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Nonlinear/convex optimization research

Emphasis today on solving structured optimization problems.

I In most cases, structure means convex.

I Often goes further, e.g., seeking sparsity, low matrix rank, low total variation.

I Nemirovski, Nesterov, Wright, ...

I d’Aspremont, Lan, Recht, Yin, ...

I Focus on large-scale problems needing only an approximate solution.

I First-order methods, optimal algorithms, regularization, ...

Nonconvex, Nonsmooth Optimization by Gradient Sampling 4 of 69



Motivations Gradient Sampling (GS) Adaptive GS SQP-GS Future Work

My work

I am interested in algorithms for unstructured nonlinear optimization.

I For one thing, unstructured means nonconvex.

I Other work: Inexact Newton methods for large-scale optimization.

I Other work: Model/data inconsistencies leading to infeasibility and degeneracy.

I This talk: Enhancing practical NLO methods for handling nonsmoothness.

Widespread use of optimization requires accommodating algorithms.

I Accommodating algorithms can be the “go-to” methods for new problems.

I Accommodating algorithms are all we have for very hard problems.

Nonconvex, Nonsmooth Optimization by Gradient Sampling 5 of 69



Motivations Gradient Sampling (GS) Adaptive GS SQP-GS Future Work

Deterministic optimization methods based on randomized models

Unconstrained minimization of an objective function f : Rn → R:

I No gradient info available? e.g., objective values from simulations

I Only some gradient info available? e.g., large-scale machine learning

I Subdifferential not available? e.g., any unstructured nonsmooth problem

Randomized algorithms offer computational flexibility and other benefits.

I DFO: randomization leads to better poised models.

I SO: (batch) stochastic gradient methods have nice practical/theoretical behavior.

I UO: gradient sampling...
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Contributions

Gradient sampling is a general-purpose method for nonconvex, nonsmooth problems.

I We dramatically reduce per-iteration and overall computational cost.

I Nothing is lost in terms of global convergence guarantees.

I We extend the methodology and theory to constrained optimization.
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Unconstrained nonconvex, nonsmooth optimization

Consider the unconstrained problem

min
x

f (x)

where f is locally Lipschitz and continuously differentiable in (dense) D ⊂ Rn.

I Let
Bε(x) := {x | ‖x − x‖ ≤ ε}

I x is stationary if

0 ∈ ∂f (x) :=
\
ε>0

cl conv∇f (Bε(x) ∩ D)

I x is ε-stationary if
0 ∈ ∂εf (x) := cl conv ∂f (Bε(x))

Nonconvex, Nonsmooth Optimization by Gradient Sampling 9 of 69



Motivations Gradient Sampling (GS) Adaptive GS SQP-GS Future Work

Unconstrained nonconvex, nonsmooth optimization

Consider the unconstrained problem

min
x

f (x)

where f is locally Lipschitz and continuously differentiable in (dense) D ⊂ Rn.

I Let
Bε(x) := {x | ‖x − x‖ ≤ ε}

I x is stationary if

0 ∈ ∂f (x) :=
\
ε>0

cl conv∇f (Bε(x) ∩ D)

I x is ε-stationary if
0 ∈ ∂εf (x) := cl conv ∂f (Bε(x))

Nonconvex, Nonsmooth Optimization by Gradient Sampling 10 of 69



Motivations Gradient Sampling (GS) Adaptive GS SQP-GS Future Work

Gradient sampling (GS) idea

At xk , let xk0 := xk and sample {xk1, . . . , xkp} ⊂ Bε(xk ) ∩ D, yielding:

Xk :=
˘
xk0, xk1, · · · , xkp

¯
(sample points)

Gk :=
ˆ
gk0 gk1 · · · gkp

˜
(sample gradients)

The ε-subdifferential is approximated by the convex hull of the sampled gradients:

∂εf (xk ) = cl conv ∂f (Bε(xk ))

≈ conv{gk0, gk1, . . . , gkp}

I Compute the projection of 0 onto the convex hull of the sampled gradients:

gk := Proj(0| conv{gk0, gk1, . . . , gkp})

Then, dk = −gk is an approximate ε-steepest descent step.
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GS illustration

min
x

10|x2 − x2
1 |+ (1− x1)2 at xk = (−1, 1

2
)
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GS illustration

min
x

10|x2 − x2
1 |+ (1− x1)2 at xk = (1.1, 0.9)
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GS method

for k = 0, 1, 2, . . .

