A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization

Frank E. Curtis, Lehigh University

 $\label{eq:conference} \mbox{International Conference on Machine Learning (ICML)} \\ \mbox{New York, NY, USA}$

21 June 2016

Motivation

Self-Correcting Properties of BFGS-type Updating

Proposed Algorithm

Motivation

Self-Correcting Properties of BFGS-type Updating

Proposed Algorithm

Consider unconstrained optimization problems of the form

$$\min_{w \in \mathbb{R}^d} \ f(w),$$

where

- $f(w) := \mathbb{E}[F(w, \xi)]$ with expectation w.r.t. distribution of random variable ξ ;
- ightharpoonup f continuously differentiable, bounded below, and potentially nonconvex;
- ▶ ∇f Lipschitz continuous with constant L > 0.

Goal: Go beyond stochastic gradient (SG) to design improved methods

Justification?: with L. Bottou and J. Nocedal (submitted to SIAM Review) "Optimization Methods for Large-Scale Machine Learning" http://arxiv.org/abs/1606.04838

Balance between extremes

For deterministic, smooth optimization, a nice balance achieved by quasi-Newton:

$$w_{k+1} \leftarrow w_k - \alpha_k M_k g_k,$$

where

- $ightharpoonup \alpha_k > 0$ is a stepsize;
- \blacktriangleright $\{M_k\}$ is updated dynamically.

Background on quasi-Newton:

- local rescaling of step (overcome ill-conditioning)
- only first-order derivatives required
- no linear system solves required
- ▶ global convergence guarantees (say, with line search)
- ▶ superlinear local convergence rate

How can the idea be carried over to a stochastic setting?

Previous work: BFGS-type methods

Much focus on the secant equation $(H_{k+1} \sim \text{Hessian approximation})$

$$H_{k+1}s_k = y_k$$
 where
$$\begin{cases} s_k := w_{k+1} - w_k \\ y_k := \nabla f(w_{k+1}) - \nabla f(w_k) \end{cases}$$

and an appropriate replacement for the gradient displacement:

$$y_k \leftarrow \underbrace{\nabla f(w_{k+1}, \xi_k) - \nabla f(w_k, \xi_k)}_{\text{use same seed}}$$
oLBFGS, Schraudolph et al. (2007)
SGD-QN, Bordes et al. (2009)
RES, Mokhtari & Ribeiro (2014)

or $y_k \leftarrow \underbrace{\left(\sum_{i \in S_k^H} \nabla^2 f(w_{k+1}, \xi_{k+1, i})\right) s_k}_{\text{use action of step on subsampled Hessian SON, Byrd et al. (2015)}$

Is this the right focus? Is there a better way (especially for nonconvex f)?

Propose a quasi-Newton method for stochastic (nonconvex) optimization

- exploit self-correcting properties of BFGS-type updates
 - ▶ Powell (1976)
 - ▶ Ritter (1979, 1981)
 - ▶ Werner (1978)
 - ▶ Byrd, Nocedal (1989)
- ▶ properties of Hessians offer useful bounds for inverse Hessians
- motivating convergence theory for convex and nonconvex objectives
- dynamic noise reduction strategy
- ▶ limited memory variant

Observed stable behavior and overall good performance

Motivation

Self-Correcting Properties of BFGS-type Updating

Proposed Algorithm

BFGS-type updates

Inverse Hessian and Hessian approximation updating formulas $(s_k^T v_k > 0)$:

$$M_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T M_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}$$

$$H_{k+1} \leftarrow \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right) + \frac{v_k v_k^T}{s_k^T v_k}$$

▶ Satisfy secant-type equations

$$M_{k+1}v_k = s_k$$
 and $H_{k+1}s_k = v_k$,

but these are not relevant for this talk.

▶ Choosing $v_k \leftarrow y_k := g_{k+1} - g_k$ yields standard BFGS, but in this talk

$$v_k \leftarrow \beta_k s_k + (1 - \beta_k) \alpha_k y_k$$
 for some $\beta_k \in [0, 1]$.

This scheme is important to preserve self-correcting properties.

