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Motivation

Conte

Much research today is focused on solving structured optimization problems
> structure often means convex
> seeking sparsity, low matrix rank, low total variation, etc.

This talk focuses on solving unstructured problems

> problems may be nonconvex

» general-purpose algorithms are needed




Motivation

Context

Much research today is focused on solving structured optimization problems
> structure often means convex
> seeking sparsity, low matrix rank, low total variation, etc.
This talk focuses on solving unstructured problems
> problems may be nonconvex
» general-purpose algorithms are needed
We propose stochastic methods for deterministic optimization
» No gradient info? e.g., simulation-based optimization
> Only some gradient info? e.g., machine learning

> Only some subdifferential info? e.g., (un)structured nonsmooth optimization

Good theory, computational flexibility, etc.




Motivation

Background

Quasi-Newton methods, e.g., BFGS

» general-purpose for smooth optimization Broyden (1970)
Fletcher (1970)

> “first-order” method, i.e., gradients only Goldfarb (1970)

> superlinear convergence Shanno (1970)
» good performance on nonsmooth problems Lemaréchal (1981)

. . Luksan & Vlcek (1999, 2001)
> ...but little in terms of convergence guarantees Lewis & Overton (2013)

Gradient sampling (GS)

general-purpose for nonsmooth optimization
“first-order” method
Burke, Lewis, & Overton (2005)

>

>

» global convergence guarantees (w.p.1) Kiwiel (2007)
w

>

good performance in practice

v

... but expensive! O(n) gradients per iteration




Motivation

Contributions

New general-purpose methods for nonconvex nonsmooth optimization

>
>
>

v

adaptive sampling, (1) gradients per iteration
Hessian approximation strategies
convergence guarantees (w.p.1)

dramatically reduced per-iteration & overall cost

BFGS-based strategy

adaptive sampling, O(1) gradients per iteration
convergence guarantees (w.p.1)

further empirical improvements

BFGS-GS software (C++)

> Curtis & Que (2013)

> Curtis & Que (2015)
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Adaptive Gradient Sampling

Outline

Adaptive Gradient Sampling (AGS)




dient Sampling

Problem formulation

Consider optimization problems of the form:

min f(x)

TER™

Assumption 1

The objective function f is
> locally Lipschitz in R™

> continuously differentiable in an open, dense subset D of R™

A point z is stationary if

0 € df(z) := () clconv Vf(Bc(z) N D).
>0

A point z is e-stationary if

0 € Ocf(x) := clconv Of (Be(z)).
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dient Sampling

GS idea

At zy, let xgo = x5 and sample {xp1,...,2p} C Be, (x1) ND, yielding:

X = { zro, g1, -, Tgp ) (sample points)
G [ 90 91 - Grp | (sample gradients)

The ¢g-subdifferential is approximated by the convex hull of sampled gradients:

Oc, f(xr) = clconv f(Be, (z1))

COHV{gkO, 9kls- - 7gkp}

Q

Define the projection of the origin onto the convex hull of sampled gradients:

gk := Proj(0] conv{gro, gr1- - ->9kp})

The vector d = —gy, is an approximate eg-steepest descent step.
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Adaptive Gradient Sampling

GS step computation

Alternatively, one can view dj as the minimizer of a piecewise quadratic model:

1 2 2
max z+ =||d Inax T G
(2,d)ER XRn 2” ”2 - f( k) 2” kyHZ
~~
sit. f(zr)e+ GEd < ze primal /dual st.ely=1,y>0

Figure: Sampling yielding a small/zero step (left) vs. nonzero step (right)
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radient Sampling

GS illustration

Example: nonsmooth Rosenbrock

. 2 2 1
Jmin 10lz(2) —z(y)| + (1 —z@))” at o = (=1, 3)

Figure: Without gradient sampling (left) and with gradient sampling (right)




dient Sampling

GS algorithm

Algorithm 1 Gradient Sampling (GS) Algorithm

Require:
1: initial point g € R", initial sampling radius g > 0
2: sufficient decrease tolerance n, € (0, 1), stationarity tolerance ne > 0
3: backtracking constant 7o € (0, 1), sampling decrease constant ve € (0, 1)
4: sample size p > n + 1
5. procedure GS
6: for k=0,1,2,... do
7: sample p points {xy1,...,2Zp} C Bey (x) N D
8: compute dy, = —gi via

gr = Proj(0| conv{gko, gk1,- -, Gkp})

