A Penalty-Interior-Point Algorithm for Nonlinear Optimization

Frank E. Curtis, Lehigh University

INFORMS Annual Meeting 2010

November 8, 2010

Based on "A Penalty-Interior-Point Method for Large-Scale Nonlinear Optimization," submitted for publication in Mathematical Programming, 2010.

Algorithmic Framework

Parameter Updates

Numerical Experiments

Summary and Future Work

Numerical Experiments

Outline

Motivation

Large-scale optimization

Consider the optimization problem:

$$(\mathsf{OP}) := \begin{bmatrix} \min_{x} f(x) \\ \text{s.t. } c(x) \leq 0 \end{bmatrix}$$

Parameter Updates

For large-scale instances:

- Linear or quadratic optimization subproblems are expensive. (Linear systems OK.)
- The constraints may be difficult to satisfy.
- ▶ The constraints may be (locally) infeasible; i.e., the algorithm should solve:

(FP) :=
$$\min_{x} v(x) := \sum_{i \in \mathcal{I}} \max\{c^{i}(x), 0\}$$

Unconstrained techniques can be used if we solve:

$$\min_{x} \rho f(x) + v(x)$$

Parameter Updates

Similarly, we can solve a regularized form of (OP):

(PP) :=
$$\begin{vmatrix} \min_{x,s} \rho f(x) + \sum_{i \in \mathcal{I}} s^i \\ \text{s.t. } c(x) - s \le 0, \ s \ge 0 \end{vmatrix}$$

- Unconstrained techniques may fail or be slow if f is unbounded below; performance depends greatly on the form of v.
- ▶ Solving (PP) commonly requires the solution of linear or quadratic subproblems.
- ▶ Either way, updating the penalty parameter is a challenge.

Large-scale problems are often solved efficiently through interior-point subproblems:

(IP) :=
$$\begin{vmatrix} \min_{x,r} f(x) - \mu \sum_{i \in \mathcal{I}} \ln r^{i} \\ \text{s.t. } c(x) + r = 0 \text{ (with } r > 0) \end{vmatrix}$$

- Lacks constraint regularization as in a penalty method.
- ▶ Similar to before, updating the interior-point parameter is a challenge.

Can penalty and interior-point ideas be combined to create a practical algorithm?

- Regularization through penalties is an attractive feature.
- ▶ Search direction computations via linear system solves is nice for large problems.

However, there are significant challenges:

- Penalty methods want the algorithm to be free to violate constraints.
- ▶ Interior-point methods want the algorithm to remain feasible.
- ▶ Juggling "conflicting" parameters is a major challenge.

Previous work with similar motivations:

- Jittorntrum and Osborne (1980)
- Polyak (1982, 1992, 2008)
- Breitfeld and Shanno (1994, 1996)
- Goldfarb, Polyak, Scheinberg, and Yuzefovich (1999)
- Gould, Orban, and Toint (2003)
- Chen and Goldfarb (2006, 2006)
- Benson, Sen, and Shanno (2008)
- We focus closely on parameter updates.

Leading optimization software packages lack rapid infeasibility detection!

Problem type	Global convergence	Fast local convergence
Feasible	✓	√
Infeasible	✓	?

Collection of 2-3 variable infeasible problems:

Prob.	Ipopt Iter.	lpopt Eval.	Knitro Iter.	Knitro Eval.
1	48	281	38	135
2	109	170	_	_
3	788	3129	12	83
4	46	105	25	61
5	72	266	_	_
6	63	141	_	_
7	87	152	_	_
8	104	206	33	97

Penalty methods with intelligent parameter updates may be a fix...

Outline

Motivation

Algorithmic Framework

Parameter Update

Numerical Experiment

Summary and Future World

Penalty-interior-point subproblem

Recall:

Motivation

$$(\mathsf{PP}) := \begin{bmatrix} \min_{x,s} \rho f(x) + \sum_{i \in \mathcal{I}} s^i \\ \text{s.t. } c(x) - s \le 0, \ s \ge 0 \end{bmatrix} \quad (\mathsf{IP}) := \begin{bmatrix} \min_{x,r} f(x) - \mu \sum_{i \in \mathcal{I}} \ln r^i \\ \text{s.t. } c(x) + r = 0 \text{ (with } r > 0) \end{bmatrix}$$

