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Problem formulation

Our goal is to solve a constrained nonlinear optimization problem:

min
x

f(x)

s.t. c(x) = 0, c̄(x) ≤ 0.
(NLP)

If (NLP) is infeasible, then at least we want to minimize constraint violation:

min
x

v(x), where v(x) := ‖c(x)‖1 + ‖[c̄(x)]+‖1. (FP)

(A minimizer of (NLP) is always a minimizer of (FP).)
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Sequential quadratic optimization

Advantages:

I “Parameter free” search direction computation (ideally)

I Strong global convergence properties and behavior

I Active-set identification =⇒ Newton-like local convergence

Disadvantages:

I No “best” way to handle inconsistent subproblems

I Quadratic subproblems (QPs) are expensive to solve exactly

Open questions:

I Can we maintain the advantages of sequential quadratic optimization when
the QP subproblems are solved inexactly?

I Can we maintain global and local convergence guarantees?
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Algorithmic framework: Classic

NLP solver

QP solver

linear solver
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Algorithmic framework: Detailed

NLP solver

approximation model

termination conditions

approximate

solution

step type

QP solver

approximation model

termination conditions

approximate

solution

step type

linear solver
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Algorithmic framework: Inexact

NLP solver

approximation model
termination conditions

approximate solution
step type

QP solver

approximation model
termination conditions

approximate solution
step type

linear solver
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Sequential quadratic optimization w/ inexactness

Contributions:

I Implementable termination conditions for inexact QP solves

I No specific QP solver required

I Global convergence guarantees (feasible and infeasible problems)

I Future work: Fast local convergence (feasible and infeasible problems)1

Algorithmic features:

I Allows “generic” inexactness in QP solutions

I Convex combination of “optimality” and “feasibility” steps

I Negative curvature handled with dynamic Hessian modifications

I Separate multipliers for (NLP) and (FP)

I Dynamic updates for penalty parameter and Lagrange multipliers

1Avoid using “Cauchy points” that only yield minimal progress for global convergence.
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Fritz John and penalty functions

(NLP):

min
x

f(x)

s.t. c(x) = 0, c̄(x) ≤ 0

(FP):

min
x

v(x) :=

‚‚‚‚»
c(x)

[c̄(x)]+

–‚‚‚‚
1

Define the Fritz John (FJ) function

F(x, y, ȳ, µ) := µf(x) + c(x)T y + c̄(x)T ȳ

and the `1-norm exact penalty function

φ(x, µ) := µf(x) + v(x).

µ ≥ 0 acts as objective multiplier/penalty parameter.
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Optimality conditions

(NLP):

min
x

f(x)

s.t. c(x) = 0, c̄(x) ≤ 0

(FP):

min
x

v(x) :=

‚‚‚‚»
c(x)

[c̄(x)]+

–‚‚‚‚
1

(PP):

min
x

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, ȳ, µ) :=

µf(x) + c(x)
T
y + c̄(x)

T
ȳ

KKT conditions for (FP) and (PP) expressed with residual

ρ(x, y, ȳ, µ) :=

26664
µg(x) + J(x)y + J̄(x)ȳ

min{[c(x)]+, e− y}
min{[c(x)]−, e+ y}
min{[c̄(x)]+, e− ȳ}
min{[c̄(x)]−, ȳ}

37775
I FJ point:

ρ(x, y, ȳ, µ) = 0, v(x) = 0, (y, ȳ, µ) 6= 0

I KKT point:

ρ(x, y, ȳ, µ) = 0, v(x) = 0, µ > 0

I Infeasible stationary point:

ρ(x, y, ȳ, 0) = 0, v(x) > 0
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Penalty function model and QP subproblem

(NLP):

min
x

f(x)

s.t. c(x) = 0, c̄(x) ≤ 0

(FP):

min
x

v(x) :=

‚‚‚‚»
c(x)

[c̄(x)]+

–‚‚‚‚
1

(PP):

min
x

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, ȳ, µ) :=

µf(x) + c(x)
T
y + c̄(x)

T
ȳ

KKT residual:

ρ(x, y, ȳ, µ)

Define a local model of φ(·, µ) at xk:

lk(d, µ) := µ(fk + gTk d) + ‖ck + JTk d‖1 + ‖[c̄k + J̄
T
k d]+‖1

Reduction in this model yielded by a given d:

