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Large-scale optimization

Consider the optimization problem:

(OP) :=
min

x
f (x)

s.t. c(x) ≤ 0

For large-scale instances:

I Linear or quadratic optimization subproblems are expensive. (Linear systems OK.)

I The constraints may be difficult to satisfy.

I The constraints may be (locally) infeasible; i.e., the algorithm should solve:

(FP) := min
x

v(x) :=
X
i∈I

max{c i (x), 0}
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Penalty methods

Unconstrained techniques can be used if we solve:

min
x

ρf (x) + v(x)

Similarly, we can solve a regularized form of (OP):

(PP) :=

min
x,s

ρf (x) +
X
i∈I

s i

s.t. c(x)− s ≤ 0, s ≥ 0

I Unconstrained techniques may fail or be slow if f is unbounded below;
performance depends greatly on the form of v .

I Solving (PP) commonly requires the solution of linear or quadratic subproblems.

I Either way, updating the penalty parameter is a challenge.

A Penalty-Interior-Point Algorithm for Nonlinear Optimization 5 of 38



Motivation Algorithmic Framework Parameter Updates Numerical Experiments Summary and Future Work

Interior-point methods

Large-scale problems are often solved efficiently through interior-point subproblems:

(IP) :=

min
x,r

f (x)− µ
X
i∈I

ln r i

s.t. c(x) + r = 0 (with r > 0)

I Lacks constraint regularization as in a penalty method.

I Similar to before, updating the interior-point parameter is a challenge.
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Penalty-interior-point methods(?)

Can penalty and interior-point ideas be combined to create a practical algorithm?

I Regularization through penalties is an attractive feature.

I Search direction computations via linear system solves is nice for large problems.

However, there are significant challenges:

I Penalty methods want the algorithm to be free to violate constraints.

I Interior-point methods want the algorithm to remain feasible.

I Juggling “conflicting” parameters is a major challenge.
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Literature

Previous work with similar motivations:

I Jittorntrum and Osborne (1980)

I Polyak (1982, 1992, 2008)

I Breitfeld and Shanno (1994, 1996)

I Goldfarb, Polyak, Scheinberg, and Yuzefovich (1999)

I Gould, Orban, and Toint (2003)

I Chen and Goldfarb (2006, 2006)

I Benson, Sen, and Shanno (2008)

We focus closely on parameter updates.
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Infeasibility detection

Leading optimization software packages lack rapid infeasibility detection!

Problem type Global convergence Fast local convergence
Feasible X X

Infeasible X ?

Collection of 2-3 variable infeasible problems:

Prob. Ipopt Iter. Ipopt Eval. Knitro Iter. Knitro Eval.
1 48 281 38 135
2 109 170 — —
3 788 3129 12 83
4 46 105 25 61
5 72 266 — —
6 63 141 — —
7 87 152 — —
8 104 206 33 97

Penalty methods with intelligent parameter updates may be a fix...
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Penalty-interior-point subproblem

Recall:

(PP) :=

min
x,s

ρf (x) +
X
i∈I

s i

s.t. c(x)− s ≤ 0, s ≥ 0

(IP) :=

min
x,r

f (x)− µ
X
i∈I

ln r i

s.t. c(x) + r = 0 (with r > 0)

Applying an interior-point reformulation to (PP), we can obtain:

(PIP) :=

min
x,r,s

ρf (x)− µ
X
i∈I

(ln r i + ln s i ) +
X
i∈I

s i

s.t. c(x) + r − s = 0 (with r , s > 0)

I (PIP) satisfies MFCQ (it is a reformulation of (PP), which also satisfies it).

I µ→ 0 and ρ→ ρ̄ > 0 to obtain a solution to (OP).

I µ→ 0 and ρ→ 0 to obtain a solution to (FP).
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Visualizing the penalty-interior-point objective

I Objective function terms for s i in (PP) and r i in (IP):

I Objective function term for (r i , s i ) in (PIP):
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Algorithm outline

for k = 0, 1, 2, . . .

I Reset the slack variables.

I Update the parameters.

I Compute a search direction.

I Perform a line search.
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Slack reset

Through the slack variables, we have added many degrees of freedom to the problem!