Geometric properties of Hessian update

Consider the matrices (which only depend on s_k and H_k , not g_k !)

$$P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \quad \text{and} \quad Q_k := I - P_k.$$

Both H_k -orthogonal projection matrices (i.e., idempotent and H_k -self-adjoint).

- ▶ P_k yields H_k -orthogonal projection onto span (s_k) .
- Q_k yields H_k -orthogonal projection onto span $(s_k)^{\perp_{H_k}}$.

Geometric properties of Hessian update

Consider the matrices (which only depend on s_k and H_k , not g_k !)

$$P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \quad \text{and} \quad Q_k := I - P_k.$$

Both H_k -orthogonal projection matrices (i.e., idempotent and H_k -self-adjoint).

- \triangleright P_k yields H_k -orthogonal projection onto span (s_k) .
- Q_k yields H_k -orthogonal projection onto $\operatorname{span}(s_k)^{\perp_{H_k}}$.

Returning to the Hessian update:

$$H_{k+1} \leftarrow \underbrace{\left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)}_{\text{rank } n-1} + \underbrace{\frac{v_k v_k^T}{s_k^T v_k}}_{\text{rank } 1}$$

- Curvature projected out along span (s_k)
- ► Curvature corrected by $\frac{v_k v_k^T}{s_t^T v_h} = \left(\frac{v_k v_k^T}{\|v_k\|_2^2}\right) \left(\frac{\|v_k\|_2^2}{v_t^T M_{b+1} v_h}\right)$ (inverse Rayleigh).

Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 1 (Byrd, Nocedal (1989))

Suppose that, for all k, there exists $\{\eta, \theta\} \subset \mathbb{R}_{++}$ such that

$$\eta \le \frac{s_k^T v_k}{\|s_k\|_2^2} \quad and \quad \frac{\|v_k\|_2^2}{s_k^T v_k} \le \theta.$$
(KEY)

Then, for any $p \in (0,1)$, there exist constants $\{\iota, \kappa, \lambda\} \subset \mathbb{R}_{++}$ such that, for any $K \geq 2$, the following relations hold for at least $\lceil pK \rceil$ values of $k \in \{1, \ldots, K\}$:

$$\iota \le \frac{s_k^T H_k s_k}{\|s_k\|_2 \|H_k s_k\|_2} \quad and \quad \kappa \le \frac{\|H_k s_k\|_2}{\|s_k\|_2} \le \lambda.$$

Proof technique.

Building on work of Powell (1976), etc., involves bounding growth of

$$\gamma(H_k) = \operatorname{tr}(H_k) - \ln(\det(H_k)).$$

Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.

Corollary 2

Suppose the conditions of Theorem 1 hold. Then, for any $p \in (0,1)$, there exist constants $\{\mu,\nu\}\subset\mathbb{R}_{++}$ such that, for any $K\geq 2$, the following relations hold for at least $\lceil pK \rceil$ values of $k \in \{1, \ldots, K\}$:

$$\mu \|g_k\|_2^2 \le g_k^T M_k g_k$$
 and $\|M_k g_k\|_2^2 \le \nu \|g_k\|_2^2$

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using the facts that $s_k = -\alpha_k M_k g_k$ and $M_k = H_k^{-1}$ for all k.

Motivation

Self-Correcting Properties of BFGS-type Updating

Proposed Algorithm

${\bf Algorithm~SC}: {\bf Self\text{-}Correcting~BFGS~Algorithm}$

- 1: Choose $w_1 \in \mathbb{R}^d$.
- 2: Set $g_1 \approx \nabla f(w_1)$.
- 3: Choose a symmetric positive definite $M_1 \in \mathbb{R}^{d \times d}$.
- 4: Choose a positive scalar sequence $\{\alpha_k\}$.
- 5: **for** $k = 1, 2, \dots$ **do**
- 6: Set $s_k \leftarrow -\alpha_k M_k g_k$.
- 7: Set $w_{k+1} \leftarrow w_k + s_k$.
- 8: Set $g_{k+1} \approx \nabla f(w_{k+1})$.
- 9: Set $y_k \leftarrow g_{k+1} g_k$.
- 10: Set $\beta_k \leftarrow \min\{\beta \in [0,1] : v(\beta) := \beta s_k + (1-\beta)\alpha_k y_k \text{ satisfies (KEY)}\}.$
- 11: Set $v_k \leftarrow v(\beta_k)$.
- 12: Set

$$M_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T M_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}.$$

