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Stochastic optimization

Consider unconstrained optimization problems of the form

min
w∈Rd

f(w),

where

I f(w) := E[F (w, ξ)] with expectation w.r.t. distribution of random variable ξ;

I f continuously differentiable, bounded below, and potentially nonconvex;

I ∇f Lipschitz continuous with constant L > 0.

Goal: Go beyond stochastic gradient (SG) to design improved methods

Justification?: with L. Bottou and J. Nocedal (submitted to SIAM Review)
“Optimization Methods for Large-Scale Machine Learning”
http://arxiv.org/abs/1606.04838
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Balance between extremes

For deterministic, smooth optimization, a nice balance achieved by quasi-Newton:

wk+1 ← wk − αkMkgk,

where

I αk > 0 is a stepsize;

I gk ← ∇f(wk);

I {Mk} is updated dynamically.

Background on quasi-Newton:

I local rescaling of step (overcome ill-conditioning)

I only first-order derivatives required

I no linear system solves required

I global convergence guarantees (say, with line search)

I superlinear local convergence rate

How can the idea be carried over to a stochastic setting?
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Previous work: BFGS-type methods

Much focus on the secant equation (Hk+1 ∼ Hessian approximation)

Hk+1sk = yk where

{
sk := wk+1 − wk
yk := ∇f(wk+1)−∇f(wk)

and an appropriate replacement for the gradient displacement:

yk ← ∇f(wk+1, ξk)−∇f(wk, ξk)︸ ︷︷ ︸
use same seed

oLBFGS, Schraudolph et al. (2007)
SGD-QN, Bordes et al. (2009)

RES, Mokhtari & Ribeiro (2014)

or yk ←

 ∑
i∈SH

k

∇2f(wk+1, ξk+1,i)

 sk

︸ ︷︷ ︸
use action of step on subsampled Hessian

SQN, Byrd et al. (2015)

Is this the right focus? Is there a better way (especially for nonconvex f)?
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Overview

Propose a quasi-Newton method for stochastic (nonconvex) optimization
I exploit self-correcting properties of BFGS-type updates

I Powell (1976)
I Ritter (1979, 1981)
I Werner (1978)
I Byrd, Nocedal (1989)

I properties of Hessians offer useful bounds for inverse Hessians

I motivating convergence theory for convex and nonconvex objectives

I dynamic noise reduction strategy

I limited memory variant

Observed stable behavior and overall good performance
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BFGS-type updates

Inverse Hessian and Hessian approximation updating formulas (sTk vk > 0):

Mk+1 ←
(
I −

vks
T
k

sTk vk

)T
Mk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T
Hk

(
I −

sks
T
kHk

sTkHksk

)
+
vkv

T
k

sTk vk

I Satisfy secant-type equations

Mk+1vk = sk and Hk+1sk = vk,

but these are not relevant for this talk.

I Choosing vk ← yk := gk+1 − gk yields standard BFGS, but in this talk

vk ← βksk + (1− βk)αkyk for some βk ∈ [0, 1].

This scheme is important to preserve self-correcting properties.
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Geometric properties of Hessian update

Consider the matrices (which only depend on sk and Hk, not gk!)

Pk :=
sks

T
kHk

sTkHksk
and Qk := I − Pk.

Both Hk-orthogonal projection matrices (i.e., idempotent and Hk-self-adjoint).

I Pk yields Hk-orthogonal projection onto span(sk).

I Qk yields Hk-orthogonal projection onto span(sk)⊥Hk .

Returning to the Hessian update:

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T
Hk

(
I −

sks
T
kHk

sTkHksk

)
︸ ︷︷ ︸

rank n− 1

+
vkv

T
k

sTk vk︸ ︷︷ ︸
rank 1

I Curvature projected out along span(sk)

I Curvature corrected by
vkv

T
k

sT
k
vk

=

(
vkv

T
k

‖vk‖22

)(
‖vk‖22

vT
k
Mk+1vk

)
(inverse Rayleigh).
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Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 1 (Byrd, Nocedal (1989))

Suppose that, for all k, there exists {η, θ} ⊂ R++ such that

η ≤
sTk vk

‖sk‖22
and

‖vk‖22
sTk vk

≤ θ. (KEY)

Then, for any p ∈ (0, 1), there exist constants {ι, κ, λ} ⊂ R++ such that, for any
K ≥ 2, the following relations hold for at least dpKe values of k ∈ {1, . . . ,K}:

ι ≤
sTkHksk

‖sk‖2‖Hksk‖2
and κ ≤

‖Hksk‖2
‖sk‖2

≤ λ.

