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Raising awareness

Issues that I believe nonlinear optimizers need to address:

State-of-the-art nonlinear optimization codes fail too often.

I Reasons are “high” nonlinearity, degeneracy, and infeasibility.

I People have disputed this, but I have results!

I (We’ll never know the number of users that we’ve lost.)

Our worst-case analysis for nonconvex optimization is faulty.

I We should characterize complexity in a different way.

I Purpose of this talk is to convince you.

I (Otherwise, e.g., we may turn people off from second-order methods.)
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Problem statement

Let’s talk about the problem to minimize f : Rn → R:

min
x∈Rn

f(x).

We’ll focus on iterative algorithms of the form

xk+1 ← xk + sk for all k ∈ N,

where {xk} is the iterate sequence and {sk} is the step sequence.

For the purposes of this talk. . .

I local search, not global optimization;

I deterministic methods, could extend to stochastic

Let’s use fk := f(xk), gk := ∇f(xk), and Hk := ∇2f(xk).

Characterizing Worst-Case Complexity of Algorithms for Nonconvex Optimization 5 of 31



Introduction Contemporary Analyses Partitioning Common Methods Summary

Problem statement

Let’s talk about the problem to minimize f : Rn → R:

min
x∈Rn

f(x).

We’ll focus on iterative algorithms of the form

xk+1 ← xk + sk for all k ∈ N,

where {xk} is the iterate sequence and {sk} is the step sequence.

For the purposes of this talk. . .

I local search, not global optimization;

I deterministic methods, could extend to stochastic

Let’s use fk := f(xk), gk := ∇f(xk), and Hk := ∇2f(xk).

Characterizing Worst-Case Complexity of Algorithms for Nonconvex Optimization 5 of 31



Introduction Contemporary Analyses Partitioning Common Methods Summary

Problem statement

Let’s talk about the problem to minimize f : Rn → R:

min
x∈Rn

f(x).

We’ll focus on iterative algorithms of the form

xk+1 ← xk + sk for all k ∈ N,

where {xk} is the iterate sequence and {sk} is the step sequence.

For the purposes of this talk. . .

I local search, not global optimization;

I deterministic methods, could extend to stochastic

Let’s use fk := f(xk), gk := ∇f(xk), and Hk := ∇2f(xk).

Characterizing Worst-Case Complexity of Algorithms for Nonconvex Optimization 5 of 31



Introduction Contemporary Analyses Partitioning Common Methods Summary

Worst-case complexity: Contemporary approach

Worst-case complexity: Upper limit on the resources an algorithm will require
to (approximately) solve a given problem

. . . convex optimization: Bound on the number of iterations (or function or
derivative evaluations) until

‖xk − x∗‖ ≤ εx
or fk − f(x∗) ≤ εf ,

where x∗ is some global minimizer of f .

. . . nonconvex optimization: Bound on the number of iterations (or function or
derivative evaluations) until

‖gk‖ ≤ εg
and maybe Hk � −εHI.
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Worst-case complexity for nonconvex optimization

For example, it is said that for first-order stationarity we have the bounds. . .

Algorithm ‖gk‖ ≤ εg
Gradient descent O(ε−2

g )

Second-order trust region (TR) O(ε−2
g )

Cubic regularization (e.g., ARC) O(ε
−3/2
g )

(For “short-step versions”, second-order TR is O(ε
−3/2
g ), but anyway. . . )

This should be surprising to anyone who has used these methods!
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TR vs. ARC

1: Solve to compute sk:

min
s∈Rn

qk(s)

:= fk + gTk s+ 1
2
sTHks

s.t. ‖s‖ ≤ δk (dual: λk)

2: Compute ratio:

ρqk ←
fk−f(xk+sk)
fk−qk(sk)

3: Update radius:

ρqk ≥ η: accept and δk ↗

ρqk < η: reject and δk ↘

TR

1: Solve to compute sk:

min
s∈Rn

ck(s)

:= fk + gTk s+ 1
2
sTHks

+ 1
3
σk‖s‖3

2: Compute ratio:

ρck ←
fk−f(xk+sk)
fk−ck(sk)

3: Update regularization:

ρck ≥ η: accept and σk ↘

ρck < η: reject and σk ↗

ARC

σk = λk
δk

δk = ‖sk‖
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Experiments with CUTEr
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Complexity: Take-home message #1

Contemporary complexity theory for nonconvex optimization. . .

I might not be showing a deficiency of certain methods (e.g., 2nd-order TR);

I might be showing a deficiency of the characterization strategy.

Our goal: A complementary approach to characterize algorithms.

I global convergence

I worst-case complexity, contemporary type + our new approach

I local convergence rate

We’re admitting: Our approach does not always give the complete picture.