13: end for

Global convergence theorem

Theorem 3 (Bottou, Curtis, Nocedal (2016))

Suppose that, for all k, there exists a scalar constant $\rho > 0$ such that

$$-\nabla f(w_k)^T \mathbb{E}_{\xi_k}[M_k g_k] \le -\rho \|\nabla f(w_k)\|_2^2,$$

and there exist scalars $\sigma > 0$ and $\tau > 0$ such that

$$\mathbb{E}_{\xi_k}[\|M_k g_k\|_2^2] \le \sigma + \tau \|\nabla f(w_k)\|_2^2.$$

Then, $\{\mathbb{E}[f(w_k)]\}$ converges to a finite limit and

$$\lim_{k \to \infty} \inf \mathbb{E}[\nabla f(w_k)] = 0.$$

Proof technique.

Follows from the critical inequality

$$\mathbb{E}_{\xi_k}[f(w_{k+1})] - f(w_k) \le -\alpha_k \nabla f(w_k)^T \mathbb{E}_{\xi_k}[M_k g_k] + \alpha_k^2 L \mathbb{E}_{\xi_k}[\|M_k g_k\|_2^2].$$

Also stronger results for strongly convex f; see paper.

Reality

The conditions in this theorem cannot be verified in practice.

- ▶ They require knowing $\nabla f(w_k)$.
- ▶ They require knowing $\mathbb{E}_{\xi_k}[M_k g_k]$ and $\mathbb{E}_{\xi_k}[\|M_k g_k\|_2^2]$
- \blacktriangleright ... but M_k and g_k are not independent!
- ▶ That said, Corollary 2 ensures that they hold with $g_k = \nabla f(w_k)$; recall

$$\mu \|g_k\|_2^2 \le g_k^T M_k g_k \text{ and } \|M_k g_k\|_2^2 \le \nu \|g_k\|_2^2.$$

Reality

The conditions in this theorem cannot be verified in practice.

- ▶ They require knowing $\nabla f(w_k)$.
- ▶ They require knowing $\mathbb{E}_{\xi_k}[M_k g_k]$ and $\mathbb{E}_{\xi_k}[\|M_k g_k\|_2^2]$
- \blacktriangleright ... but M_k and g_k are not independent!
- ▶ That said, Corollary 2 ensures that they hold with $g_k = \nabla f(w_k)$; recall

$$\mu \|g_k\|_2^2 \le g_k^T M_k g_k$$
 and $\|M_k g_k\|_2^2 \le \nu \|g_k\|_2^2$.

Stabilized variant (SC-s): Loop over (stochastic) gradient computation until

$$\rho \|\hat{g}_{k+1}\|_2^2 \le \hat{g}_{k+1}^T M_{k+1} g_{k+1}$$
 and
$$\|M_{k+1} g_{k+1}\|_2^2 \le \sigma + \tau \|\hat{g}_{k+1}\|_2^2.$$

Recompute g_{k+1} , \hat{g}_{k+1} , and M_{k+1} until these hold.

Numerical Experiments: a1a

logistic regression, data a1a, diminishing stepsizes

Numerical Experiments: rcv1

SC-L and SC-L-s: limited memory variants of SC and SC-s, respectively:

logistic regression, data rcv1, diminishing stepsizes

Numerical Experiments: mnist

deep neural network, data mnist, diminishing stepsizes

Contributions

Proposed a quasi-Newton method for stochastic (nonconvex) optimization

- exploited self-correcting properties of BFGS-type updates
- properties of Hessians offer useful bounds for inverse Hessians
- motivating convergence theory for convex and nonconvex objectives
- dynamic noise reduction strategy
- ▶ limited memory variant

Observed stable behavior and overall good performance

* F. E. Curtis.

A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 2016. JMLR.