Self-Correcting Variable-Metric Algorithms

Frank E. Curtis, Lehigh University

involving joint work with

Daniel P. Robinson, Johns Hopkins University

Workshop on Nonlinear Optimization Algorithms and Industrial Applications Fields Institute, Toronto, Ontario, Canada

4 June 2016

Outline		

Motivation

Self-Correcting Properties of BFGS-type Updating

Stochastic, Nonconvex Optimization

Deterministic, Nonsmooth Optimization

Summary

Outline		

Motivation

Self-Correcting Properties of BFGS-type Updating

Stochastic, Nonconvex Optimization

Deterministic, Nonsmooth Optimization

Summary

Unconstrained optimization

Consider unconstrained optimization problems of the form

 $\min_{x\in\mathbb{R}^n} f(x).$

Deterministic, smooth

▶ gradient \rightarrow Newton methods

Stochastic, smooth

 \blacktriangleright stochastic gradient \rightarrow batch Newton methods

Deterministic, nonsmooth

 \blacktriangleright subgradient \rightarrow bundle / gradient sampling methods

For deterministic, smooth optimization, a nice balance achieved by quasi-Newton:

$$x_{k+1} \leftarrow x_k - \alpha_k W_k g_k,$$

where

- $\alpha_k > 0$ is a stepsize;
- $g_k \leftarrow \nabla f(x_k)$ (or an approximation of it);
- $\{W_k\}$ is updated dynamically.

We all know:

- local rescaling based on iterate/gradient displacements
- only first-order derivatives required
- no linear system solves required
- ▶ global convergence guarantees (say, with line search)
- superlinear local convergence rate

How can we carry these ideas to other settings?

Convex to nonconvex

Positive definiteness not maintained automatically

Deterministic to stochastic

• (*) and scaling matrices not independent from gradients $(W_k g_k)$

Smooth to nonsmooth

Scaling matrices tend to singularity

 (\star)

 (\star)

Issues for Enhancements: Proposed Solutions

Convex to nonconvex

- Positive definiteness not maintained automatically
- Skipping, damping

Deterministic to stochastic

- (*) and scaling matrices not independent from gradients $(W_k g_k)$
- Skipping, damping, regularization

Smooth to nonsmooth

- Scaling matrices tend to singularity
- ▶ (Wolfe) line search, bundles or gradient sampling

 (\star)

 $(\star\star)$

Issues for Enhancements: Proposed Solutions: Remaining Issues

Convex to nonconvex

- Positive definiteness not maintained automatically
- Skipping, damping
- ▶ poor performance from skipping or under-/over-damping

Deterministic to stochastic

- (*) and scaling matrices not independent from gradients $(W_k g_k)$
- Skipping, damping, regularization
- ▶ (**) and over-regularization (e.g., adding δI to all updates)

Smooth to nonsmooth

- Scaling matrices tend to singularity
- ▶ (Wolfe) line search, bundles or gradient sampling
- intertwined $\{x_k\}$, $\{\alpha_k\}$, $\{g_k\}$, and $\{W_k\}$

Overview		

Propose two methods for unconstrained optimization

- ▶ exploit self-correcting properties of BFGS-type updates
 - Powell (1976); Ritter (1979, 1981); Werner (1978); Byrd, Nocedal (1989)
- ▶ properties of Hessians offer useful bounds for inverse Hessians
- forget about superlinear convergence,

$$\lim_{k \to \infty} \frac{\|(H_k - H_*)s_k\|_2}{\|s_k\|_2} = 0 \quad \text{(not relevant here!)}$$

Overview		

Propose two methods for unconstrained optimization

- ▶ exploit self-correcting properties of BFGS-type updates
 - Powell (1976); Ritter (1979, 1981); Werner (1978); Byrd, Nocedal (1989)
- ▶ properties of Hessians offer useful bounds for inverse Hessians
- ▶ forget about superlinear convergence,

$$\lim_{k \to \infty} \frac{\|(H_k - H_*)s_k\|_2}{\|s_k\|_2} = 0 \quad \text{(not relevant here!)}$$

Stochastic, nonconvex:

- ▶ Proposal: Twist on updates, different than others proposed
- ▶ Result: More stable behavior than basic stochastic quasi-Newton

Deterministic, nonsmooth:

- ▶ Proposal: Generic algorithmic framework enjoying self-correcting properties
- ▶ Result: Improved performance(?), guide for convergence for other methods

Outline		

Motivation

Self-Correcting Properties of BFGS-type Updating

Stochastic, Nonconvex Optimization

Deterministic, Nonsmooth Optimization

Summary

BECS_tvr	a undates		

Inverse Hessian and Hessian approximation¹ updating formulas $(s_k^T v_k > 0)$:

$$W_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T W_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}$$
$$H_{k+1} \leftarrow \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right) + \frac{v_k v_k^T}{s_k^T v_k}$$

These satisfy secant-type equations

$$W_{k+1}v_k = s_k \quad \text{and} \quad H_{k+1}s_k = v_k,$$

but these are not very relevant for this talk.

