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Context

Given f : Rn → R with large n, consider the unconstrained optimization problem

min
x∈Rn

f(x).

We are interested in steepest descent methods:

Algorithm 1 Steepest Descent Framework

1: Input x0 ∈ Rn.
2: for k ∈ N := {0, 1, 2, . . . } do
3: Compute gk ← ∇f(xk).
4: Choose αk ∈ (0,∞).
5: Set xk+1 ← xk − αkgk.

6: end for

All that remains to be determined are the stepsizes {αk}.
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Why steepest descent?

Is it because of widespread interest in “optimal” steepest descent methods?

I No. We are not interested in algorithm complexity analyses (yet).

Is it because we believe they can outperform quasi-Newton methods?

I Not for convex problems. For those, we only hope to be competitive.

Then why?

I When function/gradient evaluations are relatively cheap, then it may be
beneficial to “move quickly” as opposed to “sitting” and computing a step.

I Handling nonpositive curvature continues to be a pervasive difficulty. There
may be more efficient ways of handling it in a steepest descent context.
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Exploiting previously computed information

For a given k ∈ N+ := {1, 2, 3, . . . }, our strategy for computing αk may involve

{xk, xk−1, . . . , xk−m} and {gk, gk−1, . . . , gk−m}.

Barzilai and Borwein (1988):

I m = 1

I “two-point step size gradient method”

Fletcher (2012):

I m ≥ 1

I “limited memory steepest descent method”

In both cases:

I Ideas based on minimizing strictly convex quadratics.

I Ideas generalize when minimizing other convex functions.

I However, unclear how to handle nonpositive curvature.
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Preview of contributions

I New strategies for handling nonpositive curvature in steepest descent.

I Consider both BB-type and LMSD methods. (Former is special case of latter.)

I Ideas based on employing cubic models when nonpositive curvature is present.

I Globalization is straightforward with nonmonotone line search.

I Maintain local convergence properties near strict local minimizers.

I Numerical experiments are promising so far (though work is ongoing).
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Main idea

For a given k ∈ N, how should we choose αk?

I Define the displacements

sk := xk − xk−1 and yk := gk − gk−1.

(Recall the classical secant equation Hksk = yk.)

I Consider the one-dimensional least-squares problems

min
q∈R

1
2
‖(qI)sk − yk‖22 and min

q̂∈R
1
2
‖sk − (q̂−1I)yk‖22,

which have the unique solutions1

qk :=
sT
k yk

sT
k sk

and q̂k :=
yT

k yk

sT
k yk

.

Both qI and q̂I represent simple approximations of the Hessian ∇2f(xk).

1For simplicity, assume here that sk 6= 0, yk 6= 0, and sTk yk 6= 0.
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Main idea (continued)

I Consider minimizing, along s = −αgk, the quadratic model given by

f(xk) + gT
k s+ 1

2
sT (qkI)s ≈ f(xk + s).

I For qk = qk and qk = q̂k, respectively, we obtain the stepsizes

ᾱk :=
1

qk

=
sT
k sk

sT
k yk

and α̂k :=
1

q̂k
=
sT
k yk

yT
k yk

.

These represent the two BB stepsize alternatives.
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Theoretical analyses and extensions

For strictly convex quadratics, R-linearly convergent / R-superlinear local rate:

I Barzilai and Borwein (1988)

I Raydon (1993)

I Dai and Liao (2002)

Algorithm extensions:

I Raydon (1997)

I Dai, Yuan, and Yuan (2002)

I Yuan (2006)

I De Asmundis, Serafino, Riccio, and Toraldo (2013)

I Xiao, Wang, and Wang (2010)

I Biglari and Solimanpur (2013)

I Kafaki and Fatemi (2013)

All except the last essentially ignore issues related to nonpositive curvature. The
typical strategy, when sT

k yk < 0, is to set αk to a predetermined constant.
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Visualizing the BB stepsizes

Figure: Suppose gk−1 = (−1, 0) and αk−1 = 1 so that sk = −αk−1gk−1 = (1, 0). The
contours illustrate the stepsize αk as a function of the gradient gk.

(a) qk = qk (b) qk = q̂k

Key observations:

I Extremely different stepsizes when sT
k yk > 0 and vectors are ∼orthogonal.