Proof technique.

Building on work of Powell (1976), etc., involves bounding growth of

γ(Hk) = tr(Hk)− ln(det(Hk)).
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Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.

Corollary 2

Suppose the conditions of Theorem 1 hold. Then, for any p ∈ (0, 1), there exist
constants {µ, ν} ⊂ R++ such that, for any K ≥ 2, the following relations hold for
at least dpKe values of k ∈ {1, . . . ,K}:

µ‖gk‖22 ≤ gTkMkgk and ‖Mkgk‖22 ≤ ν‖gk‖22

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using
the facts that sk = −αkMkgk and Mk = H−1

k for all k.
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Algorithm SC : Self-Correcting BFGS Algorithm

1: Choose w1 ∈ Rd.
2: Set g1 ≈ ∇f(w1).
3: Choose a symmetric positive definite M1 ∈ Rd×d.
4: Choose a positive scalar sequence {αk}.
5: for k = 1, 2, . . . do
6: Set sk ← −αkMkgk.
7: Set wk+1 ← wk + sk.
8: Set gk+1 ≈ ∇f(wk+1).
9: Set yk ← gk+1 − gk.

10: Set βk ← min{β ∈ [0, 1] : v(β) := βsk + (1− β)αkyk satisfies (KEY)}.
11: Set vk ← v(βk).
12: Set

Mk+1 ←
(
I −

vks
T
k

sTk vk

)T
Mk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk
.

13: end for
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Global convergence theorem

Theorem 3 (Bottou, Curtis, Nocedal (2016))

Suppose that, for all k, there exists a scalar constant ρ > 0 such that

−∇f(wk)TEξk [Mkgk] ≤ −ρ‖∇f(wk)‖22,

and there exist scalars σ > 0 and τ > 0 such that

Eξk [‖Mkgk‖22] ≤ σ + τ‖∇f(wk)‖22.

Then, {E[f(wk)]} converges to a finite limit and

lim inf
k→∞

E[∇f(wk)] = 0.

Proof technique.

Follows from the critical inequality

Eξk [f(wk+1)]− f(wk) ≤ −αk∇f(wk)TEξk [Mkgk] + α2
kLEξk [‖Mkgk‖22].

Also stronger results for strongly convex f ; see paper.
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Reality

The conditions in this theorem cannot be verified in practice.

I They require knowing ∇f(wk).

I They require knowing Eξk [Mkgk] and Eξk [‖Mkgk‖22]

I . . . but Mk and gk are not independent!

I That said, Corollary 2 ensures that they hold with gk = ∇f(wk); recall

µ‖gk‖22 ≤ gTkMkgk and ‖Mkgk‖22 ≤ ν‖gk‖22.

Stabilized variant (SC-s): Loop over (stochastic) gradient computation until

ρ‖ĝk+1‖22 ≤ ĝTk+1Mk+1gk+1

and ‖Mk+1gk+1‖22 ≤ σ + τ‖ĝk+1‖22.

Recompute gk+1, ĝk+1, and Mk+1 until these hold.
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Numerical Experiments: a1a

logistic regression, data a1a, diminishing stepsizes
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Numerical Experiments: rcv1

SC-L and SC-L-s: limited memory variants of SC and SC-s, respectively:

logistic regression, data rcv1, diminishing stepsizes
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Numerical Experiments: mnist

deep neural network, data mnist, diminishing stepsizes
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Contributions

Proposed a quasi-Newton method for stochastic (nonconvex) optimization

I exploited self-correcting properties of BFGS-type updates

I properties of Hessians offer useful bounds for inverse Hessians

I motivating convergence theory for convex and nonconvex objectives

I dynamic noise reduction strategy

I limited memory variant

Observed stable behavior and overall good performance

? F. E. Curtis.

A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization.

In Proceedings of the 33rd International Conference on Machine Learning, New
York, NY, USA, 2016. JMLR.
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