I Sample p ≥ n + 1 points {xk1, . . . , xkp} ⊂ Bε(xk ) ∩ D.

I Compute dk ← −gk by computing the projection

gk = Proj(0| conv{gk0, gk1, . . . , gkp}).

I Backtrack from αk ← 1 to satisfy the sufficient decrease condition

f (xk + αkdk ) ≤ f (xk )− ηαk‖dk‖2.

I Update xk+1 ≈ xk + αkdk (to ensure xk+1 ∈ D).

I If ‖dk‖ ≤ ε, then reduce ε.

(See Burke, Lewis, and Overton (2005) and Kiwiel (2007).)
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Global convergence of GS

Theorem: Let f be locally Lipschitz and continuously differentiable on an open dense
D ⊂ Rn. Then, w.p.1, f (xk )→ −∞ or every cluster point of {xk} is stationary for f .

(See Burke, Lewis, and Overton (2005) and Kiwiel (2007).)
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Illustration of critical part of proof

Near x , the GS algorithm ideally computes Proj(0|∂εf (x)).
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Illustration of critical part of proof

By continuity, there exists {yki}i=1,...,p such that Proj(0|{∇f (yki )}) ≈ Proj(0|∂εf (x)).
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Illustration of critical part of proof

The same holds for sufficiently small neighborhoods about the yki ’s.
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Illustration of critical part of proof

Far from x , the algorithm does not necessarily approximate Proj(0|∂εf (x)) well.
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Illustration of critical part of proof

However, it can in a sufficiently small neighborhood of x .

Nonconvex, Nonsmooth Optimization by Gradient Sampling 21 of 69



Motivations Gradient Sampling (GS) Adaptive GS SQP-GS Future Work

Local models in GS

Computing the projection is equivalent to solving the dual subproblem:

max
λ

f (xk )− 1
2
‖Gkλ‖2

s.t. eTλ = 1, λ ≥ 0.

The corresponding primal subproblem is to compute dk to minimize

q(d ; Xk ) := f (xk ) + max
x∈Xk

{∇f (x)T d}+ 1
2
‖d‖2.

If all gradients about x were available, then we would ideally compute d minimizing

q(d ; Bε(x) ∩ D) = f (x) + max
x∈Bε(x)∩D

{∇f (x)T d}+ 1
2
‖d‖2.
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Critical lemma

Let the sample space be

Sε(xk ) := {xk} ×
pY
1

(Bε(xk ) ∩ D)

and consider the set

Tε,ω(xk , x) = {Xk ∈ Sε(xk ) | ∆q(dk ; Xk ) ≤ ∆q(d ; Bε(x) ∩ D) + ω}.

Lemma: For any ω > 0, there exists ζ > 0 and a nonempty set T such that for all
xk ∈ B(x , ζ) we have T ⊂ Tε,ω(xk , x).

(That is, in a sufficiently small neighborhood of x , there exists a sample set revealing
∆q(d ; Bε(x) ∩ D) with arbitrarily good, though not necessarily perfect, accuracy.)

Sketch of proof: Follows from Carathéodory’s theorem.
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Global convergence of GS

Theorem: Let f be locally Lipschitz and continuously differentiable on an open dense
D ⊂ Rn. Then, w.p.1, f (xk )→ −∞ or every cluster point of {xk} is stationary for f .

Sketch of proof: If f (xk ) 9 −∞, then

αk∆q(dk ; Xk )→ 0.

If ε 9 0, then for all large k,

∆q(dk ; Xk ) = 1
2
‖dk‖2 > 1

2
ε2, (?)

and it can be shown that xk → x and αk → 0. However, w.p.1, this will not occur:

I If x is ε-stationary, then w.p.1 we will obtain a sample set in T yielding
∆q(dk ; Xk ) ≤ 1

2
ε2, contradicting (?).

I If x is not ε-stationary, then w.p.1 we will obtain a subsequence with αk bounded
away from zero, contradicting αk → 0.

Thus, w.p.1, ε→ 0 and any cluster point x is stationary for f .
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Practical issues

Practical limitations of GS:

I p ≥ n + 1 gradient evaluations per iteration

I All subproblems solved from scratch

I Behaves like steepest descent(?)