I No contours in left-hand sides since sT
k yk < 0 leads to constant stepsize!
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A closer look

Letting θk be the angle between sk and yk, we have

qk :=
sT
k yk

sT
k sk

= cos θk
‖yk‖2
‖sk‖2

and q̂k :=
yT

k yk

sT
k yk

=
1

cos θk

‖yk‖2
‖sk‖2

.

Letting yk = uk + vk where uk is the projection of yk onto span(sk), we have

qk :=
sT
k yk

sT
k sk

=
sT
k uk

sT
k sk

and q̂k :=
yT

k yk

sT
k yk

=
uT

k uk + vT
k vk

sT
k uk

= qk +
vT

k vk

sT
k uk

.

Key observations:

I |qk| ≤ |q̂k|, which implies |ᾱk| ≥ |α̂k|.
I The “bar” quantities only observe displacement of gradient along sk, whereas

the “hat” quantities observe the entire gradient displacement.
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Basics of our strategy

Compute q̂k (which seems better intuitively).

I If q̂k > 0, then set αk ← 1/q̂k.

I If q̂k < 0, then consider the cubic model

mk(s) = f(xk) + gT
k s+ 1

2
q̂k‖s‖22 + 1

6
ck‖s‖32 ≈ f(xk + s).

Choose ck > 0 so that minimizing mk along s = −αgk yields a good stepsize.

I If q̂k = 0, then handle as a special case (see later).
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Choosing the cubic term coefficient

Idea #1:

I Choosing ck to minimize the least-squares error

‖∇mk(−sk)− gk−1‖22

I . . . leads to the choice

ck ←
1

2‖sk‖2
(qk − q̂k).

Idea #2:

I Choosing ck so the curvature of mk at −sk along sk is equal to qk, i.e.,

sT
k∇

2mk(−sk)sk = qk‖sk‖22,

I . . . leads to the choice

ck ←
1

‖sk‖2
(qk − q̂k).

Key observations:

I Both suggest a similar strategy! (Coefficients only differ by a constant.)

I If sT
k yk < 0 and sk ∦ yk, then qk > q̂k, so ck > 0.
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Visualizing our stepsizes

Figure: Suppose gk−1 = (−1, 0) and αk−1 = 1 so that sk = −αk−1gk−1 = (1, 0). The
contours illustrate the stepsize αk as a function of the gradient gk.

(a) qk = q̂k, constant stepsize for qk < 0 (b) qk = q̂k, ck ≥ 0
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Special cases

Terminating if gk = 0 and always choosing αk > 0 ensures sk 6= 0 for all k ∈ N.

I If yk = 0, then function “appears affine”, so set αk ← Ω (large constant).

I If yk 6= 0, but sT
k yk = 0, then we have no useful information along the new

direction −gk, so set αk ← ω (small constant).

I If yk 6= 0, sT
k yk < 0, and sk ‖ yk, then function “appears affine” along −gk, so

set αk ← Ω (large constant).

Observe consistency between these and the extremes in plot on previous slide.
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Complete algorithm

Algorithm 2 BB-type Method with Cubic Regularization

1: Choose (ω,Ω) ∈ R × R satisfying 0 < ω ≤ Ω and c ∈ R+ := {c ∈ R : c > 0}.
2: Choose x0 ∈ Rn and set f0 ← f(x0).
3: Choose α0 ∈ [ω,Ω].
4: Set g0 ← ∇f(x0).
5: if g0 = 0 then return the stationary point x0. end if

6: Set x1 ← x0 − α0g0 and f1 ← f(x1).
7: Set k ← 1.
8: loop
9: Set gk ← ∇f(xk), sk ← xk − xk−1, and yk ← gk − gk−1.
10: if gk = 0 then return the stationary point xk. end if

11: if yk = 0 or sTk yk = −‖sk‖2‖yk‖2 < 0 then

12: Set αk ← Ω.

13: else if sTk yk = 0 then

14: Set αk ← ω.
15: else
16: Set qk ← yTk yk/s

T
k yk.

17: if qk > 0 then Set ck ← 0. else Set ck ←
c

‖sk‖2

 
sTk yk

sT
k
sk
− qk

!
. end if

18: if qk > 0 then Set αk ← 1/qk. else Set αk ←
−qk+

q
q2
k

+2ck‖gk‖2
ck‖gk‖2

. end if

19: Replace αk by its projection onto the interval [ω,Ω].

