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Motivation

Nonlinear optimization algorithms:

I Active-set methods (small-to-medium size)

I Interior-point methods (medium-to-large size)

I First-order methods (large-to-huge size)

Strengths of active-set methods:

I warm-start easily

I accurate solutions despite degeneracy and ill-conditioning

Our goals:

I Active-set methods for large-scale nonlinear optimization problems

I Active-set methods for large-scale convex quadratic optimization problems (QPs)
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Illustration of classical active-set method for convex QP
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Purpose of this talk

Our main contributions:

I Globally convergent active-set method for convex QP

I Multiple simultaneous changes in the active-set estimate

I Cost per iteration typically only slightly more than linear system solve

Based on work by:

I Hintermüller, Ito, Kunisch (2002)

I Aganagić (1984)

I Bergournioux, Ito, Kunisch (1999)
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Problem formulation and KKT conditions

Consider the strictly-convex bound-constrained QP

min
x

cT x + 1
2

xT Hx

s.t. ` ≤ x ≤ u.

The KKT conditions are
c + Hx − z` + zu = 0;

(x − `) ◦ z` = 0;

(u − x) ◦ zu = 0;

(x − `, u − x , z`, zu) ≥ 0.

Active-set methods satisfy a subset of conditions and work to satisfy the rest.
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Optimal partition

Associated with the optimal solution (x∗, z`
∗, zu
∗), we have the optimal partition

L∗ = {i : `i = [x∗]i } ([z`
∗]i ≥ 0, [zu

∗ ]i = 0);
U∗ = {i : [x∗]i = ui } ([z`

∗]i = 0, [zu
∗ ]i ≥ 0);

I∗ = {i : `i < [x∗]i < ui } ([z`
∗]i = 0, [zu

∗ ]i = 0).

If (L∗,U∗, I∗) is known, then (x∗, z`
∗, zu
∗) is obtained with the following steps:

1. Set
xL∗ ← `L∗ , xU∗ ← uU∗ , z`

U∗∪I∗ ← 0, and zu
L∗∪I∗ ← 0.

2. Compute xI∗ by solving the reduced subproblem

min
xI∗

(cI∗ + HI∗L∗xL∗ + HI∗U∗xU∗ )T xI∗ + 1
2

xT
I∗HI∗I∗xI∗ .

3. Set
z`
L∗ ← [c + Hx∗]L∗ and zu

U∗ ← −[c + Hx∗]U∗ .
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Estimating the optimal partition

Given an estimate (L,U , I), the point (x , z`, zu) is uniquely determined by:

1. Set
xL ← `L, xU ← uU , z`

U∪I ← 0, and zu
L∪I ← 0.

2. Compute xI by solving the reduced subproblem

min
xI

(cI + HILxL + HIUxU )T xI + 1
2

xT
I HIIxI .

3. Set
z`
L ← [c + Hx]L and zu

U ← −[c + Hx]U .

It follows that (x , z`, zu) satisfies all KKT conditions except possibly those in

r(x , z`, zu) =

2664
min{[x − `]I , 0}
min{[u − x]I , 0}

min{z`
L, 0}

min{zu
U , 0}

3775 .
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Primal-dual active-set method

Algorithm 1 Hintermüller, Ito, and Kunisch (2002)

1: Input (L0,U0, I0) and initialize k ← 0.
2: loop
3: Compute (xk , z`

k , zu
k ) via subspace minimization.

4: If r(xk , z`
k , zu

k ) = 0, then break.
5: Set

Lk+1 ← {i : [xk ]i < `i or i ∈ Lk and [z`
k ]i > 0};

Uk+1 ← {i : [xk ]i > ui or i ∈ Uk and [zu
k ]i > 0};

Ik+1 ← {i : i /∈ Lk+1 ∪ Uk+1}.

6: end loop
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Convergence guarantee and numerical results

Theorem
Suppose H = A + B where A is an M-matrix (and there are only upper bounds).
If ‖B‖1 is sufficiently small, then

I the QP has a unique solution;

I for some sufficiently large k, Algorithm 1 yields (xk , z`
k , zu

k ) = (x∗, z`
∗, zu
∗).