Proposed enhancements:

I Adaptive sampling; only O(1) gradients per iteration (Kiwiel (2010))

I Warm-started subproblem solves

I “Hessian” approximations for quadratic term
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Adaptive Gradient Sampling (AGS)

At xk , we had:

Xk :=
˘
xk0, xk1, · · · , xkp

¯
(sample points)

Gk :=
ˆ
gk0 gk1 · · · gkp

˜
(sample gradients)

At xk+1, we

I maintain sample points still within radius ε; (this allows warm-starting!)

I throw out gradients outside of radius;

I sample 1 (or some) new gradients.

How can we maintain global convergence?

I If sample size is at least n + 1, then proceed as usual; else, truncate line search.
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Primal-dual pair of subproblems

Recall the primal-dual pair of GS subproblems:

max
z,d

z + 1
2
dT d

s.t. f (xk )e + GT
k d ≤ ze

max
λ

f (xk )− 1
2
λT GT

k Gkλ

s.t. eTλ = 1, λ ≥ 0

Introduce second order terms with “Hessian” approximations:

max
z,d

z + 1
2
dT d

s.t. f (xk )e + GT
k d ≤ ze

max
λ

f (xk )− 1
2
λT GT

k Gkλ

s.t. eTλ = 1, λ ≥ 0

How should Hk (or Wk ) be chosen?
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Primal-dual pair of subproblems (variable-metric)

Recall the primal-dual pair of GS subproblems:

max
z,d

z + 1
2
dT d

s.t. f (xk )e + GT
k d ≤ ze

max
λ

f (xk )− 1
2
λT GT

k Gkλ

s.t. eTλ = 1, λ ≥ 0

Introduce second order terms with “Hessian” approximations:

max
z,d

z + 1
2
dT Hkd

s.t. f (xk )e + GT
k d ≤ ze

max
λ

f (xk )− 1
2
λT GT

k WkGkλ

s.t. eTλ = 1, λ ≥ 0

How should Hk (or Wk ) be chosen?
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Quasi-Newton updating

Consider the model

q(d ; xk+1,Hk+1) = f (xk+1) +∇f (xk+1)T d + 1
2
dT Hk+1d .

Matching the gradients of f and mk+1 at xk yields the secant equation

Hk+1(∇f (xk+1)−∇f (xk )) = xk+1 − xk .

Minimizing changes in {Hk} yields the well-known BFGS update.

Questions:

I Is BFGS effective within GS?

I Are we making the best use of info?

I Ill-conditioning: Bad or good?
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Quasi-Newton updating (AGS-LBFGS)

Consider BFGS, but instead of updating between iterations, update during them.

I For each k, initialize Hk ← µk I .

I Imagine moving along each dki = xki − xk and apply BFGS update.

With at most p points in the sample set, this is an L-BFGS-type approach.
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Overestimation (AGS-over)

Suppose we also have function values at the sample points.

I Try to choose Hk so that the following model overestimates f :

q(d ; Xk ,Hk ) = f (xk ) + max
x∈Xk

{∇f (x)T d}+ 1
2
dT Hkd .

I If q(dki ; Xk ,Hk ) < f (xki ), then “lift” dT
ki Hkdki so that q(dki ; Xk ,Hk ) = f (xki ).

I Updates we use have the form Hk ← MT
ki HkMki where

Mki =

 
I +

γ

dT
ki dki

dkid
T
ki

!
.
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Global convergence of AGS

Theorem: Let σ, γ > 0 be user-defined constants. Then, for any k, after all updates
have been performed for AGS-LBFGS for sample points 1 through pk ≤ p, the
following holds for any d ∈ Rn:0BB@2p

„
1 +

σ

γ2

«p
µk +

1

γ

0BB@ 2p
„

1 + σ
γ2

«p
− 1

2

„
1 + σ

γ2

«
− 1

1CCA
1CCA
−1

‖d‖2 ≤ dT Hkd ≤
„
µk +

pσ

γ

«
‖d‖2

.

Theorem: Let ρ ≥ 1/2 be a user-defined constant. Then, for any k, after all updates
have been performed for AGS-over for sample points 1 through pk ≤ p, the following
holds for any d ∈ Rn:

µk‖d‖
2 ≤ dT Hkd ≤ µk (2ρ)p‖d‖2

.

Theorem: Let f be locally Lipschitz and continuously differentiable on an open dense
D ⊂ Rn. Then, w.p.1, f (xk )→ −∞ or every cluster point of {xk} is stationary for f .

