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Infeasible Nonlinear Programming

We consider the optimization problems

(OPT ) ,

{
min f (x)

s.t. c(x) ≥ 0

}
and (FEAS) ,

{
min

t∑
i=1

max{−c i (x), 0}
}

where f : Rn → R and c : Rn → Rt are smooth functions

I We want to solve (OPT ) when a feasible point exists (i.e., ∃x ∈ Rn s.t.
c(x) ≥ 0)

I Otherwise, the algorithm should solve (FEAS) when (OPT ) is infeasible

I Many optimization methods focus on the efficient solution of (OPT ),
often with guarantees toward solutions of (FEAS) if the problem is
infeasible

I ... however, this latter feature is often treated as an afterthought and the
rate at which the method converges can be exceedingly slow
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Focus on active set methods

I Interior-point methods are known to behave poorly on infeasible problems:
min f (x)− µ

t∑
i=1

ln s i

s.t. c(x)− s = 0, s > 0

 ⇐ true interior is empty

I Active-set methods present another option:
Running SNOPT and KNITRO on NEOS:

Problem SNOPT KNITRO

optprloc1 11 itrs 10 itrs
optprloc2 14 itrs 44 itrs
optprloc3 30 itrs 29 itrs

c-reload-14c 37 itrs 1000+ itrs
batch 1000+ itrs 37 itrs
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A single algorithm for an entire problem family

Our goal is to design a single optimization algorithm designed for the fast
solution of (OPT ), or the fast solution of (FEAS) when (OPT ) is infeasible,
that does not switch between two separate techniques (e.g., no feasibility
restoration as in Fletcher and Leyffer, 1997)

(OPT ) ,

{
min f (x)

s.t. c(x) ≥ 0

}
and (FEAS) ,


min eT r

s.t. c(x) + r ≥ 0

r ≥ 0


We combine (OPT ) and (FEAS) to define

(P) ,


min 1

π
f (x) + eT r

s.t. c(x) + r ≥ 0

r ≥ 0


where π > 0 is a penalty parameter to be updated dynamically
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An ideal run of KNITRO
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A less than ideal run of KNITRO
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Effects compounded in MINLP methods
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Effects compounded in MINLP methods
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Summary

I There is a need for algorithms that converge quickly, regardless of
whether the problem is feasible or infeasible

I Interior-point methods are known to perform poorly in infeasible cases,
but active set methods seem promising

I Room for improvement in active set methods, too

I Feasibility restoration techniques are an option, but we prefer a smooth
transition between solving (OPT ) and solving (FEAS)

I When π remains finite, convergence can be fast since, after a point, we
are solving a single problem

I However, we need to analyze the π →∞ case as well...
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Our method for step computation and acceptance

We generate a step via the quadratic subproblem

(Q) ,
min qk(d ;π) , 1

π
∇f T

k d + 1
2
dT Wkd + eT s

s.t. ck +∇cT
k d + s ≥ 0, s ≥ 0

where Wk is an approximation for the Hessian of the Lagrangian of (P), and
we measure progress with the exact penalty function

φ(x ;π) , 1
π

f (x) +
t∑

i=1

max{−c i (x), 0}

We see later on that this SQP approach has the benefit that it can identify the
correct active set near a solution point for π sufficiently large
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A Penalty-SQP algorithm

Step 0. Initialize x0 and set η ∈ (0, 1), τ ∈ (0, 1) and k ← 0

Step 1. If xk solves (OPT ) or (FEAS), then stop

Step 2. Compute a value for the penalty parameter, call it πk

Step 3. Compute dk by solving (Q) with π ← πk

Step 4. Let αk be the first member of the sequence {1, τ, τ 2, ...} s.t.

φ(xk ;πk)− φ(xk + αkdk ;πk) ≥ ηαk [qk(0;πk)− qk(dk ;πk)]

Step 5. Update xk+1 ← xk + αkdk , go to Step 1
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Strategy for fast convergence

Hitting a moving target:
xk −→ xπ −→ x̂

where

xk , kth iterate of the algorithm

xπ , solution of penalty problem (P)

x̂ , infeasible stationary point of (OPT ), solution of (FEAS)

We aim to show, for some C ,C ′ > 0,

‖xk+1 − x̂‖ ≤ ‖xk+1 − xπ‖+ ‖xπ − x̂‖

≤ C‖xk − xπ‖2 + O(1/π)

≤ C ′‖xk − x̂‖2 + O(1/π),

so convergence is quadratic if (1/π) ∝ ‖xk − x̂‖2
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Optimality conditions for problem (P)
First-order optimality conditions for

(P) ,
{

min 1
π

f (x) + eT r , s.t. c(x) + r ≥ 0, r ≥ 0
}

:

1
π
∇f (x)−

∑
i∈I

λi∇c i (x) = 0

1− λi − σi = 0, i ∈ I

λi (c i (x) + r i ) = 0, i ∈ I

σi r i = 0, i ∈ I

c i (x) + r i ≥ 0, i ∈ I
r , λ, σ ≥ 0


At an infeasible stationary point x̂ we define

Â = {i : c i (x̂) = 0}, V̂ = {i : c i (x̂) < 0}, Ŝ = {i : c i (x̂) > 0}

as the sets of active, violated, and strictly satisfied constraints
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Assumptions