▶ Choosing $v_k \leftarrow y_k := g_{k+1} - g_k$ yields standard BFGS, but we consider

$$v_k \leftarrow \beta_k s_k + (1 - \beta_k) \alpha_k y_k$$
 for some $\beta_k \in [0, 1]$.

This scheme is important to preserve self-correcting properties.

Self-Correcting Variable-Metric Algorithms

¹ "Hessian" and "inverse Hessian" used loosely in nonsmooth settings

Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on s_k and H_k , not g_k !)

$$P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \quad \text{and} \quad Q_k := I - P_k.$$

Both H_k -orthogonal projection matrices (i.e., idempotent and H_k -self-adjoint).

- P_k yields H_k -orthogonal projection onto $\operatorname{span}(s_k)$.
- ► Q_k yields H_k -orthogonal projection onto $\operatorname{span}(s_k)^{\perp_{H_k}}$.

Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on s_k and H_k , not g_k !)

$$P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \quad \text{and} \quad Q_k := I - P_k.$$

Both H_k -orthogonal projection matrices (i.e., idempotent and H_k -self-adjoint).

- ▶ P_k yields H_k -orthogonal projection onto span (s_k) .
- Q_k yields H_k -orthogonal projection onto $\operatorname{span}(s_k)^{\perp_{H_k}}$.

Returning to the Hessian update:

$$H_{k+1} \leftarrow \underbrace{\left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)}_{\operatorname{rank} n - 1} + \underbrace{\frac{v_k v_k^T}{s_k^T v_k}}_{\operatorname{rank} 1}$$

• Curvature projected out along $\operatorname{span}(s_k)$

• Curvature corrected by
$$\frac{v_k v_k^T}{s_k^T v_k} = \left(\frac{v_k v_k^T}{\|v_k\|_2^2}\right) \left(\frac{\|v_k\|_2^2}{v_k^T W_{k+1} v_k}\right)$$
 (inverse Rayleigh).

Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 1 (Byrd, Nocedal (1989))

Suppose that, for all k, there exists $\{\eta, \theta\} \subset \mathbb{R}_{++}$ such that

$$\eta \le \frac{s_k^T v_k}{\|s_k\|_2^2} \quad and \quad \frac{\|v_k\|_2^2}{s_k^T v_k} \le \theta.$$
 (KEY)

Then, for any $p \in (0, 1)$, there exist constants $\{\iota, \kappa, \lambda\} \subset \mathbb{R}_{++}$ such that, for any $K \geq 2$, the following relations hold for at least $\lceil pK \rceil$ values of $k \in \{1, \ldots, K\}$:

$$\iota \leq \frac{s_k^T H_k s_k}{\|s_k\|_2 \|H_k s_k\|_2} \quad and \quad \kappa \leq \frac{\|H_k s_k\|_2}{\|s_k\|_2} \leq \lambda.$$

Proof technique.

Building on work of Powell (1976), involves bounding growth of

$$\gamma(H_k) = \operatorname{tr}(H_k) - \ln(\det(H_k)).$$

Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.

Corollary 2

Suppose the conditions of Theorem 1 hold. Then, for any $p \in (0, 1)$, there exist constants $\{\mu, \nu\} \subset \mathbb{R}_{++}$ such that, for any $K \geq 2$, the following relations hold for at least $\lceil pK \rceil$ values of $k \in \{1, \ldots, K\}$:

$$\mu \|g_k\|_2^2 \leq g_k^T W_k g_k \quad and \quad \|W_k g_k\|_2^2 \leq \nu \|g_k\|_2^2$$

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using the facts that $s_k = -\alpha_k W_k g_k$ and $W_k = H_k^{-1}$ for all k.

Outline		

Motivation

Self-Correcting Properties of BFGS-type Updating

Stochastic, Nonconvex Optimization

Deterministic, Nonsmooth Optimization

Summary

Stochastic, nonconvex optimization

Consider unconstrained optimization problems of the form

 $\min_{x\in\mathbb{R}^n} f(x),$

where, in an open set containing $\{x_k\}$,

- $\blacktriangleright~f$ is continously differentiable and bounded below and
- ∇f is Lipschitz continuous with constant L > 0,

but

▶ neither f nor ∇f can be computed exactly.

false consistency?