9: set ay, as the largest element of {79,~1,+2 ...} such that
f(@e + owdy) < fzr) — nacl|dill3

10: set xp11 < x) + o dy (or perturb to ensure x4 € D)
11: if ||d|l2 < neeg, then set g1 < Yeek; else, set €1 < g
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GS global convergence

Theorem 2

If Assumption 1 holds, then w.p.1 either
> {f(zk)} = —o0, or

> every cluster point of {xy} is stationary for f

Proof idea: At xj, either a direction of sufficient descent is produced or

N

/5
Y /

Hykiti=1,...,p and & > 0 such that Proj(0|{V f(yx; + O(d

~ Proj(00e, (7))




Adaptive Gradient Sampling

GS illustration

Example: nonsmooth Rosenbrock

. 2 2 1
;2}1%112 10]z gy — $(1)| + (1 —zq))” atzg =(-1,3)

Figure: Without gradient sampling (left) and with gradient sampling (right)
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radient Sampling

GS issues

Practical limitations:
> p > n+ 1 gradient evaluations per iteration

» subproblems distinct; solved from scratch

> “steepest descent” method




Adaptive Gradient Sampling

GS issues AGS solutions

Practical limitations:

>

>

>

p > n+ 1 gradient evaluations per iteration
subproblems distinct; solved from scratch

“steepest descent” method

Adaptive GS: Curtis & Que (2013)

>

>

>

adaptive sampling: Kiwiel (2010)
O(1) gradients per iteration
maintain sample points within e-ball
warm /hot-started subproblem solves

quasi-Newton or over-estimation “Hessian”

approximations (W = Hk_l

)

1 2
max z+ 3||ld
(2,d)ER XR™ 2 lldllzs,

st. flzgp)e+ GEd < ze

1 2
~Le
o S(@k) = 5 kY,

st.efy=1,y>0
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BFGS w/ Gradient Sampling

Outline

BFGS w/ Gradient Sampling (BFGS-GS)




BFGS w/ Gradient Sampling

Motivation

Why merge BFGS and GS?

BFGS:
» fast, cheap
> no automatic stationarity condition
» limited convergence guarantees

» .. .difficult to obtain as Hessians “blow up”

G

> expensive
» automatic stationarity condition

> convergence guarantees w.p.1

Idea: BFGS iteration, employing GS only when it appears needed




BFGS w/ Gradient Sampling

Search direction computation

At xj, given an inverse Hessian approximation Wy > 0:

On the other hand, if we have

X

{ Zko, Tk1,
Gy

Cy Tpp, ) (sample points)
[ gro 9k1

Gkpy, | (sample gradients)

and a Hessian approximation Hj or inverse approximation Wy, then:

max z + % dl}, max f(zx) = 3| Grylliy,

st. f(zr)e+ GEd < ze

s.t. eTy: 1, y>0

With pi = 0, we recover the BFGS step dy. < —Wygx
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lient Sampling

Line search and iterate update

In a BFGS method, to avoid damping or skipping, the line search would ideally
yield a step size satisfying the Wolfe conditions

» Forward/backtracking line search to satisfy the Wolfe conditions

F@r) = for + ardy) > noldi ||, // m€(0,1)
vldy, > 7V f(xk) T dy, where v € Of (x), + ady) /] T € (n, 1)
» Curvature condition is abandoned after finite number of forward/backtracks

(Motivation: Finite termination if f(a) := f(x + adr) — f(zk) is weakly
lower semismooth: Lewis, Overton (2012); Mifflin (1977); Lemaréchal (1981))

» Line search abandoned (ay, < 0) if unsuccessful after finite number of
forward /backtracks and sample size is not sufficiently large (pr > n + 1)

If necessary, perturb xj + agdy to find x4, € D satisfying

f(@e) = f(@rg1) > nowlldill 3,
Vi(re1) di > 7V f(ar) " dy

ek + apdr — k412 < min{ag, e }|di||2
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BFGS w/ Gradient Sampling

Sample radius update

Reduce the sampling radius (i.e., choose €gy1  Yeey) if

k|1, < neer // ne>0
eI, > Eewlldill2 // §£€(0,1)
ap >0
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BFGS w/ Gradient Sampling

Sample point generation

At xj,, suppose we had

Xr = { ®ko, Tr1, -, Tkp, } (sample points)
G, = [ 9gk0o 9gk1 -* Ikpy, ] (sample gradients)

