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Stochastic optimization

Consider unconstrained optimization problems of the form

min  f(w),
weRd

where
> f(w) := E[F(w,&)] with expectation w.r.t. distribution of random variable &;
> f continuously differentiable, bounded below, and potentially nonconvex;

> V f Lipschitz continuous with constant L > 0.

Goal: Go beyond stochastic gradient (SG) to design improved methods

Justification?:  with L. Bottou and J. Nocedal (submitted to SIAM Review)
“Optimization Methods for Large-Scale Machine Learning”
http://arxiv.org/abs/1606.04838


http://arxiv.org/abs/1606.04838

Balance between extremes

For deterministic, smooth optimization, a nice balance achieved by quasi-Newton:
Wk1 — wi — o0 Mygg,

where
> ap > 0 is a stepsize;
> gi + Vf(wk);
» {M}} is updated dynamically.
Background on quasi-Newton:
> local rescaling of step (overcome ill-conditioning)
> only first-order derivatives required
> no linear system solves required
> global convergence guarantees (say, with line search)
» superlinear local convergence rate

How can the idea be carried over to a stochastic setting?



Previous work: BFGS-type methods

Much focus on the secant equation (Hy41 ~ Hessian approximation)

Sk ‘= W41 — Wk

Hpy 18, = yp where
i yk =V f(wk 1) = Vf(wy)

and an appropriate replacement for the gradient displacement:

Yk —  Vf(wig1, &) — VIF(wr, &)

use same seed
oLBFGS, Schraudolph et al. (2007)

SGD-QN, Bordes et al. (2009)
RES, Mokhtari & Ribeiro (2014)

or yi < D> VP f(wirt, &) | sk
iesH

use action of step on subsampled Hessian
SQN, Byrd et al. (2015)

Is this the right focus? Is there a better way (especially for nonconvex f)?



Propose a quasi-Newton method for stochastic (nonconvex) optimization

> exploit self-correcting properties of BEGS-type updates
> Powell (1976)

Ritter (1979, 1981)

Werner (1978)

Byrd, Nocedal (1989)

» properties of Hessians offer useful bounds for inverse Hessians

vvyy

> motivating convergence theory for convex and nonconvex objectives
> dynamic noise reduction strategy
> limited memory variant

Observed stable behavior and overall good performance
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BFGS-type updates

Inverse Hessian and Hessian approximation updating formulas (sg’vk > 0):

T
T T T
Vg S Vg S SKS
Mygr + (T — 2 ) M (I- 75|+ £
S1, Vk 53 Vk S3, Vk

T
skngk skngk vkvg
Hip1 < |- 1— Hy\I— —7— | + —F
;. Hisk ;. Hisk S Vk

> Satisfy secant-type equations
My 1vi = s, and Hpyis, = vy,

but these are not relevant for this talk.

> Choosing v = Yk = gr+1 — gk yields standard BFGS, but in this talk
v < Brsk + (1 — Br)aryy for some S € [0,1].

This scheme is important to preserve self-correcting properties.



Geometric properties of Hessian update

Consider the matrices (which only depend on s and Hy, not gi!)

T
sksi H
Py = 73 k7K and Qi :=1— Pg.
Sk Hk Sk
Both Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
» Py yields Hy-orthogonal projection onto span(sg).

> Qp yields Hyp-orthogonal projection onto span(sk)LHk .



Geometric properties of Hessian update

Consider the matrices (which only depend on s and Hy, not gi!)

T
sksi H
Py = 73 k7K and Qi :=1— Pg.
Sk Hk Sk
Both Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
» Py yields Hy-orthogonal projection onto span(sg).
> Qp yields Hyp-orthogonal projection onto span(sk)LHk .

