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Nonsmooth optimization

Consider unconstrained optimization problems of the form

min
x∈Rn

f(x),

where f is

I locally Lipschitz in Rn and

I differentiable in an open, dense subset of Rn,

but

I nonsmooth and (potentially) nonconvex.
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Balance between first- and second-order methods

For deterministic, smooth optimization, a nice balance achieved by quasi-Newton:

xk+1 ← xk − αkWkgk,

where

I αk > 0 is a stepsize;

I gk ← ∇f(xk);

I {Wk} is updated dynamically.

We all know:

I local rescaling based on iterate/subgradient displacements

I only first-order derivatives required

I no linear system solves required

I global convergence guarantees (say, with line search)

I superlinear local convergence rate

How can we carry these ideas to nonsmooth settings?

Self-Correcting Variable-Metric Algorithms for Nonsmooth Optimization 5 of 23



Contribution Properties Proposed Framework Numerical Experiments Summary

What has been done?

Many have observed improved performance with quasi-Newton schemes

“Unadulterated” BFGS

I Lemaréchal (1982)

I Lewis, Overton (2012)

BFGS (with restricted updates)

I Haarala, Miettinen, Mäkelä (2004)

I Curtis, Que (2015)

Issue: global convergence guarantees muddled by

I “Hessian” approximations† tending to singularity

I intertwined {xk}, {αk}, {gk}, and {Wk}

To our knowledge, none have tried to exploit self-correcting properties of BFGS

†“Hessian” and “inverse Hessian” used loosely in nonsmooth settings
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Contribution

Propose a quasi-Newton method for nonsmooth optimization
I unifying framework covering

I cutting plane / bundle methods (convex only)
I gradient sampling methods (nonconvex)

I exploit self-correcting properties of BFGS-type updates
I Powell (1976)
I Ritter (1979, 1981)
I Werner (1978)
I Byrd, Nocedal (1989)

I properties of Hessians offer useful bounds for inverse Hessians

I global convergence guarantees

I improved practical performance

Remember: Forget about superlinear convergence (not relevant here!)
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BFGS-type updates

Inverse Hessian and Hessian approximation updating formulas (sTk vk > 0):

Wk+1 ←
(
I −

vks
T
k

sTk vk

)T
Wk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T
Hk

(
I −

sks
T
kHk

sTkHksk

)
+
vkv

T
k

sTk vk

I These satisfy secant-type equations

Wk+1vk = sk and Hk+1sk = vk,

but these are not relevant for this talk.

I Choosing vk ← yk := gk+1 − gk yields standard BFGS, but we consider

vk ← βksk + (1− βk)ỹk for some βk ∈ [0, 1] and ỹk ∈ Rn.

This scheme is important to preserve self-correcting properties.
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Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on sk and Hk, not gk!)

Pk :=
sks

T
kHk

sTkHksk
and Qk := I − Pk.

Both Hk-orthogonal projection matrices (i.e., idempotent and Hk-self-adjoint).

I Pk yields Hk-orthogonal projection onto span(sk).

I Qk yields Hk-orthogonal projection onto span(sk)⊥Hk .

Returning to the Hessian update:

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T
Hk

(
I −

sks
T
kHk

sTkHksk

)
︸ ︷︷ ︸

rank n− 1

+
vkv

T
k

sTk vk︸ ︷︷ ︸
rank 1

I Curvature projected out along span(sk)

I Curvature corrected by
vkv

T
k

sT
k
vk

=

(
vkv

T
k

‖vk‖22

)(
‖vk‖22

vT
k
Wk+1vk

)
(inverse Rayleigh).
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Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 1 (Byrd, Nocedal (1989))

Suppose that, for all k, there exists {η, θ} ⊂ R++ such that

η ≤
sTk vk

‖sk‖22
and

‖vk‖22
sTk vk

≤ θ. (?)

Then, for any p ∈ (0, 1), there exist constants {ι, κ, λ} ⊂ R++ such that, for any
K ≥ 2, the following relations hold for at least dpKe values of k ∈ {1, . . . ,K}:

ι ≤
sTkHksk

‖sk‖2‖Hksk‖2
and κ ≤

‖Hksk‖2
‖sk‖2

≤ λ.

Proof technique.

Building on work of Powell (1976), involves bounding growth of

γ(Hk) = tr(Hk)− ln(det(Hk)).
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Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.

Corollary 2

Suppose the conditions of Theorem 1 hold. Then, for any p ∈ (0, 1), there exist
constants {µ, ν} ⊂ R++ such that, for any K ≥ 2, the following relations hold for
at least dpKe values of k ∈ {1, . . . ,K}:

µ‖gk‖22 ≤ gTkWkgk and ‖Wkgk‖22 ≤ ν‖gk‖22

Here gk is the vector such that the iterate displacement is

xk+1 − xk = sk = −Wkgk

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using
the facts that sk = −Wkgk and Wk = H−1

k for all k.
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Subproblems in nonsmooth optimization algorithms

With sets of points, scalars, and (sub)gradients

{xk,j}mj=1, {fk,j}mj=1, {gk,j}mj=1,

nonsmooth optimization methods involve the primal subproblem

min
x∈Rn

(
max

j∈{1,...,m}
{fk,j + gTk,j(x− xk,j)}+ 1

2
(x− xk)THk(x− xk)

)
s.t. ‖x− xk‖ ≤ δk,

(P)

but, with Gk ← [gk,1 · · · gk,m], it is typically more efficient to solve the dual

sup
(ω,γ)∈Rm

+×Rn
− 1

2
(Gkω + γ)TWk(Gkω + γ) + bTk ω − δk‖γ‖∗

s.t. 1Tmω = 1.