Parameter Updates

Applying an interior-point reformulation to (PP), we can obtain:

$$(\mathsf{PIP}) := \begin{bmatrix} \min_{x,r,s} \rho f(x) - \mu \sum_{i \in \mathcal{I}} (\ln r^i + \ln s^i) + \sum_{i \in \mathcal{I}} s^i \\ \text{s.t. } c(x) + r - s = 0 \text{ (with } r, s > 0) \end{bmatrix}$$

- (PIP) satisfies MFCQ (it is a reformulation of (PP), which also satisfies it).
- $\mu \to 0$ and $\rho \to \bar{\rho} > 0$ to obtain a solution to (OP).
- \blacktriangleright $\mu \to 0$ and $\rho \to 0$ to obtain a solution to (FP).

Visualizing the penalty-interior-point objective

▶ Objective function terms for s^i in (PP) and r^i in (IP):

▶ Objective function term for (r^i, s^i) in (PIP):

Algorithm outline

for k = 0, 1, 2, ...

- Reset the slack variables.
- ► Update the parameters.
- Compute a search direction.
- Perform a line search.

Slack reset

Through the slack variables, we have added many degrees of freedom to the problem!

▶ However, for a fixed x_k , (PIP) reduces to

$$\min_{r,s} -\mu \sum_{i \in \mathcal{I}} (\ln r^i + \ln s^i) + \sum_{i \in \mathcal{I}} s^i$$
s.t. $c(x_k) + r - s = 0$ (with $r, s > 0$)

▶ This problem is convex and separable, and has the unique solution:

$$\begin{split} r_k^i &= r^i(x_k; \mu) := \mu - \tfrac{1}{2}c^i(x_k) + \tfrac{1}{2}\sqrt{c^i(x_k)^2 + 4\mu^2} \\ \text{and} \quad s_k^i &= s^i(x_k; \mu) := \mu + \tfrac{1}{2}c^i(x_k) + \tfrac{1}{2}\sqrt{c^i(x_k)^2 + 4\mu^2}. \end{split}$$

Visualizing the slack reset

Slack variables r and s, respectively, as functions of μ and $c(x_k)$:

Search direction calculation

Motivation

A Newton iteration for the optimality conditions of (PIP) involves:

$$\begin{bmatrix} H_k & 0 & 0 & \nabla c(x_k) \\ 0 & \Omega_k & 0 & I \\ 0 & 0 & \Gamma_k & -I \\ \nabla c(x_k)^T & I & -I & 0 \end{bmatrix} \begin{bmatrix} \Delta x_k \\ \Delta r_k \\ \Delta s_k \\ \Delta \lambda_k \end{bmatrix} = - \begin{bmatrix} \rho \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ \lambda_k - \mu R_k^{-1} e \\ e - \lambda_k - \mu S_k^{-1} e \\ c(x_k) + r_k - s_k \end{bmatrix}$$

Merit function

▶ Recall that the objective of (PIP) is given by

$$\phi(\mathsf{x},\mathsf{r},\mathsf{s};
ho,\mu) :=
ho \mathsf{f}(\mathsf{x}) - \mu \sum_{i \in \mathcal{I}} (\ln \mathsf{r}^i + \ln \mathsf{s}^i) + \sum_{i \in \mathcal{I}} \mathsf{s}^i.$$

- A standard type of merit function or filter for (PIP) would involve ϕ and a measure of violation of the constraints c(x) + r s = 0.
- However, the slack reset allows us to use the merit function

$$\widetilde{\phi}(x;\rho,\mu) := \rho f(x) - \mu \sum_{i \in \mathcal{I}} (\ln r^i(x;\mu) + \ln s^i(x;\mu)) + \sum_{i \in \mathcal{I}} s^i(x;\mu).$$

Lemma

Let $r_k = r(x_k; \mu)$ and $s_k = s(x_k; \mu)$. Then, the computed search direction Δx_k yielded by the Newton system is a descent direction for $\widetilde{\phi}(x; \rho, \mu)$ at $x = x_k$.