Returning to the Hessian update:

T
SkSZHk SkSng Ukvg‘

R e E A
sy, Hisk sy, Hisk S}, Vk
~——
rank n — 1 rank 1

» Curvature projected out along span(sy)

T T 2
Vv VU v . .
» Curvature corrected by —k-k = ( kZk T” k2 (inverse Rayleigh).
Sk Vk llvells v Mip1vg



Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?
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Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 1 (Byrd, Nocedal (1989))
Suppose that, for all k, there exists {n,0} C R, , such that

Sk Uk llvw 113

< an <é. (KEY)
lIskI2 stvg

Then, for any p € (0,1), there exist constants {¢,k, \} C R, such that, for any
K > 2, the following relations hold for at least [pK| values of k € {1,...,K}:

T
sy, Hy sk

- | Hi sl
= Tswll2lHsilz

and k< ——= < A
llskll2

Proof technique.

Building on work of Powell (1976), etc., involves bounding growth of

v(Hy) = tr(Hy) — In(det(Hy)).
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Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.
Corollary 2

Suppose the conditions of Theorem 1 hold. Then, for any p € (0, 1), there exist
constants {u, v} C R, | such that, for any K > 2, the following relations hold for
at least [pK'| values of k € {1,...,K}:

ullgrll3 < g Mg and |Migrll3 < viigell3

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using
the facts that s = —ap Mpgr and My = H,:l for all k.
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Algorithm SC : Self-Correcting BFGS Algorithm

Choose w; € R4,
Set g1 = V f(w1).
Choose a symmetric positive definite M; € R4x4,
Choose a positive scalar sequence {ay}.
for k=1,2,... do
Set Sk 7akngk.
Set wyy1 — wg + 5.
Set gpt+1 = Vf(wiy1).
Set yr < gr+1 — gk-
Set By <~ min{B € [0,1] : v(B) := Bsk + (1 — B)akyk satisfies (KEY)}.
Set vg <+ v(Bk)-

Set .
T T T
Vg S Vg S SkS
Mgy« | T — —E My [T — 5 |+ =2
Sk’Uk Sk’l)k skvk

© P NS q BN

= o e
N o= O

13: end for
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Global convergence theorem

Theorem 3 (Bottou, Curtis, Nocedal (2016))

Suppose that, for all k, there exists a scalar constant p > 0 such that
—V f(wi) Eg, [Mrg] < —pllV.f (w13,
and there exist scalars o > 0 and T > 0 such that
Ee, [| Mygr3] < o+ 7|V f (wi)[13-
Then, {E[f(wg)]} converges to a finite limit and

l}crginfE[Vf(wk)] =0.

Proof technique.

Follows from the critical inequality

Ee, [f (wit1)] — f(wi) < —apV f(wi) TEe, [Mrgr] + i LEe, [| Mr gk 13].

Also stronger results for strongly convex f; see paper.



Reality

The conditions in this theorem cannot be verified in practice.
» They require knowing V f(wy).
» They require knowing E¢, [M}g;] and Ee, [||Mjgi||3]
> ...but My and g are not independent!
» That said, Corollary 2 ensures that they hold with g, = V f(wy); recall

wllgrlls < gf Mgy and || Mygrll3 < vligrl3.




Reality

The conditions in this theorem cannot be verified in practice.
» They require knowing V f(wy).
» They require knowing E¢, [M}g;] and Ee, [||Mjgi||3]
> ...but My and g are not independent!
» That said, Corollary 2 ensures that they hold with g, = V f(wy); recall

wllgrlls < gf Mgy and || Mygrll3 < vligrl3.

Stabilized variant (SC-s): Loop over (stochastic) gradient computation until

pllar+1l3 < G 1 Mkr19x41
and || My y19x11)3 < 0+ 7llgrs1ll3-

Recompute gi41, gr+1, and My until these hold.



Numerical Experiments: ala
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Numerical Experimen

SC-L and SC-L-s: limited memory variants of SC and SC-s, respectively:
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Numerical Experiments: mnist
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Contributions

Proposed a quasi-Newton method for stochastic (nonconvex) optimization
» exploited self-correcting properties of BFGS-type updates
» properties of Hessians offer useful bounds for inverse Hessians
» motivating convergence theory for convex and nonconvex objectives
» dynamic noise reduction strategy
> limited memory variant

Observed stable behavior and overall good performance

* F. E. Curtis.

A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization.

In Proceedings of the 33rd International Conference on Machine Learning, New
York, NY, USA, 2016. JMLR.
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