The method often converges rapidly for generic convex QP:

Algorithm 1

n Hcond # Iter %

1e+02 1e+02 3.78e+00 100

1e+02 1e+04 5.14e+00 100

1e+02 1e+06 6.22e+00 100

1e+03 1e+02 4.78e+00 100

1e+03 1e+04 6.64e+00 100

1e+03 1e+06 8.02e+00 100

1e+04 1e+02 5.80e+00 100

1e+04 1e+04 8.24e+00* 90

1e+04 1e+06 1.01e+01* 92
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Observation

Algorithm 1 may fail to converge.

I There is no monotonicity in primal or dual objective, KKT error residual, etc.

I (If H is an M-matrix, then there is monotonicity in the primal variable values.)

I When it fails to converge, often only a few indices are cycling.

Our proposed enhancement:

I Introduce an auxiliary set E.

I Explicitly enforce bounds on variables in E.

I Put indices in E to avoid cycling (but keep it small in size!).
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Subspace minimization

Given an estimate (L,U , I, E), the point (x , z`, zu) is uniquely determined by:

1. Set
xL ← `L, xU ← uU , z`

U∪I ← 0, and zu
L∪I ← 0.

2. Compute xI by solving the reduced subproblem

min
xI ,xE

»
cI + HILxL + HIUxU
cE + HELxL + HEUxU

–T »
xI
xE

–
+ 1

2

»
xI
xE

–T »
HII HIE
HEI HEE

– »
xI
xE

–
s.t. `E ≤ xE ≤ uE .

3. Set
z`
L ← [c + Hx]L and zu

U ← −[c + Hx]U .
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Primal-dual active-set method and critical theorem

Algorithm 2 Curtis, Han, and Robinson (2012)

1: Input (L0,U0, I0, E0) and initialize k ← 0.
2: loop
3: Compute (xk , z`

k , zu
k ) via subspace minimization.

4: If r(xk , z`
k , zu

k ) = 0, then break.
5: Choose (Lk+1,Uk+1, Ik+1, Ek+1).
6: end loop

Theorem
If the updating strategy for {(Lk ,Uk , Ik , Ek )} generates k ≥ 0 such that

Lk ⊆ L∗, Uk ⊆ U∗, and Ik ⊆ I∗,

then r(xk , z`
k , zu

k ) = 0, i.e., (xk , z`
k , zu

k ) = (x∗, z`
∗, zu
∗).
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Partition update based on monitoring active-set changes

Indices that move between index sets are prime candidates for E.

1. Apply the same strategy as in Algorithm 1.

2. For each index, count the number of times it changes sets.

3. Once the number of changes for an index reaches a threshold, put it in E.
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Partition update based on monitoring KKT residual

By moving elements into E, we can force monotonic decrease in the KKT residual.

1. Apply the same strategy as in Algorithm 1.

2. If the norm of the KKT residual does not decrease, then move elements into E
until the norm of the KKT residual does decrease.

(We use a non-monotone method that only forces a decrease every p iteratons.)

3. (Optional) Elements can be removed from E if the KKT error is unaffected.
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Numerical results for Algorithm 2 (monitoring active-set changes)

Algorithm 1 Algorithm 2 (changes)

n Hcond # Iter % # Iter # SSM Final |U| Avg |U| %

1e+02 1e+02 3.78e+00 100 3.78e+00 4.78e+00 0.00e+00 0.00e+00 100

1e+02 1e+04 5.14e+00 100 5.14e+00 6.14e+00 6.00e-02 1.42e-02 100

1e+02 1e+06 6.22e+00 100 6.20e+00 7.20e+00 2.40e-01 6.12e-02 100

1e+03 1e+02 4.78e+00 100 4.78e+00 5.78e+00 0.00e+00 0.00e+00 100

1e+03 1e+04 6.64e+00 100 6.60e+00 7.60e+00 4.20e-01 1.05e-01 100

1e+03 1e+06 8.02e+00 100 8.18e+00 9.18e+00 8.20e-01 3.00e-01 100

1e+04 1e+02 5.80e+00 100 5.80e+00 6.80e+00 1.60e-01 2.90e-02 100

1e+04 1e+04 8.24e+00* 90 9.04e+00 1.00e+01 1.14e+00 4.47e-01 100

1e+04 1e+06 1.01e+01* 92 1.93e+01 2.03e+01 3.38e+00 1.45e+00 100
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Numerical results for Algorithm 2 (monitoring KKT residual)