Algorithm VM-DS : Variable-Metric Algorithm with Diminishing Stepsizes

- 1: Choose $x_1 \in \mathbb{R}^n$.
- 2: Set $g_1 \approx \nabla f(x_1)$.
- 3: Choose a symmetric positive definite $W_1 \in \mathbb{R}^{n \times n}$.
- 4: Choose a positive scalar sequence $\{\alpha_k\}$ such that

$$\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty.$$

5: for
$$k = 1, 2, ...$$
 do
6: Set $s_k \leftarrow -\alpha_k W_k g_k$.
7: Set $x_{k+1} \leftarrow x_k + s_k$.
8: Set $g_{k+1} \approx \nabla f(x_{k+1})$.
9: Set $y_k \leftarrow g_{k+1} - g_k$.
10: Set $\beta_k \leftarrow \min\{\beta \in [0, 1] : v(\beta) := \beta s_k + (1 - \beta)\alpha_k y_k \text{ satisfies (KEY)}\}.$
11: Set $v_k \leftarrow v(\beta_k)$.
12: Set

$$W_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T W_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}.$$

13: end for

Theorem 3 (Bottou, Curtis, Nocedal (2016)) Suppose that, for all k, there exists a scalar constant $\rho > 0$ such that $-\nabla f(x_k)^T \mathbb{E}_{\xi_k}[W_k g_k] \leq -\rho \|\nabla f(x_k)\|_2^2,$

and there exist scalars $\sigma > 0$ and $\tau > 0$ such that

 $\mathbb{E}_{\boldsymbol{\xi}_k}[\|W_k g_k\|_2^2] \leq \sigma + \tau \|\nabla f(x_k)\|_2^2.$

Then, $\{\mathbb{E}[f(x_k)]\}$ converges to a finite limit and

 $\liminf_{k \to \infty} \mathbb{E}[\nabla f(x_k)] = 0.$

Proof technique.

Follows from the critical inequality

 $\mathbb{E}_{\xi_{k}}[f(x_{k+1})] - f(x_{k}) \leq -\alpha_{k} \nabla f(x_{k})^{T} \mathbb{E}_{\xi_{k}}[W_{k}g_{k}] + \alpha_{k}^{2} L \mathbb{E}_{\xi_{k}}[||W_{k}g_{k}||_{2}^{2}].$

Reality		

The conditions in this theorem cannot be verified in practice.

- They require knowing $\nabla f(x_k)$.
- They require knowing $\mathbb{E}_{\xi_k}[W_k g_k]$ and $\mathbb{E}_{\xi_k}[||W_k g_k||_2^2]$
- ... but W_k and g_k are not independent!
- ▶ That said, Corollary 2 ensures that they hold with $g_k = \nabla f(x_k)$; recall

 $\mu \|g_k\|_2^2 \leq g_k^T W_k g_k \text{ and } \|W_k g_k\|_2^2 \leq \nu \|g_k\|_2^2.$

Reality		

The conditions in this theorem cannot be verified in practice.

- They require knowing $\nabla f(x_k)$.
- They require knowing $\mathbb{E}_{\xi_k}[W_k g_k]$ and $\mathbb{E}_{\xi_k}[||W_k g_k||_2^2]$
- ... but W_k and g_k are not independent!
- ▶ That said, Corollary 2 ensures that they hold with $g_k = \nabla f(x_k)$; recall

$$\mu \|g_k\|_2^2 \le g_k^T W_k g_k \text{ and } \|W_k g_k\|_2^2 \le \nu \|g_k\|_2^2.$$

End of iteration k, loop over (stochastic) gradient computation until

$$\begin{split} \rho \| \hat{g}_{k+1} \|_2^2 &\leq \hat{g}_{k+1}^T W_{k+1} g_{k+1} \\ \text{and} \ \| W_{k+1} g_{k+1} \|_2^2 &\leq \sigma + \tau \| \hat{g}_{k+1} \|_2^2. \end{split}$$

Recompute g_{k+1} , \hat{g}_{k+1} , and W_{k+1} until these hold.