But the contemporary approach can give a misleading picture.
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Complexity: Take-home message #2

Ideally, we would weigh worst-case analyses differently depending on the category
of method. Some methods actually behave like their worst-case; others don’t.

Let’s return to this at the end of the talk. In short:

I focus on worst-case analysis can be a self-fulfilling prophecy
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Conservatism of contemporary analyses

Suppose g := ∇f is Lipschitz continuous with constant L > 0. Then,

fk+1 ≤ fk + gTk sk + 1
2
L‖sk‖2.

Let finf := minx∈Rn f(x). Suppose also that ‖gk‖2 ≥ 2c(fk − finf).

fk − fk+1 ≥
1

2L
‖gk‖2 fk − fk+1 ≥

1

2L
‖gk‖2

≥
c

L
(fk − finf)

f0 − finf ≥
1

2L
|Kg |ε2g f0 − finf ≥

(
1−

c

L

)−k
(fk − finf)

|Kg | ≤ O
(
f0 − finf

ε2g

)
|Kf | ≤ O

(
log

(
f0 − finf

εf

))
where

Kg := {k ∈ N : ‖gk‖ ≥ εg} and Kf := {k ∈ N : fk − finf ≥ εf}.
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Upper bounds on |Kf | versus |Kg|

Setting with {x ∈ Rn : fk − finf ≤ εf} = {x ∈ Rn : ‖gk‖ ≤ εg}.
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Worst-case examples
Worst-case performance bounds are tight; Cartis, Gould, Toint (2010).

However, these examples for nonconvex optimization are. . . strange.

I Compared to convex optimization, for nonconvex. . .

I there is a much wider gap between theory and practice.

Characterizing Worst-Case Complexity of Algorithms for Nonconvex Optimization 15 of 31
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Motivation

We want a characterization strategy that

I attempts to capture behavior in actual practice

I i.e., is not “bogged down” by pedogogical examples

I can be applied consistently across different classes of functions

Our idea is to

I partition the search space (dependent on f and x0)

I analyze how an algorithm behaves over different regions

I characterize an algorithm’s behavior by region

For some functions, there will be holes, but for many of interest there are none!
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Intuition

Think about an arbitrary point in the search space, i.e.,

L := {x ∈ Rn : f(x) ≤ f0}.

I If ‖gk‖ � 0, then “a lot” of progress can be made.

I If ‖gk‖ ≈ 0, but λ(Hk)� 0, then again “a lot” of progress can be made.

Characterizing Worst-Case Complexity of Algorithms for Nonconvex Optimization 18 of 31
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“Region 1”

Definition (Reduction in a first-order model)

At a given point x ∈ L, consider the model

m1(x, s) = ∇f(x)T s+ 1
2
r1‖s‖2

Letting sm1 (x) := arg mins∈Rn m1(x, s), the reduction in this model from x is

∆m1(x) = m1(x, 0)−m1(x, sm1 (x)) = 1
2r1
‖∇f(x)‖2. (?)

Let “Region 1” be those points where this reduction is sufficiently large:

R1 := {x ∈ L : ∆m1(x) ≥ κ(f(x)− finf)}.

Noting (?), these are “big gradient” points.

Theorem

A continuously differentiable f with a Lipschitz continuous gradient satisfies the
Polyak- Lojasiewicz condition if and only if R1 = L.

Characterizing Worst-Case Complexity of Algorithms for Nonconvex Optimization 19 of 31
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“Region 2”

Definition (Reduction in a second-order model)

At a given point x ∈ Rn, consider the (non-Taylor-like) model

m2(x, s) = 1
2
sT∇2f(x)s+ 1

3
r2‖s‖3

Letting sm2 (x) := arg mins∈Rn m2(x, s), the reduction in this model from x is

∆m2(x) = m2(x, 0)−m2(x, sm2 (x)) = 1
6r22 max{−λ(∇2f(x)), 0}3. (??)

Let “Region 2” be those points not in R1 where this reduction is sufficiently large:

R2 := {x ∈ Rn : ∆m2(x) ≥ κ(f(x)− finf)} \ R1.

Noting (??), these are “very negative curvature” points.

Theorem

If f is twice-continuously differentiable with Lipschitz continuous gradient and
Hessian functions such that, at all x ∈ L and for some ζ ∈ (0,∞), one has

max{‖∇f(x)‖2,−λ(∇2f(x))3} ≥ ζ(f(x)− finf),

then R1 ∪R2 = L.
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Regions

This can be extended in a natural way to higher-order models.

If f is p-times continuously differentiable, then we have the regions

R1 := {x ∈ Rn : ∆m1(x) ≥ κ(f(x)− finf)},

Rp := {x ∈ Rn : ∆mp(x) ≥ κ(f(x)− finf)} \

p−1⋃
j=1

Rj

 for all p ∈ {2, . . . , p},

and R := L \

 p⋃
j=1

Rj

 .