∆lk(d, µ) := ∆l(0, µ)−∆l(d, µ)

Subproblem of interest:

min
d
−∆lk(d, µ) + 1

2
dTHd (QP)

∆lk(d, µ) > 0 implies d is a direction of strict descent for φ(·, µ) from xk
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Optimality conditions (for QP)

(NLP):

min
x

f(x)

s.t. c(x) = 0, c̄(x) ≤ 0

(FP):

min
x

v(x) :=

‚‚‚‚»
c(x)

[c̄(x)]+

–‚‚‚‚
1

(PP):

min
x

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, ȳ, µ) :=

µf(x) + c(x)
T
y + c̄(x)

T
ȳ

KKT residual:

ρ(x, y, ȳ, µ)

Local model of φ at xk:

lk(d, µ)

KKT conditions for (FP) and (PP) expressed with residual

ρ(x, y, ȳ, µ) :=

26664
µg(x) + J(x)y + J̄(x)ȳ

min{[c(x)]+, e− y}
min{[c(x)]−, e+ y}
min{[c̄(x)]+, e− ȳ}
min{[c̄(x)]−, ȳ}

37775
KKT conditions for (QP) expressed with

ρk(d, y, ȳ, µ,H) :=

266664
µgk +Hd+ Jky + J̄kȳ

min{[ck + JTk d]+, e− y}
min{[ck + JTk d]−, e+ y}
min{[c̄k + J̄

T
k d]+, e− ȳ}

min{[c̄k + J̄
T
k d]−, ȳ}

377775
Exact solution of (QP):

ρk(d, y, ȳ, µ,H) = 0
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Assumptions and well-posedness

Assumption

(1) The functions f , c, and c̄ and their first derivatives are bounded and
Lipschitz continuous in an open convex set containing {xk} and {xk + dk}.

(2) The QP solver can solve (QP) arbitrarily accurately for any µ ≥ 0.

Theorem (Well-posedness)
One of the following holds:

1. iSQO terminates finitely with a KKT point or infeasible stationary point.

2. iSQO generates an infinite sequence of iterates„
xk,

»
y′k
ȳ′k

–
,

»
y′′k
ȳ′′k

–
, µk

«
where

»
y′k
y′′k

–
∈ [−e, e],

»
ȳ′k
ȳ′′k

–
∈ [0, e], and µk > 0.
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Global convergence

Theorem (Global convergence)
One of the following holds:

(a) µk = µ for some µ > 0 for all large k and either every limit point of {xk}
corresponds to a KKT point or is an infeasible stationary point;

(b) µk → 0 and every limit point of {xk} is an infeasible stationary point;

(c) µk → 0, all limit points of {xk} are feasible, and, with

Kµ := {k : µk+1 < µk},

every limit point of {xk}k∈Kµ corresponds to an FJ point where the MFCQ fails.

Corollary
If {xk} is bounded and every limit point of this sequence is a feasible point at
which the MFCQ holds, then µk = µ for some µ > 0 for all large k and every
limit point of {xk} corresponds to a KKT point.
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“Direct” scenario

(NLP):

min
x

f(x)

s.t. c(x) = 0, c̄(x) ≤ 0

(FP):

min
x

v(x) :=

‚‚‚‚»
c(x)

[c̄(x)]+

–‚‚‚‚
1

(PP):

min
x

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, ȳ, µ) :=

µf(x) + c(x)
T
y + c̄(x)

T
ȳ

KKT residuals:

ρ(x, y, ȳ, µ)

ρk(d, y, ȳ, µ,H)

Local model of φ at xk:

lk(d, µ)

Terminate the QP solver when the solution
(dk, yk+1, ȳk+1) of (QP) with µ = µk satisfies

I yk+1 ∈ [−e, e], ȳk+1 ∈ [0, e]

I ∆lk(dk, µk) ≥ θ‖dk‖2 > 0 for θ ∈ (0, 1)

I ‖ρk(dk, yk+1, ȳk+1, µk, Hk)‖ ≤ κ ‖ρ(xk, yk, ȳk, µk)‖
If

I ∆lk(dk, µk) ≥ εvk for ε ∈ (0, 1)

then

I dk ← dk is the search direction

I µk+1 ← µk
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“Reference” scenario

