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Nonsmooth optimization

Consider unconstrained optimization problems of the form

min f(z),

where f is

» locally Lipschitz in R™ and

» differentiable in an open, dense subset of R™,
but

» nonsmooth and (potentially) nonconvex.




Balance between first- and second-order methods

For deterministic, smooth optimization, a nice balance achieved by quasi-Newton:
Tp41 < Tk — 0 Wigk,

where
> ap > 0 is a stepsize;
> gr «— Vi(zp);
> {W} is updated dynamically.
We all know:
> local rescaling based on iterate/subgradient displacements
> only first-order derivatives required
> no linear system solves required
> global convergence guarantees (say, with line search)
» superlinear local convergence rate

How can we carry these ideas to nonsmooth settings?




What has been done?

Many have observed improved performance with quasi-Newton schemes

“Unadulterated” BFGS
> Lemaréchal (1982)
> Lewis, Overton (2012)
BFGS (with restricted updates)
» Haarala, Miettinen, Makeld (2004)
> Curtis, Que (2015)

Issue: global convergence guarantees muddled by
> “Hessian” approximations’ tending to singularity

> intertwined {zx}, {ax}, {gr}, and {W}}

To our knowledge, none have tried to exploit self-correcting properties of BFGS

T “Hessian” and “inverse Hessian” used loosely in nonsmooth settings
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Contribution

Propose a quasi-Newton method for nonsmooth optimization
» unifying framework covering

> cutting plane / bundle methods (convex only)
> gradient sampling methods (nonconvex)

v

exploit self-correcting properties of BFGS-type updates

> Powell (1976)

Ritter (1979, 1981)
Werner (1978)

Byrd, Nocedal (1989)

vyvyy

» properties of Hessians offer useful bounds for inverse Hessians

v

global convergence guarantees

v

improved practical performance

Remember: Forget about superlinear convergence (not relevant here!)
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BFGS-type updates

Inverse Hessian and Hessian approximation updating formulas (sg’vk > 0):

T
T T T
Vg S Vg S SkS
Wigr+ (I— 5| Wi |[I—-—FE)+—E
53 Vk 81, Vk 53, Vk

T
skngk skngk vkvg
Hypr | — 57— Hy\I— 57— | +—
sy, Hy sk s, Hysk Sj. Vk

> These satisfy secant-type equations
Wiiivk = s, and Hyy18k = vg,

but these are not relevant for this talk.

» Choosing v < Yk = gr+1 — gk yields standard BFGS, but we consider
v < Brsk + (1 — Br)yr for some By € [0,1] and g € R™.

This scheme is important to preserve self-correcting properties.
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Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on s and Hy, not gi!)

T
sksi H
Py = 73 k7K and Qi :=1— Pg.
Sk Hk Sk
Both Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
» Py yields Hy-orthogonal projection onto span(sg).
)

> Qy yields Hy-orthogonal projection onto span(sy,




Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on s and Hy, not gi!)

T
sksi H
Py = 73 k7K and Qi :=1— Pg.
Sk Hk Sk
Both Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
» Py yields Hy-orthogonal projection onto span(sg).
> Qp yields Hyp-orthogonal projection onto span(sk)LHk .

Returning to the Hessian update:

T
SkSZHk SkSng Ukvg‘

R e E A
sy, Hisk sy, Hisk S}, Vk
~——
rank n — 1 rank 1

» Curvature projected out along span(sy)

T T 2
Vv VU v . .
» Curvature corrected by —k-k = ( kZk T” k2 (inverse Rayleigh).
Sk Vk llvells v Wet1vk
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Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?




Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 1 (Byrd, Nocedal (1989))
Suppose that, for all k, there exists {n,0} C R, , such that

Sk Uk llvw 113

< an <é. (*)
lIskI2 stvg

Then, for any p € (0,1), there exist constants {¢,k, \} C R, such that, for any
K > 2, the following relations hold for at least [pK| values of k € {1,...,K}:

T
sy, Hy sk

- | Hi sl
= Tswll2lHsilz

and k< ——= < A
llskll2

Proof technique.

Building on work of Powell (1976), involves bounding growth of

v(Hy) = tr(Hy) — In(det(Hy)).




Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.
Corollary 2

Suppose the conditions of Theorem 1 hold. Then, for any p € (0,1), there exist
constants {p,v} C R, . such that, for any K > 2, the following relations hold for
at least [pK'| values of k € {1,...,K}:

_ _T _ _ _
wlgells < 3 Wegy, and [[Wigells < vllgell3

Here g, is the vector such that the iterate displacement is

Tpt1 — T = S = —WgGp

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using
the facts that s, = —Wyg;, and Wy, = H,:l for all k.
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Subproblems in nonsmooth optimization algorithms

With sets of points, scalars, and (sub)gradients

{zr e Afeadien Aoksdien

nonsmooth optimization methods involve the primal subproblem

S, (jG{IR?j)Sm} Ui + 9,50 = 2} + 3@ — o) Hilo - xk))

P)
st ||z — zgll < Ok,
but, with G < [gr,1 - gr,m], it is typically more efficient to solve the dual
sup = 2(Grw +NT Wi (Grw +7) + b w — Skl
(w,7) ERT XR™ (D)

s.t. le;w =1.

The primal solution can then be recovered by

xy o — Wi (Grwi + 1) -
—_—




Algorithm Self-Correcting BFGS for Nonsmooth Optimization

1: Choose z1 € R™.