20: end if
21: Set xk+1 ← xk − αkgk and fk+1 ← f(xk+1).
22: Set k ← k + 1.
23: end loop
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Key result

Consider the minimization of 1
2
xTAx for A � 0.

Theorem (Finite termination of steepest descent)
Suppose that A has n distinct eigenvalues

0 < λ1 < λ2 < · · · < λn.

If αk+i−1 ← λ−1
i for all i ∈ {1, . . . , n}, then gk+n = 0.
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Fletcher’s main idea

Obtain stepsizes by approximating reciprocals of the eigenvalues of A.

I At xk and with m ≥ 1, consider the matrix of previous gradients

Gk :=
ˆ
gk−m · · · gk−1

˜
.

I For all j ∈ {1, . . . ,m}, we have the following property:

xk − xk−j ∈ span{gk−j , Agk−j , A
2gk−j , . . . , A

j−1gk−j}.

I This Krylov sequence provides m distinct eigenvalue estimates (Ritz values).

I In particular, with the QR-decomposition Gk = QkRk, the Ritz values are

eigenvalues of Tk, where Tk = QT
k AQk is tridiagonal.
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Computational efficiency

In fact, Tk can be obtained without access to A.

I Computing the partially extended Cholesky factorization

GT
k

ˆ
Gk gk

˜
= RT

k

ˆ
Rk rk

˜
,

we have
Tk =

ˆ
Rk rk

˜
JkR

−1
k ,

where Jk is a matrix with only 2m nonzeros depending on previous stepsizes.

I With m = 1, we obtain the first BB alternative! That is, Tk = qk.

The second BB alternative can be obtained by computing harmonic Ritz values.
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Fletcher’s LMSD method

Main components:

I Construct Gk and compute factorization of GT
k

ˆ
Gk gk

˜
∈ Rm×(m+1).

I Construct Tk ∈ Rm×m and compute its eigenvalues.

I Employ reciprocals of eigenvalues as stepsizes in next m iterations.

Issues for nonquadratics:

I Tk is not tridiagonal (but is upper Hessenberg).

I Eigenvalues are not necessarily real.

I Real eigenvalues are not necessarily positive.

I Globalization?
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Our approach

We essentially employ the following procedure:

I Follow Fletcher’s strategy of computing T̃k (by symmetrizing Tk).

I Compute Ritz and harmonic Ritz values (ordered largest to smallest):

{qk, qk+1, . . . , qk+m−1}
and {q̂k, q̂k+1, . . . , q̂k+m−1}

I Under favorable conditions, these eigenvalues are interlaced! That is,

q̂k+m−1 ≤ qk+m−1 ≤ · · · ≤ 0 ≤ · · · ≤ qk ≤ q̂k

I For iterations k, k + 1, . . . , k +m− 1, take the corresponding pair and apply a
similar approach as in the m = 1 case.

Since this is ongoing work, the details are secret ;-)
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Implementation

I Matlab implementation of our approach versus. . .
I Matlab implementation of Fletcher’s method.

I Minor modifications to ensure consistency with our method.
I For m = 1, reduces to a BB-type method.
I For handling nonpositive curvature, perform line search and “clear the stack”.
I If nonpositive curvature, line search initialized with ω or Ω (two variants).

I Test only m ∈ {1, 2} for now. (Working on larger m.)

I Ran all unconstrained CUTEst problems with n ≥ 3, successful if/when

‖gk‖∞ ≤ 10−4 max{‖g0‖∞, 1}.

I Results only for problems on which at least one algorithm was successful. . .
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Performance profiles: Fletcher with αk ← ω initially for line search

Larger m is beneficial in Fletcher’s method.
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Performance profiles: Fletcher with αk ← Ω initially for line search

Larger m is still beneficial in Fletcher’s method.
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Performance profiles: Our method

Larger m is beneficial in our method (though we believe we can improve further).
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Performance profiles: m = 1

Cubic strategy is beneficial.
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Performance profiles: m = 2

Cubic strategy is still beneficial (though still working on larger m).
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Contributions

I New strategies for handling nonpositive curvature in steepest descent.

I Consider both BB-type and LMSD methods. (Former is special case of latter.)

I Ideas based on employing cubic models when nonpositive curvature is present.

I Globalization is straightforward with nonmonotone line search.

I Maintain local convergence properties near strict local minimizers.

I Numerical experiments are promising so far (though work is ongoing).
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