Algorithm 2 (no removals from E)
n Hcond # Iter # SSM Final |U| Avg |U| %

1e+02 1e+02 3.78e+00 4.78e+00 0.0e+00 0.00e+00 100

1e+02 1e+04 5.14e+00 6.14e+00 0.0e+00 0.00e+00 100

1e+02 1e+06 6.22e+00 7.22e+00 0.0e+00 0.00e+00 100

1e+03 1e+02 4.78e+00 5.78e+00 0.0e+00 0.00e+00 100

1e+03 1e+04 6.64e+00 7.64e+00 0.0e+00 0.00e+00 100

1e+03 1e+06 8.02e+00 9.02e+00 0.0e+00 0.00e+00 100

1e+04 1e+02 5.80e+00 6.80e+00 0.0e+00 0.00e+00 100

1e+04 1e+04 8.86e+00 1.00e+01 1.8e-01 3.99e-02 100

1e+04 1e+06 1.06e+01 1.18e+01 2.4e-01 5.17e-02 100

Algorithm 2 (removals from E)
# Iter # SSM Final |U| Avg |U| %

1e+02 1e+02 3.78e+00 4.78e+00 0.0e+00 0.00e+00 100

1e+02 1e+04 5.14e+00 6.14e+00 0.0e+00 0.00e+00 100

1e+02 1e+06 6.22e+00 7.22e+00 0.0e+00 0.00e+00 100

1e+03 1e+02 4.78e+00 5.78e+00 0.0e+00 0.00e+00 100

1e+03 1e+04 6.64e+00 7.64e+00 0.0e+00 0.00e+00 100

1e+03 1e+06 8.02e+00 9.02e+00 0.0e+00 0.00e+00 100

1e+04 1e+02 5.80e+00 6.80e+00 0.0e+00 0.00e+00 100

1e+04 1e+04 8.86e+00 1.00e+01 1.0e-01 3.51e-02 100

1e+04 1e+06 1.06e+01 1.18e+01 1.4e-01 3.89e-02 100
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Equality constraints

Consider the strictly-convex generally-constrained QP

min
x

cT x + 1
2

xT Hx

s.t. Ax = b, ` ≤ x ≤ u.

The KKT conditions are

c + Hx − AT y − z` + zu = 0;

Ax − b = 0;

(x − `) ◦ z` = 0;

(u − x) ◦ zu = 0;

(x − `, u − x , z`, zu) ≥ 0.
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Subspace minimization with equality constraints

Given an estimate (L,U , I, E), the point (x , z`, zu) is uniquely determined by:

1. Set
xL ← `L, xU ← uU , z`

U∪I ← 0, and zu
L∪I ← 0.

2. Compute xI by solving the reduced subproblem

min
xI ,xE

»
cI + HILxL + HIUxU
cE + HELxL + HEUxU

–T »
xI
xE

–
+ 1

2

»
xI
xE

–T »
HII HIE
HEI HEE

– »
xI
xE

–
s.t. AIxI + AExE = b − ALxL − AUxU , `E ≤ xE ≤ uE .

3. Set
z`
L ← [c + Hx − AT y ]L and zu

U ← −[c + Hx − AT y ]U .
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Obtaining a feasible partition

1. Given (xL, xU ), solve the linear optimization problem (LP)

min
xI ,xE ,r,s

eT (r + s)

s.t. AIxI + AExE = b − ALxL − AUxU + r − s, `E ≤ xE ≤ uE .

2. If eT (r + s) = 0, then a feasible partition has been obtained.

3. Else, move an element from L ∪ U to I.
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Primal-dual active-set method and critical theorem

Algorithm 3 Curtis, Han, and Robinson (2012)

1: Input (L0,U0, I0, E0) and initialize k ← 0.
2: loop
3: Transform (Lk ,Uk , Ik , Ek ) into a feasible partition.
4: Compute (xk , z`

k , zu
k ) via subspace minimization.