2: Choose a symmetric positive definite W7 € R"X™,
3: Choose a € (0,1)

4: for k=1,2,... do

5: Solve (P)—(D) such that setting

G + [gk,l cee gk,m] )
sk —Wi(Grwi + k),
and Tpy1 < Tk + Sk

6: yields
F(@rg1) < flar) — 3a(Grwr + 1) " Wi (Grwr + Yk)-
7 Choose g, € R™.

8: Set B < min{8 € [0,1] : v(B) := Bsk + (1 — B)yy. satisfies (x)}.
9: Set vg < v(Bk)-

10: Set
vksT r ’UkST SkST
Wipr < (1— 55 ) Wi [I— 5 )+ 5.
Sp Vk Sp, Vk Sp Vk

11: end for




Instances of the framework

Cutting plane / bundle methods
» Points added incrementally until sufficient decrease obtained
» Finite number of additions until accepted step
Gradient sampling methods
» Points added randomly / incrementally until sufficient decrease obtained

» Sufficient number of iterations with “good” steps

In any case: convergence guarantees require {Wy} to be uniformly positive
definite and bounded on a sufficient number of accepted steps
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Matlab implementation

Random instances of max-of-affine plus strongly convex quadratic, i.e.,

flx) = {Ilnax }{a?z +b}+cTe+ %xTQx
1e{l,....m

with n = m = 100; varying numbers of “active” affine functions at z, =0

Algorithms:
BFGS : BFGS w/ Wolfe line search
B : Bundle method (guarantees)
B-SC ¢ ...w/ self-correcting BFGS  (guarantees)
B-free ¢ ...w/ unadulterated BFGS
GS : Gradient sampling (guarantees)
GS-SC ¢ ...w/ self-correcting BFGS  (guarantees)

GS-free : ...w/ unadulterated BFGS
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Relative performance measures: x(Q) = 100

function evaluations:

# act. BFGS B B-SC B-free GS GS-SC GS-free
4 1 2.7861 1.6154 0.6976 79.111 1.0801 1.0801
8 1 1.9192 1.2771 1.0580 158.698 1.0149 1.0127
12 1 1.4433 1.0293 1.0462 218.103 1.0975 1.0975
16 1 0.9760 0.7573 0.9222 241.187 1.0042 1.0042
gradient evaluations:
# act. BFGS B B-SC B-free GS GS-SC GS-free
4 1 | 3.4729 2.0136 0.8695 16.001 1.0858 1.0858
8 1 3.0148 2.0063 1.6620 32.704 1.0406 1.0375
12 1 2.6174 1.8667 1.8973 47.674 1.1433 1.1433
16 1 1.9266 1.4950 1.8205 54.882 1.0098 1.0098
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# act. BFGS B B-SC B-free GS GS-SC GS-free
4 1 2.7861 1.6154 0.6976 79.111 1.0801 1.0801
8 1 1.9192 1.2771 1.0580 158.698 1.0149 1.0127
12 1 1.4433 1.0293 1.0462 218.103 1.0975 1.0975
16 1 0.9760 0.7573 0.9222 241.187 1.0042 1.0042
gradient evaluations:
# act. BFGS B B-SC B-free GS GS-SC GS-free
4 1 | 3.4729 2.0136 0.8695 16.001 1.0858 1.0858
8 1 3.0148 2.0063 1.6620 32.704 1.0406 1.0375
12 1 2.6174 1.8667 1.8973 47.674 1.1433 1.1433
16 1 1.9266 1.4950 1.8205 54.882 1.0098 1.0098

» GS very poor, but adding BFGS yields great improvements
» B-SC and B-free better than B
> self-correcting BFGS improves both bundle and gradient sampling methods




Relative performance measures: (@) = 1000

function evaluations:

# act. BFGS B B-SC B-free GS GS-SC GS-free
4 1 5.9193  5.5070  0.4741 (3) 111.425  0.9806 0.9831

8 1 3.8184  3.6010 0.5912 (2) 158.768 1.0490 1.0494
12 1 3.2655 3.0035 1.0220 (0) 193.947 1.0008 1.0235
16 1 2.9943 2.8077 1.4598 (6) 303.429 0.9943 0.9943

gradient evaluations:

# act. BFGS B B-SC B-free GS GS-SC GS-free
4 1 | 6.9029 6.4220 0.5529 (3) 27.890  0.9924 0.9945

8 1 4.7267 4.4575 0.7318 (2) 39.922 1.0424 1.0398

12 1 4.3938 4.0412 1.3751 (0) 47.516 1.0026 1.0277
16 1 4.4746 4.1958 2.1814 (6) 72.748 0.9930 0.9930

> similar conclusions, but B-free now unreliable (11 failures of 80 problems)

— 0 of



Minimum and maximum eigenvalues

bfgs




Minimum and maximum eigenvalues

bundle-bfgs bundle-bfgs-free




Minimum and maximum eigenvalues
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Contributions

Proposed a quasi-Newton method for nonsmooth optimization
» unifying framework covering

> cutting plane / bundle methods (convex only)
> gradient sampling methods (nonconvex)

v

exploit self-correcting properties of BFGS-type updates

> properties of Hessians offer useful bounds for inverse Hessians

v

global convergence guarantees

v

improved practical performance

> different effects in cutting plane / bundle vs. gradient sampling...
» worthwhile to explore this further...

Paper forthcoming...
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