I However, for a fixed xk , (PIP) reduces to

min
r,s
− µ

X
i∈I

(ln r i + ln s i ) +
X
i∈I

s i

s.t. c(xk ) + r − s = 0 (with r , s > 0)

I This problem is convex and separable, and has the unique solution:

r i
k = r i (xk ;µ) := µ− 1

2
c i (xk ) + 1

2

p
c i (xk )2 + 4µ2

and s i
k = s i (xk ;µ) := µ+ 1

2
c i (xk ) + 1

2

p
c i (xk )2 + 4µ2.
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Visualizing the slack reset

Slack variables r and s, respectively, as functions of µ and c(xk ):
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Search direction calculation

A Newton iteration for the optimality conditions of (PIP) involves:2664
Hk 0 0 ∇c(xk )
0 Ωk 0 I
0 0 Γk −I

∇c(xk )T I −I 0

3775
2664

∆xk

∆rk
∆sk
∆λk

3775 = −

2664
ρ∇f (xk ) +∇c(xk )λk

λk − µR−1
k e

e − λk − µS−1
k e

c(xk ) + rk − sk

3775
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Merit function

I Recall that the objective of (PIP) is given by

φ(x , r , s; ρ, µ) := ρf (x)− µ
X
i∈I

(ln r i + ln s i ) +
X
i∈I

s i .

I A standard type of merit function or filter for (PIP) would involve φ and a
measure of violation of the constraints c(x) + r − s = 0.

I However, the slack reset allows us to use the merit function

eφ(x ; ρ, µ) := ρf (x)− µ
X
i∈I

(ln r i (x ;µ) + ln s i (x ;µ)) +
X
i∈I

s i (x ;µ).

Lemma
Let rk = r(xk ;µ) and sk = s(xk ;µ). Then, the computed search direction ∆xk yielded

by the Newton system is a descent direction for eφ(x ; ρ, µ) at x = xk .

A Penalty-Interior-Point Algorithm for Nonlinear Optimization 17 of 38



Motivation Algorithmic Framework Parameter Updates Numerical Experiments Summary and Future Work

Line search

For a given search direction (∆xk ,∆λk ), we:

I backtrack to find αk ∈ (0, 1] satisfying the fraction-to-the-boundary rules

r(xk + α∆xk ;µ) ≥ τ rk

and s(xk + α∆xk ;µ) ≥ τsk

and the sufficient decrease condition

eφ(xk + αk∆xk ; ρ, µ) ≤ eφ(xk ; ρ, µ) + ηαk∇eφ(xk ; ρ, µ)T ∆xk .

I compute the largest βk ∈ (0, 1] satisfying the fraction-to-the-boundary rule

λk + β∆λk ∈ [τλk , e − τ(e − λk )].
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Conservative strategies

A simple, conservative strategy may be the following:

I Step 1: Fix ρ and solve (PIP) for µ→ 0.

I Step 2: If we are infeasible, decrease ρ and go to step 1.

This strategy, or ones that are equally as conservative, are the type that have been
implemented in many other penalty-interior-point algorithms.
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Visualizing a conservative strategy

ρ

μ

I Each “dot” may require at least a few iterations.

I Each “row” may require the computational effort of an entire interior-point run!

I For an infeasible problem, we need both ρ and µ to reduce to (near) zero.
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Search direction calculation

Recall the Newton system:2664
Hk 0 0 ∇c(xk )
0 Ωk 0 I
0 0 Γk −I

∇c(xk )T I −I 0

3775
2664

∆xk

∆rk
∆sk
∆λk

3775 = −

2664
ρ∇f (xk ) +∇c(xk )λk

λk − µR−1
k e

e − λk − µS−1
k e

0

3775
I ρ and µ may be embedded in Hk , Ωk , and Γk , but...

I Holding these matrices fixed for iteration k means we have a system of the form:

M∆zρ,µk = ρ

2664
−∇f (xk )

0
0
0

3775+ µ

2664
0

R−1
k e

S−1
k e
0

3775+

2664
−∇c(xk )Tλk

−λk

−e + λk

0

3775 .
I Thus, the solution for all pairs (ρ, µ) can be obtained with only one factorization.
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Update criteria

I It is computationally practical to vary ρ and µ on the right-hand side.

I Ok, but what criteria should we use for choosing these values?