Line search

Motivation

For a given search direction $(\Delta x_k, \Delta \lambda_k)$, we:

b backtrack to find $\alpha_k \in (0,1]$ satisfying the fraction-to-the-boundary rules

$$r(x_k + \alpha \Delta x_k; \mu) \ge \tau r_k$$

and $s(x_k + \alpha \Delta x_k; \mu) \ge \tau s_k$

and the sufficient decrease condition

$$\widetilde{\phi}(x_k + \alpha_k \Delta x_k; \rho, \mu) \leq \widetilde{\phi}(x_k; \rho, \mu) + \eta \alpha_k \nabla \widetilde{\phi}(x_k; \rho, \mu)^{\mathsf{T}} \Delta x_k.$$

lacktriangle compute the largest $eta_k \in (0,1]$ satisfying the fraction-to-the-boundary rule

$$\lambda_k + \beta \Delta \lambda_k \in [\tau \lambda_k, e - \tau(e - \lambda_k)].$$

Numerical Experiments

Outline

Motivatio

Algorithmic Framework

Parameter Updates

Numerical Experiment

Summary and Future World

A simple, conservative strategy may be the following:

- ▶ Step 1: Fix ρ and solve (PIP) for $\mu \to 0$.
- ▶ Step 2: If we are infeasible, decrease ρ and go to step 1.

This strategy, or ones that are equally as conservative, are the type that have been implemented in many other penalty-interior-point algorithms.

- ► Each "dot" may require at least a few iterations.
- ▶ Each "row" may require the computational effort of an entire interior-point run!
- For an infeasible problem, we need both ρ and μ to reduce to (near) zero.

Search direction calculation

Motivation

Recall the Newton system:

$$\begin{bmatrix} H_k & 0 & 0 & \nabla c(x_k) \\ 0 & \Omega_k & 0 & I \\ 0 & 0 & \Gamma_k & -I \\ \nabla c(x_k)^T & I & -I & 0 \end{bmatrix} \begin{bmatrix} \Delta x_k \\ \Delta r_k \\ \Delta s_k \\ \Delta \lambda_k \end{bmatrix} = - \begin{bmatrix} \rho \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ \lambda_k - \mu R_k^{-1} e \\ e - \lambda_k - \mu S_k^{-1} e \\ 0 \end{bmatrix}$$

- ρ and μ may be embedded in H_k , Ω_k , and Γ_k , but...
- Holding these matrices fixed for iteration k means we have a system of the form:

$$M\Delta z_k^{\rho,\mu} =
ho egin{bmatrix} -
abla f(x_k) \\ 0 \\ 0 \\ 0 \end{bmatrix} + \mu egin{bmatrix} 0 \\ R_k^{-1}e \\ S_k^{-1}e \\ 0 \end{bmatrix} + egin{bmatrix} -
abla c(x_k)^T \lambda_k \\ -\lambda_k \\ -e + \lambda_k \\ 0 \end{bmatrix}.$$

Thus, the solution for all pairs (ρ, μ) can be obtained with only one factorization.

Update criteria

Motivation

- It is computationally practical to vary ρ and μ on the right-hand side.
- ▶ Ok, but what criteria should we use for choosing these values?
- ▶ In a penalty method, decreasing ρ places more emphasis on the constraints.
- ▶ In an interior-pont method, decreasing μ places less emphasis on centrality.
- ► However, in a penalty-interior-point method, everything gets jumbled!

In short, we update:

- ightharpoonup to ensure some level of progress toward solving the primal feasibility problem;
- \blacktriangleright μ to attempt to satisfy dual feasibility and complementarity.

Numerical Experiments

A basis for comparison

Motivation

Let z := (x, r, s).

▶ We have two views of the penalty-interior-point objective:

$$\begin{split} \phi(\mathbf{z}; \rho, \mu) &= \rho f(\mathbf{x}) - \mu \sum_{i \in \mathcal{I}} (\ln r^i + \ln s^i) + \sum_{i \in \mathcal{I}} s^i; \\ \widetilde{\phi}(\mathbf{x}; \rho, \mu) &= \rho f(\mathbf{x}) - \mu \sum_{i \in \mathcal{I}} (\ln r^i(\mathbf{x}; \mu) + \ln s^i(\mathbf{x}; \mu)) + \sum_{i \in \mathcal{I}} s^i(\mathbf{x}; \mu). \end{split}$$