(NLP):

min
x

f(x)

s.t. c(x) = 0, c̄(x) ≤ 0

(FP):

min
x

v(x) :=

‚‚‚‚»
c(x)

[c̄(x)]+

–‚‚‚‚
1

(PP):

min
x

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, ȳ, µ) :=

µf(x) + c(x)
T
y + c̄(x)

T
ȳ

KKT residuals:

ρ(x, y, ȳ, µ)

ρk(d, y, ȳ, µ,H)

Local model of φ at xk:

lk(d, µ)

Terminate the QP solver when the solution
(dk, yk+1, ȳk+1) of (QP) with µ = 0 satisfies

I yk+1 ∈ [−e, e], ȳk+1 ∈ [0, e]

I ∆lk(dk, 0) ≥ θ‖dk‖2 for θ ∈ (0, 1)

I ‖ρk(dk, yk+1, ȳk+1, 0, Hk)‖ ≤ κ‖ρ(xk, yk, ȳk, 0)‖
If

I ∆lk(dk, µk) ≥ ε∆lk(dk, 0) for ε ∈ (0, 1)

then

I dk ← dk is the search direction

I µk+1 ← µk
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“Combination” scenario

(NLP):

min
x

f(x)

s.t. c(x) = 0, c̄(x) ≤ 0

(FP):

min
x

v(x) :=

‚‚‚‚»
c(x)

[c̄(x)]+

–‚‚‚‚
1

(PP):

min
x

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, ȳ, µ) :=

µf(x) + c(x)
T
y + c̄(x)

T
ȳ

KKT residuals:

ρ(x, y, ȳ, µ)

ρk(d, y, ȳ, µ,H)

Local model of φ at xk:

lk(d, µ)

Choose τ ∈ [0, 1] as large as possible such that

dk ← τdk + (1− τ)dk

yields
∆lk(dk, 0) ≥ ε∆lk(dk, 0)

then choose µk+1 < µk such that

∆lk(dk, µk+1) ≥ β∆lk(dk, 0) for β ∈ (0, 1)
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iSQO framework

repeat

(1) Check whether KKT point or infeasible stationary point has been obtained.

(2) Compute an inexact solution of (QP) with µ = µk.
(a) If “Direct” scenario occurs, then go to step 4.

(3) Compute an inexact solution of (QP) with µ = 0.
(a) If “Reference” scenario occurs, then go to step 4.

(b) If “Combination” scenario occurs, then go to step 4.

(4) Perform a backtracking line search to reduce φ(·, µk+1).

endrepeat
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Complicating factors

A few special cases make our actual algorithm slightly ;-) more complicated
I Landing on stationary points for φ(·, µk)

I We allow only a multiplier and/or penalty parameter update

I A tightened accuracy tolerance is needed in “combination” scenarios
I We may require certain multipliers to be close to their bounds
I (Think of identifying violated constraints)

I Hk and/or Hk may not be positive definite
I We ask the QP solver to check the curvature along trial directions
I (Dynamic inertia correction if trial curvature is too small/negative)

Actual algorithm involves six scenarios, but we have presented the “core” ideas
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Implementation details

I Matlab implementation

I BQPD for QP solves with indefinite Hessians; see (Fletcher, 2000)

I Simulated inexactness by perturbing QP solutions
I Test set involves 307 CUTEr problems with

I at least one free variable
I at least one general (non-bound) constraint
I at most 200 variables and constraints (because it’s Matlab!)

I Termination conditions (εtol = 10−6 and εµ = 10−8):

‖ρ(xk, yk, ȳk, µk)‖∞ ≤ εtol and vk ≤ εtol; (Optimal)

‖ρ(xk, yk, ȳk, 0)‖∞ = 0 and vk > 0; (Infeasible)

‖ρ(xk, yk, ȳk, 0)‖∞ ≤ εtol and vk > εtol and µk ≤ εµ (Infeasible)

I Investigate performance of inexact algorithm with κ = 0.01, 0.1, and 0.5
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Success statistics

Counts of termination messages for exact and three variants of inexact algorithm:

Termination message Exact Inexact
κ = 0.01 κ = 0.1 κ = 0.5

Optimal solution found 271 269 272 275
Infeasible stationary point found 4 3 2 2

Iteration limit reached 12 10 11 9
Subproblem solver failure 18 23 20 19

Termination statistics and reliability do not degrade with inexactness!
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Inexactness levels

Observe “induced” relative residuals for QP solves:

κI :=
‖ρk‖
‖ρ‖

For problem j, we compute minimum (κI(j)) and mean (κ̄I(j)) values over run:

min κ κI,mean [0
, 1

0
−8

)

[1
0
−8
, 1

0
−6

)

[1
0
−6
, 1

0
−4

)

[1
0
−4
, 1

0
−3

)

[1
0
−3
, 0
.0
1)

[0
.0
1,

0.
1)

[0
.1
, 0
.5
)

[0
.5
, 1

)

[1
,∞

)

κ
I
(j

) 0.01 3.5e-03 0 2 10 7 253 0 0 0 0
0.1 2.8e-02 0 0 2 10 30 232 0 0 0
0.5 8.8e-02 0 0 2 4 23 69 179 0 0

mean κ κ̄I,mean

κ̄
I
(j

) 0.01 7.3e-03 0 0 0 0 254 18 0 0 0
0.1 6.9e-02 0 0 0 0 0 261 13 0 0
0.5 3.5e-01 0 0 0 0 0 1 264 12 0

Relative residuals generally need only be moderately smaller than parameter κ!
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Iteration comparison

Considering the logarithmic outperforming factor

rj := − log2(iterjinexact/iterjexact),

we compare iteration counts of our inexact (κ = 0.01) and exact algorithms:

Iteration counts do not degrade significantly with inexactness!
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Summary

Contributions:

I Developed, analyzed, and experimented with an inexact SQO method

I Allows generic inexactness in QP subproblem solves

I No specific QP solver required

I Global convergence guarantees established

I Numerical experiments suggest inexact algorithm is reliable

I Inexact solutions allowed without degradation of performance

Immediate future work (come to OP14 in San Diego!):

I Comparison with inexact augmented Lagrangian and/or interior-point?

I Benefits of SQO framework? Active-set identification?
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Thanks!

“Exact” Algorithms:

I J. V. Burke, F. E. Curtis, and H. Wang, “A Sequential Quadratic Optimization Algorithm with
Rapid Infeasibility Detection,” in third round of review for SIAM Journal on Optimization,
originally submitted 2012.

I R. H. Byrd, F. E. Curtis, and J. Nocedal, “Infeasibility Detection and SQP Methods for
Nonlinear Optimization,” SIAM Journal on Optimization, Volume 20, Issue 5, pg. 2281-2299, 2010.

“Inexact” Algorithms:

I F. E. Curtis, T. C. Johnson, D. P. Robinson, and A. Wächter, “An Inexact Sequential Quadratic
Optimization Algorithm for Large-Scale Nonlinear Optimization,” second round of review for
SIAM Journal on Optimization, originally submitted 2013.

I F. E. Curtis, J. Huber, O. Schenk, and A. Wächter, “A Note on the Implementation of an
Interior-Point Algorithm for Nonlinear Optimization with Inexact Step Computations,”
Mathematical Programming, Series B, Volume 136, Issue 1, pg. 209–227, 2012.

I F. E. Curtis, O. Schenk, and A. Wächter, “An Interior-Point Algorithm for Large-Scale
Nonlinear Optimization with Inexact Step Computations,” SIAM Journal on Scientific Computing,
Volume 32, Issue 6, pg. 3447-3475, 2010.

I R. H. Byrd, F. E. Curtis, and J. Nocedal, “An Inexact Newton Method for Nonconvex Equality
Constrained Optimization,” Mathematical Programming, Volume 122, Issue 2, pg. 273-299, 2010.

I F. E. Curtis, J. Nocedal, and A. Wächter, “A Matrix-free Algorithm for Equality Constrained
Optimization Problems with Rank-Deficient Jacobians,” SIAM Journal on Optimization, Volume 20,
Issue 3, pg. 1224-1249, 2009.

I R. H. Byrd, F. E. Curtis, and J. Nocedal, “An Inexact SQP Method for Equality Constrained
Optimization,” SIAM Journal on Optimization, Volume 19, Issue 1, pg. 351-369, 2008.
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