(See Curtis and Que (2011).)
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Implementation and test details

I Matlab implementation

I QO solver adapted from Kiwiel (1986)

I 26 test problems from Haarala (2004) with n = 50

I Each problem run with 10 random starting points

I GS: p = 2n gradients per iteration

I AGS: p = 2n required for full line search, but only 5 gradients per iteration
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Performance profile for final ε

Limit of 5000 gradient evaluations: GS, 49 iters.; AGS, 833 iters.

Final ε ∈ {10−1, . . . , 10−12}; performance profile for log10 ε+ 13.
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Nonlinear constrained optimization

with nonsmoothness

Consider constrained optimization problems of the form:

min
x

f (x) (smooth)

s.t. cE(x) = 0 (smooth)

cẼ(x) = 0 (nonsmooth)

cI(x) ≤ 0 (smooth)

cĨ(x) ≤ 0 (nonsmooth)

I Decades worth of algorithmic development.

I SQP, IPM, etc., with countless variations.

I Strong global and local convergence guarantees.

I Multiple popular, successful software packages.
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Nonlinear constrained optimization with nonsmoothness

Consider constrained optimization problems of the form:

min
x

f (x) ((non)smooth)

s.t. cE(x) = 0 (smooth)

cẼ(x) = 0 (nonsmooth)

cI(x) ≤ 0 (smooth)

cĨ(x) ≤ 0 (nonsmooth)

I Algorithms for smooth problems no longer effective theoretically/practically.

I However, so much of the structure is the same as before.

I Can we adapt nonlinear optimization technology to handle nonsmoothness?
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Constrained optimization with smooth functions

Consider constrained optimization problems of the form:

min
x

f (x) (smooth)

s.t. c(x) ≤ 0 (smooth)

At xk , solve the SQP subproblem

min
d

f (xk ) +∇f (xk )T d + 1
2
dT Hkd

s.t. c(xk ) +∇c(xk )T d ≤ 0

to compute the search direction dk .
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Inconsistent linearizations of the constraints

The linearized constraints may be inconsistent, but we can relax the problem to

min
d,s

ρ(f (xk ) +∇f (xk )T d) + eT s + 1
2
dT Hkd

s.t. c(xk ) +∇c(xk )T d ≤ s, s ≥ 0,

Solving the (P)SQP subproblem is equivalent to minimizing

qρ(d ; xk ,Hk ) := ρ(f (xk ) +∇f (xk )T d) +
X

max{c i (xk ) +∇c i (xk )
T
d , 0}+ 1

2
dT Hkd .

We perform a line search on the exact penalty function

φρ(x) , ρf (x) +
X

max{c i (x), 0}

to promote global convergence.
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SQP method

for k = 0, 1, 2, . . .

I Solve the SQP subproblem

min
d,s

ρ(f (xk ) +∇f (xk )T d) + eT s + 1
2
dT Hkd

s.t. c(xk ) +∇c(xk )T d ≤ s, s ≥ 0

to compute dk .

I Backtrack from αk ← 1 to satisfy the sufficient decrease condition

φρ(xk + αkdk ) ≤ φρ(xk )− ηαk∆qρ(dk ; xk ,Hk ).

I Update xk+1 ← xk + αkdk .
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Constrained optimization of nonsmooth functions

Consider constrained optimization problems of the form

min
x

f (x) (nonsmooth, locally Lipschitz)

s.t. c(x) ≤ 0 (nonsmooth, locally Lipschitz)

We may consider applying an unconstrained technique (e.g., AGS) directly to

min
x

φρ(x),

but can we do better by maintaining the framework of SQP?
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SQP and GS
I The SQP subproblem (for a smooth constrained problem) is

min
z,d,s

ρz + eT s + 1
2
dT Hkd

s.t. f (xk ) +∇f (xk )T d ≤ z

c(xk ) +∇c(xk )T d ≤ s, s ≥ 0.

I The AGS subproblem (for a nonsmooth objective) is

min
z,d

z + 1
2
dT Hkd

s.t. f (xk ) +∇f (x)T d ≤ z, for x ∈ Xk .