I In a penalty method, decreasing ρ places more emphasis on the constraints.

I In an interior-pont method, decreasing µ places less emphasis on centrality.

I However, in a penalty-interior-point method, everything gets jumbled!

In short, we update:

I ρ to ensure some level of progress toward solving the primal feasibility problem;

I µ to attempt to satisfy dual feasibility and complementarity.
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A basis for comparison

Let z := (x , r , s).

I We have two views of the penalty-interior-point objective:

φ(z; ρ, µ) = ρf (x)− µ
X
i∈I

(ln r i + ln s i ) +
X
i∈I

s i ;

eφ(x ; ρ, µ) = ρf (x)− µ
X
i∈I

(ln r i (x ;µ) + ln s i (x ;µ)) +
X
i∈I

s i (x ;µ).

I Thus, we have two corresponding linear models:

l(∆z; ρ, µ, z) := φ(z; ρ, µ) +∇φ(z; ρ, µ)T ∆z;el(∆x ; ρ, µ, x) := eφ(x ; ρ, µ) +∇eφ(x ; ρ, µ)T ∆x .

I For the µ used in the slack reset, the models coincide, but not otherwise.

I It is easily seen in the direction computation that

∆l(∆z; ρ, µ, z) := l(0; ρ, µ, z)− l(∆z; ρ, µ, z) > 0,

but it is a reduction in el(·; ρ, µ, x) that we want to guarantee!
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Updating ρ: ensuring progress in feasibility

Let ∆zρ,µk be the direction computed for given (ρ, µ).

I If xk is feasible, then choose largest ρ such that for some µ:

∆eq(∆xρ,µk ; ρ, µ, xk ) > 0.

(Here, eq(∆x ; ρ, µ, x) is a quadratic model of eφ(x ; ρ, µ).)

I If xk is infeasible, then choose largest ρ such that for some µ:

∆el(∆xρ,µk ; ρ, µ, xk ) ≥ ε1∆l(∆z0,µ
k ; 0, µ, zk ), ε1 ∈ (0, 1);

∆eq(∆xρ,µk ; ρ, µ, xk ) ≥ ε2∆l(∆z0,µ
k ; 0, µ, zk ), ε2 ∈ (0, 1).
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Updating ρ: promoting fast infeasibility detection

If xk is infeasible, then ρ must satisfy

ρ ≤

‚‚‚‚‚‚
24∇c(xk )λk

Rkλk

Sk (e − λk )

35‚‚‚‚‚‚
2

(Right-hand side only small in neighborhood of an infeasible stationary point.)
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Updating µ: minding dual feasibility and complementarity

Fixing ρ, now choose µ so that the previous conditions still hold and

m(∆z,∆λ; ρ, µ, zk ) :=

‚‚‚‚‚‚
24ρ∇f (xk ) +∇c(xk )(λk + ∆λ)

(Rk + ∆R)(λk + ∆λ)
(Sk + ∆S)(e − λk −∆λ)

35‚‚‚‚‚‚
∞

is approximately minimized.
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Visualizing the aggressive strategy

ρ

μ

All within one iteration!
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Visualizing the aggressive strategy

ρ

μ
All within one iteration!
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Preliminary experimentation

I Penalty-Interior-Point ALgorithm (PIPAL)

I Compared iteration counts for PIPAL-c, PIPAL-a, and FMINCON.1

I CUTEr problems available in AMPL (385 in final set)

I Infeasible variants of the HS problems (93 in final set):

c l (x) = 0⇒ {c l (x) = 0 & c l (x) = 1}

c l (x) ≤ 0⇒ {c l (x) ≤ 0 & c l (x) ≥ 1}

1See Waltz, Morales, Nocedal, and Orban (2006)
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Entire test set
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Problems requiring a penalty parameter decrease
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Infeasible problems
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Summary

I Combined penalty and interior-point techniques into a single algorithm.

I Penalties effectively regularize the constraints.

I Interior-point strategies allowed directions to be computed via linear systems.

I Slack reset allowed us to reduce the degrees of freedom.

I Proposed an aggressive updating scheme for the parameters.

I Results are comparable to an interior-point method on most problems.

I Results are much better than an interior-point method on infeasible problems.
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