Thus, we have two corresponding linear models:

$$I(\Delta z; \rho, \mu, z) := \phi(z; \rho, \mu) + \nabla \phi(z; \rho, \mu)^T \Delta z;$$
$$\widetilde{I}(\Delta x; \rho, \mu, x) := \widetilde{\phi}(x; \rho, \mu) + \nabla \widetilde{\phi}(x; \rho, \mu)^T \Delta x.$$

- ▶ For the μ used in the slack reset, the models coincide, but not otherwise.
- It is easily seen in the direction computation that

$$\Delta I(\Delta z; \rho, \mu, z) := I(0; \rho, \mu, z) - I(\Delta z; \rho, \mu, z) > 0,$$

but it is a reduction in $\widetilde{I}(\cdot; \rho, \mu, x)$ that we want to guarantee!

Let $\Delta z_{\nu}^{\rho,\mu}$ be the direction computed for given (ρ,μ) .

▶ If x_k is feasible, then choose largest ρ such that for some μ :

$$\Delta \widetilde{q}(\Delta x_k^{\rho,\mu}; \rho, \mu, x_k) > 0.$$

(Here, $\widetilde{q}(\Delta x; \rho, \mu, x)$ is a quadratic model of $\widetilde{\phi}(x; \rho, \mu)$.)

▶ If x_k is infeasible, then choose largest ρ such that for some μ :

$$\Delta \widetilde{I}(\Delta x_k^{\rho,\mu}; \rho, \mu, x_k) \ge \epsilon_1 \Delta I(\Delta z_k^{0,\mu}; 0, \mu, z_k), \quad \epsilon_1 \in (0,1);$$

$$\Delta \widetilde{q}(\Delta x_k^{\rho,\mu}; \rho, \mu, x_k) \geq \epsilon_2 \Delta I(\Delta z_k^{0,\mu}; 0, \mu, z_k), \quad \epsilon_2 \in (0,1).$$

If x_k is infeasible, then ρ must satisfy

$$\rho \leq \left\| \begin{bmatrix} \nabla c(\mathsf{x}_k) \lambda_k \\ R_k \lambda_k \\ S_k(e - \lambda_k) \end{bmatrix} \right\|^2$$

(Right-hand side only small in neighborhood of an infeasible stationary point.)

Updating μ : minding dual feasibility and complementarity

Fixing ρ , now choose μ so that the previous conditions still hold and

$$m(\Delta z, \Delta \lambda; \rho, \mu, z_k) := \left\| \begin{bmatrix} \rho \nabla f(x_k) + \nabla c(x_k)(\lambda_k + \Delta \lambda) \\ (R_k + \Delta R)(\lambda_k + \Delta \lambda) \\ (S_k + \Delta S)(e - \lambda_k - \Delta \lambda) \end{bmatrix} \right\|_{\infty}$$

is approximately minimized.

Numerical Experiments

Visualizing the aggressive strategy

All within one iteration!

Numerical Experiments

Outline

Motivation

Algorithmic Framewor

Parameter Update

Numerical Experiments

Summary and Future Wor

- Penalty-Interior-Point ALgorithm (PIPAL)
- Compared iteration counts for PIPAL-c, PIPAL-a, and FMINCON.¹
- CUTEr problems available in AMPL (385 in final set)
- Infeasible variants of the HS problems (93 in final set):

$$c^{l}(x) = 0 \Rightarrow \{c^{l}(x) = 0 \& c^{l}(x) = 1\}$$

 $c^{l}(x) \le 0 \Rightarrow \{c^{l}(x) \le 0 \& c^{l}(x) \ge 1\}$

¹See Waltz, Morales, Nocedal, and Orban (2006)

Entire test set

Problems requiring a penalty parameter decrease

Infeasible problems

Outline

Motivation

Algorithmic Frameworl

Parameter Update

Numerical Experiments

Summary and Future Work

Summary

- ▶ Combined penalty and interior-point techniques into a single algorithm.
- Penalties effectively regularize the constraints.
- ▶ Interior-point strategies allowed directions to be computed via linear systems.
- ▶ Slack reset allowed us to reduce the degrees of freedom.
- Proposed an aggressive updating scheme for the parameters.
- Results are comparable to an interior-point method on most problems.
- ▶ Results are much better than an interior-point method on infeasible problems.