(D)

The primal solution can then be recovered by

x∗k ← xk −Wk (Gkωk + γk)︸ ︷︷ ︸
g̃k

.
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Algorithm Self-Correcting BFGS for Nonsmooth Optimization

1: Choose x1 ∈ Rn.
2: Choose a symmetric positive definite W1 ∈ Rn×n.
3: Choose α ∈ (0, 1)
4: for k = 1, 2, . . . do
5: Solve (P)–(D) such that setting

Gk ←
[
gk,1 · · · gk,m

]
,

sk ← −Wk(Gkωk + γk),

and xk+1 ← xk + sk

6: yields

f(xk+1) ≤ f(xk)− 1
2
α(Gkωk + γk)TWk(Gkωk + γk).

7: Choose ỹk ∈ Rn.
8: Set βk ← min{β ∈ [0, 1] : v(β) := βsk + (1− β)ỹk satisfies (?)}.
9: Set vk ← v(βk).

10: Set

Wk+1 ←
(
I −

vks
T
k

sTk vk

)T
Wk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk
.

11: end for
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Instances of the framework

Cutting plane / bundle methods

I Points added incrementally until sufficient decrease obtained

I Finite number of additions until accepted step

Gradient sampling methods

I Points added randomly / incrementally until sufficient decrease obtained

I Sufficient number of iterations with “good” steps

In any case: convergence guarantees require {Wk} to be uniformly positive
definite and bounded on a sufficient number of accepted steps
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Matlab implementation

Random instances of max-of-affine plus strongly convex quadratic, i.e.,

f(x) = max
i∈{1,...,m}

{aTi x+ bi}+ cT x+ 1
2
xTQx

with n = m = 100; varying numbers of “active” affine functions at x∗ = 0

Algorithms:

BFGS : BFGS w/ Wolfe line search
B : Bundle method (guarantees)
B-SC : . . . w/ self-correcting BFGS (guarantees)
B-free : . . . w/ unadulterated BFGS
GS : Gradient sampling (guarantees)
GS-SC : . . . w/ self-correcting BFGS (guarantees)
GS-free : . . . w/ unadulterated BFGS

Self-Correcting Variable-Metric Algorithms for Nonsmooth Optimization 18 of 23



Contribution Properties Proposed Framework Numerical Experiments Summary

Relative performance measures: κ(Q) = 100

function evaluations:

# act. BFGS B B-SC B-free GS GS-SC GS-free

4 1 2.7861 1.6154 0.6976 79.111 1.0801 1.0801
8 1 1.9192 1.2771 1.0580 158.698 1.0149 1.0127
12 1 1.4433 1.0293 1.0462 218.103 1.0975 1.0975
16 1 0.9760 0.7573 0.9222 241.187 1.0042 1.0042

gradient evaluations:

# act. BFGS B B-SC B-free GS GS-SC GS-free

4 1 3.4729 2.0136 0.8695 16.001 1.0858 1.0858
8 1 3.0148 2.0063 1.6620 32.704 1.0406 1.0375
12 1 2.6174 1.8667 1.8973 47.674 1.1433 1.1433
16 1 1.9266 1.4950 1.8205 54.882 1.0098 1.0098

I GS very poor, but adding BFGS yields great improvements

I B-SC and B-free better than B

I self-correcting BFGS improves both bundle and gradient sampling methods
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Relative performance measures: κ(Q) = 1000

function evaluations:

# act. BFGS B B-SC B-free GS GS-SC GS-free

4 1 5.9193 5.5070 0.4741 (3) 111.425 0.9806 0.9831
8 1 3.8184 3.6010 0.5912 (2) 158.768 1.0490 1.0494
12 1 3.2655 3.0035 1.0220 (0) 193.947 1.0008 1.0235
16 1 2.9943 2.8077 1.4598 (6) 303.429 0.9943 0.9943

gradient evaluations:

# act. BFGS B B-SC B-free GS GS-SC GS-free

4 1 6.9029 6.4220 0.5529 (3) 27.890 0.9924 0.9945
8 1 4.7267 4.4575 0.7318 (2) 39.922 1.0424 1.0398
12 1 4.3938 4.0412 1.3751 (0) 47.516 1.0026 1.0277
16 1 4.4746 4.1958 2.1814 (6) 72.748 0.9930 0.9930

I similar conclusions, but B-free now unreliable (11 failures of 80 problems)
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Minimum and maximum eigenvalues
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Contributions

Proposed a quasi-Newton method for nonsmooth optimization
I unifying framework covering

I cutting plane / bundle methods (convex only)
I gradient sampling methods (nonconvex)

I exploit self-correcting properties of BFGS-type updates

I properties of Hessians offer useful bounds for inverse Hessians

I global convergence guarantees
I improved practical performance

I different effects in cutting plane / bundle vs. gradient sampling...
I worthwhile to explore this further...

Paper forthcoming...
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