Regions could be defined in other ways as well; key idea is to partition!
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Illustration

(p = 2) R1: black R2: gray R: white
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Regularized gradient and Newton methods

I Regularized gradient (RG) method: Computes sk by solving

min
s∈Rn

fk + gTk s+
l1

2
‖s‖2 =⇒ sk = −

1

l1
gk

I Regularized Newton (RN) method: Computes sk by solving

min
s∈Rn

fk + gTk s+
1

2
sTHks+

l2

3
‖s‖3,

also known as cubic regularization

Characterizing Worst-Case Complexity of Algorithms for Nonconvex Optimization 24 of 31
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Characterization: Contemporary

Theorem (Contemporary complexity result)

With p ≥ 2, let
Kg := {k ∈ N : ‖gk‖ ≥ εg}

and KH := {k ∈ N : Hk � −εHI}.

Then, the cardinalities of Kg and KH are of the order. . .

Algorithm |Kg | |KH |

RG O
(
l1(f0−finf)

ε2g

)
∞?

RN O
(
l
1/2
2 (f0−finf)

ε
3/2
g

)
O
(
l22(f0−finf)

ε3
H

)

?Could be better with a probabilistic analysis.
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Characterization: Our approach

Theorem (New complexity result)

The numbers of iterations in R1 and R2 are of the order. . .

Algorithm R1 R2

RG O
(
log

(
f0−finf
εf

))
∞?

RN O
(
l22(f0−finf)

r31

)
+ O

(
log

(
f0−finf
εf

))
O

(
log

(
f0−finf
εf

))

?Could be better with a probabilistic analysis.

There is an initial phase, as seen in Nesterov & Polyak (2006)

Most interesting cases: Higher order method in lower-order region.
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Trust region methods

min
s∈Rn

fk + gTk s+ 1
2
sTHks s.t. ‖s‖ ≤ δk,

where
(Case 1) δk ← νk‖gk‖;

(Case 2) δk ← νk

{
‖gk‖ if ‖gk‖2 ≥ |λ(Hk)|3

|λ(Hk)| otherwise

Theorem (Case 1)

# of iterations in R1 is at most O
(
χ log

(
f0−finf
εf

))
. For R2, no guarantee.

Theorem (Case 2)

# of iterations in R1 is at most O
(
χ log

(
f0−finf
εf

))
.

# of iterations in R2 is at most O
(
χ̄ log

(
f0−finf
εf

))
.
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Trust region methods

min
s∈Rn

fk + gTk s+ 1
2
sTHks s.t. ‖s‖ ≤ δk,

where
(Case 1) δk ← νk‖gk‖;

(Case 2) δk ← νk

{
‖gk‖ if ‖gk‖2 ≥ |λ(Hk)|3

|λ(Hk)| otherwise

Theorem (Case 1)

# of iterations in R1 is at most O
(
χ log

(
f0−finf
εf

))
. For R2, no guarantee.

Theorem (Case 2)

# of iterations in R1 is at most O
(
χ log

(
f0−finf
εf

))
.

# of iterations in R2 is at most O
(
χ̄ log

(
f0−finf
εf

))
.
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pth-order method: Behavior over Rp

Let swp (x) be a minimum norm global minimizer of the regularized Taylor model

wp(x, s) = “pth-order Taylor model” +
lp

p+ 1
‖s‖p+1

Theorem

If {xk} is generated by the iteration

xk+1 ← xk + swp (x),

then, with εf ∈ (0, f0 − finf), the number of iterations in

Rp ∩ {x ∈ Rn : f(x)− finf ≥ εf}

is bounded above by⌈
log

(
f0 − finf

εf

)(
log

(
1

1− κ

))−1
⌉

= O
(

log

(
f0 − finf

εf

))
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Summary & Perspectives

Our goal: A complementary approach to characterize algorithms.

I global convergence

I worst-case complexity, contemporary type + our approach

I local convergence rate

Our idea is to

I partition the search space (dependent on f and x0)

I analyze how an algorithm behaves over different regions

I characterize an algorithm’s behavior by region

For some functions, there are holes, but for others the characterization is complete.

F. E. Curtis and D. P. Robinson, “How to Characterize the Worst-Case
Performance of Algorithms for Nonconvex Optimization,” Lehigh ISE/COR@L
Technical Report 18T-003, February 3, 2018.
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Back to take-home message #2
Strongly convex quadratic

I gradient descent with a fixed stepsize (black)

I gradient descent with adaptive stepsizes / line searches (blue)

I conjugate gradient with adaptive stepsizes (red)

Focus on worst-case performance. . .

I is a self-fulfilling prophecy!

I Let’s emphasize worst-case performance less when actual behavior is better!
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