
Gradient Sampling (GS) Adaptive Variable-Metric GS Numerical Results Final Remarks

Nonsmooth Optimization via Gradient Sampling

Frank E. Curtis, Lehigh University

involving joint work with

Michael L. Overton, New York University
Xiaocun Que, Lehigh University

Foundations of Computational Mathematics (FoCM) Conference

July 6, 2011

Nonsmooth Optimization via Gradient Sampling 1 of 36



Gradient Sampling (GS) Adaptive Variable-Metric GS Numerical Results Final Remarks

Outline

Gradient Sampling (GS)

Adaptive Variable-Metric GS

Numerical Results

Final Remarks

Nonsmooth Optimization via Gradient Sampling 2 of 36



Gradient Sampling (GS) Adaptive Variable-Metric GS Numerical Results Final Remarks

Outline

Gradient Sampling (GS)

Adaptive Variable-Metric GS

Numerical Results

Final Remarks

Nonsmooth Optimization via Gradient Sampling 3 of 36



Gradient Sampling (GS) Adaptive Variable-Metric GS Numerical Results Final Remarks

Unconstrained optimization of nonsmooth functions

Consider the unconstrained problem

min
x

f (x)

where f is locally Lipschitz and continuously differentiable in (dense) D ⊂ Rn

I Let
B(x ′, ε) := {x | ‖x − x ′‖ ≤ ε}

I x ′ is stationary if

0 ∈ ∂f (x ′) =
\
ε>0

cl conv∇f (B(x ′, ε) ∩ D)

I x ′ is ε-stationary if

0 ∈ ∂f (x ′, ε) = cl conv ∂f (B(x ′, ε))
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Gradient sampling (GS) idea

At xk , let xk0 := xk and sample {xk1, . . . , xkp} ⊂ B(xk , ε) ∩ D, yielding

Xk :=
˘
xk0 xk1 · · · xkp

¯
(sample points)

Gk :=
ˆ
gk0 gk1 · · · gkp

˜
(sample gradients)

Then, the ε-subdifferential is approximated by the convex hull of nearby gradients:

∂f (xk , ε) = cl conv ∂f (B(xk , ε))

≈ conv{gk0, gk1, . . . , gkp}

I Approximate ε-steepest descent step obtained from

min
λ

1
2
‖Gkλ‖2

s.t. eTλ = 1, λ ≥ 0

That is, dk = −Gkλk is the projection of 0 onto conv{gk0, gk1, . . . , gkp}
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GS method

for k = 0, 1, 2, . . .

I Sample p ≥ n + 1 points {xk1, . . . , xkp} ⊂ B(xk , ε) ∩ D
I Compute dk ← −Gkλk by solving the quadratic optimization (QO) subproblem

min
λ

1
2
‖Gkλ‖2

s.t. eTλ = 1, λ ≥ 0

I Backtrack from αk ← 1 to satisfy the sufficient decrease condition

f (xk + αkdk ) ≤ f (xk )− ηαk‖dk‖2

I Update xk+1 ≈ xk + αkdk (to ensure xk+1 ∈ D)

I If ‖dk‖2 ≤ ε2, then reduce ε
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Global convergence of GS

Theorem: Let f be locally Lipschitz and continuously differentiable on an open dense
D ⊂ Rn. Then, w.p.1, f (xk ) ↓ ∞ or every cluster point of {xk} is stationary for f

(See Burke, Lewis, and Overton (2005) and Kiwiel (2007))
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GS illustration

min
x

f (x) = 10|x2 − x2
1 |+ (1− x1)2 at xk = (−1, 1

2
)
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GS illustration

min
x

f (x) = 10|x2 − x2
1 |+ (1− x1)2 at xk = (1.1, 0.9)
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Global convergence of GS

Recall the GS (dual) subproblem:

max
λ

f (xk )− 1
2
‖Gkλ‖2

s.t. eTλ = 1, λ ≥ 0

Here is the corresponding primal subproblem:

min
d

q(d ; Xk ) := f (xk ) + max
x∈Xk

{∇f (x)T d}+ 1
2
‖d‖2

Solving this subproblem yields

∆q(dk ; Xk ) := q(0; Xk )− q(dk ; Xk ) = 1
2
‖dk‖2

Also consider the subproblem

min
d
eq(d ; x ′, ε) := f (x ′) + max

x∈B(x′,ε)∩D
{∇f (x)T d}+ 1

2
‖d‖2
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Global convergence of GS

Let

S(xk , ε) =

pY
1

(B(xk , ε) ∩ D)

and
T (xk , ε, x

′, ω) = {Xk ∈ S(xk , ε) | ∆q(dk ; Xk ) ≤ ∆eq(d ′; x ′, ε) + ω}

Lemma: For any ω > 0, there exists ζ > 0 and a nonempty set T such that for all
xk ∈ B(x ′, ζ) we have T ⊂ T (xk , ε, x

′, ω)

(That is, in a sufficiently small neighborhood of x ′, there exists a sample set revealing
∆eq(d ′; x ′, ε) to arbitrary accuracy)

Sketch of proof: Follows mainly from Carathéodory’s theorem
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Global convergence of GS

Theorem: Let f be locally Lipschitz and continuously differentiable on an open dense
D ⊂ Rn. Then, w.p.1, f (xk ) ↓ ∞ or every cluster point of {xk} is stationary for f

Sketch of proof: If ε 9 0, then for all large k

∆q(dk ; Xk ) = 1
2
‖dk‖2 > ε2/2

However, with probability 1, this will not occur

I ε 9 0 implies xk → x ′. If x ′ is ε-stationary, then w.p.1 we will obtain a sample
set yielding ∆q(dk ; Xk ) ≤ ε2/2, contradicting the above

I ε 9 0 also implies αk → 0. If x ′ is not ε-stationary, then w.p.1 we obtain a
subsequence with αk bounded away from zero, contradicting αk → 0

Thus, with probability 1, ε→ 0 and any cluster point x ′ is stationary for φ(x ; ρ)

Nonsmooth Optimization via Gradient Sampling 14 of 36



Gradient Sampling (GS) Adaptive Variable-Metric GS Numerical Results Final Remarks

Practical issues

Practical limitations of GS:

I p ≥ n + 1 gradient evaluations per iteration

I All subproblems solved from scratch

I Behaves like steepest descent(?)