5: If r(xk , z`
k , zu

k ) = 0, then break.
6: Choose (Lk+1,Uk+1, Ik+1, Ek+1).
7: end loop

Theorem
If the updating strategy for {(Lk ,Uk , Ik , Ek )} generates k ≥ 0 such that

Lk ⊆ L∗, Uk ⊆ U∗, and Ik ⊆ I∗,

then r(xk , z`
k , zu

k ) = 0, i.e., (xk , z`
k , zu

k ) = (x∗, z`
∗, zu
∗).
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Numerical results for Algorithm 2

Algorithm 2

m Hcond # Iter # SSM # Feas Feas Mod Final |U| Avg |U| %

1e+01 1e+02 1.05e+01 1.15e+01 1.15e+01 6.80e-01 1.24e+00 5.59e-01 100

1e+01 1e+04 1.33e+01 1.43e+01 1.43e+01 2.08e+00 1.72e+00 7.87e-01 100

1e+01 1e+06 2.39e+01 2.49e+01 2.49e+01 3.32e+00 4.34e+00 1.91e+00 100

1e+02 1e+02 2.06e+01 2.16e+01 2.16e+01 1.12e+01 3.28e+00 1.52e+00 100

1e+02 1e+04 3.72e+01 3.82e+01 3.82e+01 2.45e+01 6.36e+00 3.12e+00 100

1e+02 1e+06 5.39e+01 5.51e+01 5.49e+01 2.99e+01 9.92e+00 4.80e+00 100

Algorithm 2 (no removals from E)
m Hcond # Iter # SSM # Feas Feas Mod Final |U| Avg |U| %

1e+01 1e+02 1.50e+01 1.87e+01 1.87e+01 7.20e-01 2.74e+00 1.00e+00 100

1e+01 1e+04 2.28e+01 3.05e+01 3.05e+01 2.92e+00 6.68e+00 2.46e+00 100

1e+01 1e+06 2.79e+01 3.90e+01 3.90e+01 3.84e+00 1.01e+01 3.84e+00 100

1e+02 1e+02 8.32e+01 1.61e+02 1.61e+02 3.47e+01 7.69e+01 3.77e+01 100

1e+02 1e+04 1.08e+02 2.03e+02 2.03e+02 4.31e+01 9.48e+01 4.58e+01 100

1e+02 1e+06 1.27e+02 2.42e+02 2.42e+02 5.21e+01 1.14e+02 5.53e+01 100

Algorithm 2 (removals from E)
m Hcond # Iter # SSM # Feas Feas Mod Final |U| Avg |U| %

1e+01 1e+02 1.53e+01 1.93e+01 1.93e+01 9.20e-01 9.40e-01 7.53e-01 100

1e+01 1e+04 2.26e+01 3.04e+01 3.04e+01 2.98e+00 1.28e+00 1.14e+00 100

1e+01 1e+06 3.57e+01 5.63e+01 5.63e+01 4.40e+00 2.32e+00 1.48e+00 100

1e+02 1e+02 9.70e+01 1.93e+02 1.93e+02 4.48e+01 2.02e+00 2.68e+00 100

1e+02 1e+04 1.26e+02 2.54e+02 2.54e+02 4.69e+01 3.28e+00 2.60e+00 100

1e+02 1e+06 1.83e+02 4.05e+02 4.05e+02 5.97e+01 4.90e+00 2.86e+00 100
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Summary

I Proposed and analyzed a globally convergent framework for convex QP.

I Multiple simultaneous changes in the active-set are allowed.

I Set auxiliary to the active-set for variables whose bounds are explicitly enforced.

I Numerical results illustrate that auxiliary set often remains empty/small.

I Reference: F.E. Curtis, Z. Han, and D.P. Robinson, “A Globally Convergent
Primal-Dual Active-Set Framework for Large-Scale Convex Quadratic
Optimization,” submitted to SIAM Journal on Optimization, 2012.
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