Numerical Experiments: a1a

logistic regression, data a1a, diminishing stepsizes

Deterministic, Nonsmoo

Summary

Numerical Experiments: rcv1

logistic regression, data rcv1, diminishing stepsizes

Deterministic, Nonsmoot

Summary

Numerical Experiments: mnist

deep neural network, data mnist, diminishing stepsizes

Outline		

Motivation

Self-Correcting Properties of BFGS-type Updating

Stochastic, Nonconvex Optimization

Deterministic, Nonsmooth Optimization

Summary

Nonsmooth optimization

Consider unconstrained optimization problems of the form

 $\min_{x\in\mathbb{R}^n} f(x),$

where

- f is locally Lipschitz in \mathbb{R}^n and
- differentiable in an open, dense subset of \mathbb{R}^n ,

but

▶ nonsmooth.

What has been done?

Many have observed improved performance with quasi-Newton schemes.

"Unadulterated" BFGS

- Lemaráchal (1982)
- ▶ Lewis, Overton (2012)

BFGS (with restricted updates)

- ▶ Haarala, Miettinen, Mäkelä (2004)
- ▶ Curtis, Que (2015)

To our knowledge, none have tried to exploit self-correcting properties.

Subproblems in nonsmooth optimization algorithms

With sets of points, scalars, and (sub)gradients

$${x_{k,j}}_{j=1}^m, \ {f_{k,j}}_{j=1}^m, \ {g_{k,j}}_{j=1}^m,$$

nonsmooth optimization methods involve the primal subproblem

$$\min_{x \in \mathbb{R}^n} \left(\max_{j \in \{1, \dots, m\}} \left\{ f_{k,j} + g_{k,j}^T (x - x_{k,j}) \right\} + \frac{1}{2} (x - x_k)^T H_k (x - x_k) \right) \\
\text{s.t. } \|x - x_k\| \le \delta_k,$$
(P)

but, with $G_k \leftarrow [g_{k,1} \ \cdots \ g_{k,m}]$, it is typically more efficient to solve the dual

$$\sup_{\substack{(\omega,\gamma)\in\mathbb{R}^m_+\times\mathbb{R}^n\\ \text{s.t. }}} \frac{-\frac{1}{2}(G_k\omega+\gamma)^T W_k(G_k\omega+\gamma) + b_k^T\omega - \delta_k \|\gamma\|_*}{\text{s.t. }}$$
(D)

The primal solution can then be recovered by

$$x_k^* \leftarrow x_k - W_k \underbrace{(G_k \omega_k + \gamma_k)}_{\tilde{g}_k}.$$

Motivation	

Deterministic, Nonsmoo

Algorithm Self-Correcting BFGS for Nonsmooth Optimization

- 1: Choose $x_1 \in \mathbb{R}^n$.
- 2: Choose a symmetric positive definite $W_1 \in \mathbb{R}^{n \times n}$.
- 3: Choose $\alpha \in (0,1)$
- 4: for k = 1, 2, ... do
- 5: Solve (\mathbf{P}) - (\mathbf{D}) such that setting

$$\begin{aligned} G_k \leftarrow \begin{bmatrix} g_{k,1} & \cdots & g_{k,m} \end{bmatrix}, \\ s_k \leftarrow -W_k (G_k \omega_k + \gamma_k), \\ \text{and} \quad x_{k+1} \leftarrow x_k + s_k \end{aligned}$$

6: yields

$$f(x_{k+1}) \le f(x_k) - \frac{1}{2}\alpha (G_k\omega_k + \gamma_k)^T W_k (G_k\omega_k + \gamma_k).$$

7: Choose $y_k \in \mathbb{R}^n$. 8: Set $\beta_k \leftarrow \min\{\beta \in [0, 1] : v(\beta) := \beta s_k + (1 - \beta)y_k \text{ satisfies (KEY)}\}.$ 9: Set $v_k \leftarrow v(\beta_k)$. 10: Set $(z = v_k s_k^T)^T \cdots (z = v_k s_k^T) = s_k s_k^T$

$$W_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T W_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}.$$

11: end for

Instances of the framework

Cutting plane / bundle methods

- ▶ Points added incrementally until sufficient decrease obtained
- Finite number of additions until accepted step

Gradient sampling methods

- ▶ Points added randomly, incrementally until sufficient decrease obtained
- ▶ Sufficient number of iterations with "good" steps

We believe that either could use line search or trust region ideas

Outline		

Motivation

Self-Correcting Properties of BFGS-type Updating

Stochastic, Nonconvex Optimization

Deterministic, Nonsmooth Optimization

Summary

Contributions				

Proposed two methods for unconstrained optimization

- one for stochastic, nonconvex problems
- ▶ one for deterministic, nonsmooth problems
- ▶ exploit self-correcting properties of BFGS-type updates

* F. E. Curtis.

A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization.

In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 2016. JMLR.