Proposed solutions:

I Adaptive sampling; O(1) gradients per iteration: Kiwiel (2010)

I Warm-started subproblem solves

I “Hessian” approximations for quadratic term
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Adaptive sampling (AGS)

At xk , we had

Xk :=
ˆ
xk0 xk1 · · · xkp

˜
(sample points)

Gk :=
ˆ
gk0 gk1 · · · gkp

˜
(sample gradients)

At xk+1, we

I maintain sample points still within radius ε

I throw out gradients outside of radius

I sample 1 (or some) new gradients

How can we maintain global convergence?

If sample size is at least n + 1, then proceed as usual; else, truncate line search
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Primal-dual pair of subproblems

Recall the GS (dual) subproblem:

max
λ

f (xk )− 1
2
λT GT

k Gkλ

s.t. eTλ = 1, λ ≥ 0

Here is the corresponding primal subproblem:

min
d

f (xk ) + max
x∈Xk

{∇f (x)T d}+ 1
2
dT d

How should Hk be chosen?
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Primal-dual pair of subproblems (variable-metric)

Recall the GS (dual) subproblem:

max
λ

f (xk )− 1
2
λT GT

k HkGkλ

s.t. eTλ = 1, λ ≥ 0

Here is the corresponding primal subproblem:

min
d

f (xk ) + max
x∈Xk

{∇f (x)T d}+ 1
2
dT H−1

k d

How should Hk be chosen?
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Quasi-Newton updating (AGS-BFGSa)

Consider the model

mk+1(d) = f (xk+1) +∇f (xk+1)T d + 1
2
dT H−1

k+1d

Matching the gradients of f and mk+1 at xk yields the secant equation

Hk+1(∇f (xk+1)−∇f (xk )) = xk+1 − xk

Minimizing changes in {Hk} yields the well-known BFGS update

Questions:

I Effective within GS?

I Making best use of info?

I Ill-conditioning: Bad or good?
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Quasi-Newton updating (AGS-BFGSb)

Consider BFGS, but instead of updating between iterations, update during

I For each k, initialize Hk ← I

I Imagine moving along each dki = xki − xk and apply BFGS update
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Quasi-Newton updating (AGS-BFGSc)

Our model is actually more like

mk (d) = f (xk ) + max
x∈Xk

{∇f (x)T d}+ 1
2
dT H−1

k+1d

If we knew the optimal dual solution in advance, then mk shares a minimizer with

emk (d) = f (xk ) + λT
k GT

k d + 1
2
dT H−1

k+1d

Matching the gradients of f and mk at xk−1 yields the secant equation

Hk+1(Gkλk − Gk−1λk−1) = xk − xk−1

Minimizing changes in {Hk} yields a BFGS-like update
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Overestimation (AGS-over)

Suppose we also have function values at sample points

I Try to choose Hk so that the following model overestimates f :

mk (d) = f (xk ) + max
x∈Xk

{∇f (x)T d}+ 1
2
dT H−1

k d

I If mk (dki ) < f (xki ), then “lift” Hk so that mk (dki ) = f (xki )

I Updates we use have the form Hk ← MT HkM where

M =
1

(1 + γ)1/n

 
I +

γ

dT
ki dki

dkid
T
ki

!
I This update ensures contours maintain the same volume
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Implementation and test details

I Matlab implementation

I QO solver adapted from Kiwiel (1986)

I Test problems from Haarala (2004) with n = 10

I GS: p = 2n gradients per iteration

I AGS: 2 gradient evaluations per iteration

I AGS: p = 2n required for line search

I Optimality tolerance set to 1e-4
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GS vs. AGS: Iterations
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GS vs. AGS: Gradient evaluations
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Hessian options: Iterations
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Hessian options: Gradient evaluations
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GS vs. AGS vs. AGS-over: Iterations
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GS vs. AGS vs. AGS-over: Gradient evaluations

Nonsmooth Optimization via Gradient Sampling 33 of 36



Gradient Sampling (GS) Adaptive Variable-Metric GS Numerical Results Final Remarks

Outline

Gradient Sampling (GS)

Adaptive Variable-Metric GS

Numerical Results

Final Remarks

Nonsmooth Optimization via Gradient Sampling 34 of 36



Gradient Sampling (GS) Adaptive Variable-Metric GS Numerical Results Final Remarks

Summary

We set out to improve the practicality of GS methods

I We aimed to reduce overall gradient evaluations

I We aimed to reduce the cost of the subproblem solves

I We aimed to maintain convergence guarantees

These goals can be achieved with adaptive sampling and variable-metric variants

I O(1) gradient evaluations required per iteration

I Subproblem solver warm-started effectively

I Hessian updating schemes improve overall iteration count
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Future work

I C++ implementation

I Convergence theory for Hk � 0 (essentially finished)

I Hessian update that maintains Hk � 0(?)

I Extend to SQP methods for constrained problems (Curtis and Overton, 2011(?))
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