If curvature is bounded and step-size sufficiently large in that

Serlldrll3 < lldllF, <E€eitlldrlls //0<€<E
a < ayg //0<a

then erase sample set (i.e., Xx+1 < {Zr+1} and pgy1 + 0); else,
» discard gradients outside of radius €x41 about xy41
» maintain sample points within radius; warm/hot-starting
» sample ©(1) new gradient(s)
» discard “old gradients” so py11 <n+1
Overall,
X1+ (X NBey g (Th41)) U{zpi1} U X
where Xj41 C By (Thg1) N D
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BFGS w/ Gradient Sampling

Quasi-Newton updating

If curvature is bounded and step-size sufficiently large in that

Gerlldrl3 < lldllZ, <E&eitlldrls //0<€<E
a<ag //0<a
then standard BFGS update; else, L-BFGS update with pairs satisfying
max{||s; |13, ly; 3} <o // o >0
sjy; =y [/ >0

Theorem 3
Initializing Hyy1 < pil > 0, after m updates we have for any d € R™ that
2\ m -1
om 2\ m 2 (1 + "—2) =1l
S (1 + %) + 2| || rand < nand < (s 22 ) a3
Bk v v 2 (1 e 0—2) =1 &
Y




lient Sampling

BFGS-GS method

Algorithm 2 BFGS Gradient Sampling (BFGS-GS) Algorithm

Require:
1: initial point zg € R™, initial sampling radius e¢p > 0, initial Wy > 0
2: procedure BFGS-GS
3: for k=0,1,2,... do
compute yi from (dual) subproblem QP
compute d = —W,Gryg
forward/backtrack Armijo/Wolfe line search to obtain oy
perturb (if necessary) to obtain z41 € D
set sampling radius €41 < €
set sample set Xp 1
10: set (L-)BFGS inverse Hessian approximation Wy

© 00 g O G

Theorem 4
If Assumption 1 holds, then w.p.1 either
> {f(zk)} = —oc, or
> every cluster point of {z} is stationary for f




BFGS-GS

Implemented in C++
» implemented QP solver, adapted from Kiwiel (1985)

> 26 test problems, 10 random initial points each

Comparisons with:
» HANSO-BFGS: BFGS method, Overton et al.
» HANSO-DEFAULT: BFGS then GS, Overton et al.

» LMBM: limited memory bundle method, Haarala et al.

Termination flags:

(1) stationarity tolerance satisfied

(2) maximum iteration limit reached

lient Sampling

(3) other
flag | BFGS-GS (10~hH BFGS-GS(10~5) HANSO-BFGS | HANSO-DEFAULT | LMBM
(1) 253 229 68 68 20
(2) 7 31 31 19 0
(3) 0 0 161 173 240




BFGS w/ Gradient Sampling

Performance profile: Iterations

Figure: Performance profile for iterations

BFGS-GS(1e-4)

+—— BFGS-GS(1e-6)
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HANSO-DEFAULT]|
LMBM




\dient Sampling

Performance profile: Function evaluation

Figure: Performance profile for function evaluations
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BFGS w/ Gradient Sampling

Performance profile: Gradient evaluations

Figure: Performance profile for gradient evaluations

/ ——— BFGS-GS(1e~4)
/ +— BFGS-GS(1e-6)
0.1 4 —=— HANSO-BFGS
HANSO-DEFAULT]|
LMEM

Overall, to obtain solutions of similar quality (see paper):
» BFGS-GS(10~*) more efficient than LMBM
> BFGS-GS(1076) at least competitive with HANSO-BFGS and HANSO
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Summary

Contributions

New general-purpose methods for nonconvex nonsmooth optimization

adaptive sampling, ©(1) gradients per iteration

Hessian approximation strategies

Curtis & Que (2013)
convergence guarantees (w.p.1)

vV VvV VY

dramatically reduced per-iteration & overall cost

BFGS-based strategy

adaptive sampling, O(1) gradients per iteration

convergence guarantees (w.p.1) Curtis & Que (2015)
further empirical improvements

BFGS-GS software (C++)

v Y VY VY

* F. E. Curtis and X. Que.
An Adaptive Gradient Sampling Algorithm for Nonsmooth Optimization.
Optimization Methods and Software, 28(6):1302-1324, 2013.

* F. E. Curtis and X. Que.

A Quasi-Newton Algorithm for Nonconvex, Nonsmooth Optimization with Global
Convergence Guarantees.

Mathematical Programming Computation, DOI: 10.1007/s12532-015-0086-2, 2015.
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