I The SQP-GS subproblem (for a nonsmooth constrained problem) is

min
z,d,s

ρz + eT s + 1
2
dT Hkd

s.t. f (xk ) +∇f (x)T d ≤ z, for x ∈ X f
k

c i (xk ) +∇c i (x)T d ≤ s i , s i ≥ 0, for x ∈ X c i

k , i = 1, . . . ,m
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SQP-GS in more detail

I The SQP-GS subproblem is

min
z,d,s

ρz + eT s + 1
2
dT Hkd

s.t. f (xk ) +∇f (x)T d ≤ z, for x ∈ X f
k

c i (xk ) +∇c i (x)T d ≤ s i , s i ≥ 0, for x ∈ X c i

k , i = 1, . . . ,m

where Xk is composed of

X f
k = {xk , x

f
k1, . . . , x

f
kp} ⊂ Bε(xk ) ∩ Df

and X c i

k = {xk , x
c i

k1, . . . , x
c i

kp} ⊂ Bε(xk ) ∩ Dc i
for i = 1, . . . ,m.

I This is equivalent to minimizing

qρ(d ; Xk ,Hk ) :=

ρ max
x∈X f

k

(f (xk ) +∇f (x)T d) +
X

max
x∈X ci

k

max{c i (xk ) +∇c i (x)T d , 0}+ 1
2
dT Hkd .
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SQP-GS illustration

min
x

10|x2 − x2
1 |+ (1− x1)2 s.t. max{

√
2x1, 2x2} − 1 ≤ 0 at xk = ( 2

5
, 3

10
).
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SQP-GS illustration

min
x

10|x2 − x2
1 |+ (1− x1)2 s.t. max{

√
2x1, 2x2} − 1 ≤ 0 at xk = ( 2

5
, 3

10
).
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SQP-GS illustration

min
x

10|x2 − x2
1 |+ (1− x1)2 s.t. max{

√
2x1, 2x2} − 1 ≤ 0 at xk = ( 2

5
, 3

10
).
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SQP-GS method

for k = 0, 1, 2, . . .

I Sample p ≥ n + 1 points for each function to generate Xk = {X f
k ,X

c1

k , . . . ,X cm

k }.
I Compute dk by solving the SQP-GS subproblem

min
z,d,s

ρz + eT s + 1
2
dT Hkd

s.t. f (xk ) +∇f (x)T d ≤ z, for x ∈ X f
k

c i (xk ) +∇c i (x)T d ≤ s i , s i ≥ 0, for x ∈ X c i

k , i = 1, . . . ,m

I Backtrack from αk ← 1 to satisfy the sufficient decrease condition

φρ(xk + αkdk ) ≤ φρ(xk )− ηαk∆qρ(dk ; Xk ,Hk ).

I Update xk+1 ≈ xk + αkdk (to ensure xk+1 ∈ Df ∩ Dc1 ∩ · · · ∩ Dcm
)

I If ∆qρ(dk ; Xk ,Hk ) ≤ 1
2
ε2, then reduce ε.

I If ε has been reduced and xk is not sufficiently feasible, then reduce ρ.
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Convergence theory for SQP-GS

Theorem: Suppose the following conditions hold:

I f and c i , i = 1, . . . ,m, are locally Lipschitz and continuously differentiable on
open dense subsets of Rn.

I {xk} and all generated sample points are contained in a convex set over which f
and c i , i = 1, . . . ,m, and their first derivatives are bounded.

I {Hk} are symmetric positive definite, bounded above in norm, and bounded away
from singularity.

Then, w.p.1, one of the following holds true:

I ρ = ρ∗ > 0 for all large k and every cluster point of {xk} is stationary for φρ∗ .
Moreover, with K defined as the infinite subsequence of iterates during which ε is
decreased, all cluster points of {xk}k∈K are feasible for the optimization problem.

I ρ→ 0 and every cluster point of {xk} is stationary for φ0.
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Implementation

I Matlab implementation

I QO subproblems solved with MOSEK

I BFGS approximations of Hessian of φρ(x) (as in AGS-LBFGS)

I p = 2n gradients per iteration
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Example 1: Nonsmooth Rosenbrock

min
x

10|x2
1 − x2|+ (1− x1)2 s.t. max{

√
2x1, 2x2} ≤ 1.
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Example 1: Nonsmooth Rosenbrock

min
x

10|x2
1 − x2|+ (1− x1)2 s.t. max{

√
2x1, 2x2} ≤ 1.

Plot of distance to solution
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Example 1: Nonsmooth Rosenbrock

min
x

10|x2
1 − x2|+ (1− x1)2 s.t. max{

√
2x1, 2x2} ≤ 1.

