

Outline

Motivation

Barzilai-Borwein-type (BB-type) Method

Limited Memory Steepest Descent (LMSD) Method

Numerical Experiments

Summary

Implementation

- ▶ Matlab implementation of our approach versus...
- ▶ Matlab implementation of Fletcher's method.
 - Minor modifications to ensure consistency with our method.
 - For m=1, reduces to a BB-type method.
 - ▶ For handling nonpositive curvature, perform line search and "clear the stack".
 - If nonpositive curvature, line search initialized with ω or Ω (two variants).
- ▶ Test only $m \in \{1, 2\}$ for now. (Working on larger m.)
- Ran all unconstrained CUTEst problems with $n \geq 3$, successful if/when

$$||g_k||_{\infty} \le 10^{-4} \max\{||g_0||_{\infty}, 1\}.$$

Results only for problems on which at least one algorithm was successful...

Performance profiles: Fletcher with $\alpha_k \leftarrow \omega$ initially for line search

Larger m is beneficial in Fletcher's method.

Numerical Experiments

Performance profiles: Fletcher with $\alpha_k \leftarrow \Omega$ initially for line search

Larger m is still beneficial in Fletcher's method.

Performance profiles: Our method

Larger m is beneficial in our method (though we believe we can improve further).

Cubic strategy is beneficial.

Performance profiles: m=2

Cubic strategy is still beneficial (though still working on larger m).

Outline

Motivatio

Barzilai-Borwein-type (BB-type) Method

Limited Memory Steepest Descent (LMSD) Method

Numerical Experiments

Summary

Contributions

- ▶ New strategies for handling nonpositive curvature in steepest descent.
- ► Consider both BB-type and LMSD methods. (Former is special case of latter.)
- ▶ Ideas based on employing cubic models when nonpositive curvature is present.
- ▶ Globalization is straightforward with nonmonotone line search.
- ▶ Maintain local convergence properties near strict local minimizers.
- ▶ Numerical experiments are promising so far (though work is ongoing).