The point (x̂ , r̂ , λ̂, σ̂) is a first-order optimal solution of (P) at which the
following conditions hold:

I (Regularity) ∇c(x̂)T has full row rank;

I (Strict Complementarity) λ̂i > 0 for all i ∈ Â;

I (Second Order Sufficiency) The Hessian of the Lagrangian for problem
(P) with π =∞, denoted by Ŵ , satisfies dT Ŵ d > 0 for all d 6= 0 such
that ∇c(x̂)T d = 0

The optimality conditions now reduce to: (define ρ = 1/π)

F (x , λÂ, ρ) =

[
ρ∇f (x)−

∑
i∈Â λ

i∇c i (x)−
∑

i∈V̂ ∇c i (x)
cÂ(x)

]
= 0

λÂ ∈ (0, 1)

(all other values can be determined uniquely)
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Lemma 1: xπ → x̂
For all π sufficiently large the penalty problem (P) has a solution xπ with the
same sets of active, violated, and strictly satisfied constraints as x̂ . Moreover,

‖xπ − x̂‖ = O(1/π)

Proof.
We have F (x̂ , λ̂Â, 0) = 0. Differentiating F yields:

∂F (x , λÂ, ρ)

∂(x , λÂ)
=

[
W (x , λÂ, ρ) −∇cÂ(x)
∇cÂ(x)T 0

]
,

which is nonsingular under our assumptions. The implicit function theorem then
implies that there is an open neighborhood N ∈ R containing ρ = 0 such that

F (x(ρ), λÂ(ρ), ρ) = 0 for all ρ ∈ N .

Then, since λ̂Â ∈ (0, 1), (x(ρ), λÂ(ρ), ρ) satisfies the first-order optimality
conditions for ρ sufficiently small (π large)
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Lemma 1: xπ → x̂

For all π sufficiently large the penalty problem (P) has a solution xπ with the
same sets of active, violated, and strictly satisfied constraints as x̂ . Moreover,

‖xπ − x̂‖ = O(1/π)

Example: (recall ρ = 1/π)

min ρ
(

(x1 + 1)2 + (x2 − 1)2
)

+ r1 + r2

s.t. − x2
1 + x2 − 1 + r1 ≥ 0

− 100x2 + r2 ≥ 0

(r1, r2) ≥ 0
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Lemma 2: xk → xπ → x̂
For π sufficiently large and for xk sufficiently close to xπ, the solution of the
SQP subproblem identifies the same sets of active, violated, and strictly
satisfied constraints as xπ (and x̂). Then, standard Newton analysis for equality
constrained optimization yields for some C > 0:

‖xk+1 − xπ‖ ≤ C‖xk − xπ‖2

Proof.
Similar to before, at (x , λÂ, ρ) = (x̂ , λ̂Â, 0) the SQP step is the solution

(d , δÂ) = (0, λ̂Â) to:[
W (x , λÂ, ρ) −∇cÂ(x)
∇cT

Â(x) 0

] [
d
δÂ

]
= −

[
ρ∇f (x)−

∑
i∈V̂ ∇c i (x)

cÂ(x)

]
This matrix is nonsingular and the solution varies continuously with (x , λÂ, ρ)

near (x̂ , λ̂Â, 0), so since λ̂i ∈ (0, 1) for i ∈ Â the solution of the SQP
subproblem can be obtained via this linear system (setting δV̂ = 1 and δŜ = 0)

for (x , λÂ) near (x̂ , λ̂Â) and ρ small (π large)
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Main result

Thus, we find:

‖xk+1 − x̂‖ ≤ ‖xk+1 − xπ‖+ ‖xπ − x̂‖ (triangle inequality)

≤ C‖xk − xπ‖2 + O(1/π) (Lemmas 1 and 2)

...

≤ C ′‖xk − x̂‖2 + O(1/π),

so convergence is quadratic if (1/π) ∝ ‖xk − x̂‖2; e.g., 1/π proportional to the
squared optimality error of the problem (FEAS)
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Summary

I We have discussed methods for the fast solution of infeasible optimization
problems

I We have analyzed a penalty-SQP approach that transitions smoothly
between solving an optimization problem and its feasibility problem
counterpart

I We have shown that the approach can converge quadratically if the
penalty parameter is handled correctly
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Future work

I How can we construct a practical method for updating π that satisfies
our condition? e.g., consider the auxiliary problem

min
∑

s i

s.t. ck +∇cT
k d + s ≥ 0, s ≥ 0

and set πk so that the reduction in linearized feasibility of the SQP
problem is proportional to that achieved by the solution of this problem –
can this do the trick?

I Can we relax our assumptions? For example, for many infeasible
problems, the Hessian of the Lagrangian is not positive definite at x̂
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