Plot of distance to solution (no sampling)
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Example 2: Entropy minimization

Find a N × N matrix X that solves

min
X

ln

0@ KY
j=1

λj (A ◦ XT X )

1A
s.t. ‖Xj‖ = 1, j = 1, . . . ,N

where λj (M) denotes the jth largest eigenvalue of M, A is a real symmetric N × N
matrix, ◦ denotes the Hadamard matrix product, and Xj denotes the jth column of X .

Nonconvex, Nonsmooth Optimization by Gradient Sampling 56 of 69



Motivations Gradient Sampling (GS) Adaptive GS SQP-GS Future Work

Example 2: Entropy minimization

N K n Objective Infeasibility Final ε Opt. error
2 1 4 1.0000e+00 3.1752e-14 5.9605e-09 7.6722e-12

4 2 16 7.4630e-01 2.8441e-07 4.8828e-05 1.1938e-04

6 3 36 6.3359e-01 2.1149e-06 9.7656e-05 8.7263e-02

8 4 64 5.5832e-01 2.0492e-05 9.7656e-05 2.7521e-03

10 5 100 2.1841e-01 9.8364e-06 7.8125e-04 9.6041e-03

12 6 144 1.2265e-01 1.8341e-04 7.8125e-04 6.0492e-03

14 7 196 8.4650e-02 1.6692e-04 7.8125e-04 7.1461e-03

16 8 256 6.5051e-02 6.4628e-04 1.5625e-03 3.1596e-03

Nonconvex, Nonsmooth Optimization by Gradient Sampling 57 of 69



Motivations Gradient Sampling (GS) Adaptive GS SQP-GS Future Work

Example 3: `0.5 norm minimization

Recover a sparse signal by solving

min
x
‖x‖0.5

s.t. Ax = b

where A is a 64× 256 submatrix of a discrete cosine transform (DCT) matrix.

(Use `0.5 norm as `1 does not recover sparse solution.)
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Example 3: `0.5 norm minimization

k = 1
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Example 3: `0.5 norm minimization

k = 10
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Example 3: `0.5 norm minimization

k = 25

Nonconvex, Nonsmooth Optimization by Gradient Sampling 61 of 69



Motivations Gradient Sampling (GS) Adaptive GS SQP-GS Future Work

Example 3: `0.5 norm minimization

k = 50
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Example 3: `0.5 norm minimization

k = 200
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Example 4: Robust optimization

Find the robust minimizer of a linear objective s.t. an uncertain quadratic constraint:

min
x

f T x s.t. xT Ax + bT x + c ≤ 0, ∀(A, b, c) ∈ U ,

where f ∈ Rn and for each (A, b, c) in the uncertainty set

U :=

(
(A, b, c) : (A, b, c) = (A(0), b(0), c(0)) +

10X
i=1

ui (A(i), b(i), c(i)), uT u ≤ 1

)

A ∈ Rn×n is positive semidefinite, b ∈ Rn, and c ∈ R.
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Example 4: Robust optimization

Plot of function values (left) and constraint violation values (right)
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Summary

We set out to improve the practicality and enhance GS methods.

I We aimed to reduce overall gradient evaluations.

I We aimed to reduce the cost of the subproblem solves.

I We aimed to maintain convergence guarantees.

I We aimed to extend the methodology to constrained optimization.

The first goals can be achieved with adaptive sampling and Hessian approximations:

I O(1) gradient evaluations required per iteration

I Subproblem solver warm-started effectively

I Hessian updating schemes improve performance

I Global convergence guarantees maintained

Last goal can be achieved in a SQP-GS framework with constraint gradient sampling:

I Subproblem solve is still a QO per iteration

I Global convergence guarantees maintained
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Future work

I C++ implementation

I Tailored QO solver for constrained case

I Adaptive sampling in constrained case

I Special handling of partly smooth functions

I Merge with bundle techniques for convex problems
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Thanks!

I F. E. Curtis and X. Que, “An Adaptive Gradient Sampling Algorithm for
Nonsmooth Optimization,” in 2nd review for Optimization Methods and Software.

I F. E. Curtis and M. L. Overton, “A Sequential Quadratic Programming Method
for Nonconvex, Nonsmooth Constrained Optimization,” to appear in SIAM
Journal on Optimization.
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