Self-Correcting Variable-Metric Algorithms

Frank E. Curtis, Lehigh University
involving joint work with

Daniel P. Robinson, Johns Hopkins University

‘Workshop on Nonlinear Optimization Algorithms and Industrial Applications

Fields Institute, Toronto, Ontario, Canada

4 June 2016

1 of 29



Outline

Motivation

Self-Correcting Properties of BFGS-type Updating

Stochastic, Nonconvex Optimization

Deterministic, Nonsmooth Optimization

Summary



Outline

Motivation



Unconstrained optimization

Consider unconstrained optimization problems of the form

min f(z).

zER™

Deterministic, smooth

> gradient — Newton methods
Stochastic, smooth

> stochastic gradient — batch Newton methods
Deterministic, nonsmooth

» subgradient — bundle / gradient sampling methods



Balance between extremes

For deterministic, smooth optimization, a nice balance achieved by quasi-Newton:
Tp41 < Tk — 0 Wigk,

where
> ap > 0 is a stepsize;
> g < Vf(xk) (or an approximation of it);
> {W} is updated dynamically.
We all know:
> local rescaling based on iterate/gradient displacements
> only first-order derivatives required
> no linear system solves required
> global convergence guarantees (say, with line search)
> superlinear local convergence rate

How can we carry these ideas to other settings?



Issues for Enhancements

Convex to nonconvex

> Positive definiteness not maintained automatically (*)

Deterministic to stochastic

» (%) and scaling matrices not independent from gradients (Wgy)

Smooth to nonsmooth

> Scaling matrices tend to singularity



Issues for Enhancements: Proposed Solutions

Convex to nonconvex
> Positive definiteness not maintained automatically (*)

» Skipping, damping

Deterministic to stochastic
» (%) and scaling matrices not independent from gradients (Wgy)

» Skipping, damping, regularization
Smooth to nonsmooth

> Scaling matrices tend to singularity

> (Wolfe) line search, bundles or gradient sampling



Issues for Enhancements: Proposed Solutions: Remaining Issues

Convex to nonconvex
» Positive definiteness not maintained automatically (*)
» Skipping, damping
» poor performance from skipping or under-/over-damping (%)
Deterministic to stochastic
> (%) and scaling matrices not independent from gradients (Wpygy,)
» Skipping, damping, regularization
> (%*) and over-regularization (e.g., adding 61 to all updates)
Smooth to nonsmooth
> Scaling matrices tend to singularity
> (Wolfe) line search, bundles or gradient sampling
> intertwined {x}, {ar}, {9k}, and {Wy}



Propose two methods for unconstrained optimization

» exploit self-correcting properties of BEFGS-type updates
> Powell (1976); Ritter (1979, 1981); Werner (1978); Byrd, Nocedal (1989)

» properties of Hessians offer useful bounds for inverse Hessians

» forget about superlinear convergence,

li NHy — Hx)sill2
m —

=0 (not relevant here!)




Overview

Propose two methods for unconstrained optimization
» exploit self-correcting properties of BEFGS-type updates
> Powell (1976); Ritter (1979, 1981); Werner (1978); Byrd, Nocedal (1989)

» properties of Hessians offer useful bounds for inverse Hessians

» forget about superlinear convergence,

li NHy — Hx)sill2

=0 (not relevant here!)
koo llskl2

Stochastic, nonconvex:

» Proposal: Twist on updates, different than others proposed

> Result: More stable behavior than basic stochastic quasi-Newton
Deterministic, nonsmooth:

» Proposal: Generic algorithmic framework enjoying self-correcting properties

> Result: Improved performance(?), guide for convergence for other methods
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Self-Correcting Properties of BFGS-type Updating



BFGS-type updates

Inverse Hessian and Hessian approximation! updating formulas (ska > 0):

T
T T T
VS VS Sk
Wipr e | I= o | Wi (1= 2= |+ 5k
S, Vk i, Vk S, Vk

T
skngk skngk vkvlz
s, Hisk s, Hisk Sj. Vk

> These satisfy secant-type equations
Wit1vg = s, and Hpyq5, = vg,

but these are not very relevant for this talk.

» Choosing vy < yx := gr+1 — gk yields standard BFGS, but we consider
v < Brsk + (1 — Br)aryx for some By € [0,1].

This scheme is important to preserve self-correcting properties.

1 “Hessian” and “inverse Hessian” used loosely in nonsmooth settings



Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on s and Hy, not gi!)

T
sksi H
Py = 73 k7K and Qi :=1— Pg.
Sk Hk Sk
Both Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
» Py yields Hy-orthogonal projection onto span(sg).

> Qp yields Hyp-orthogonal projection onto span(sk)LHk .
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Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on s and Hy, not gi!)

T
sksi H
Py = 73 k7K and Qi :=1— Pg.
Sk Hk Sk
Both Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
» Py yields Hy-orthogonal projection onto span(sg).
> Qp yields Hyp-orthogonal projection onto span(sk)LHk .

Returning to the Hessian update:

T
SkSZHk SkSng Ukvg‘

R e E A
sy, Hisk sy, Hisk S}, Vk
~——
rank n — 1 rank 1

» Curvature projected out along span(sy)

T T 2
Vv VU v . .
» Curvature corrected by —k-k = ( kZk T” k2 (inverse Rayleigh).
Sk Vk llvells v Wet1vk
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Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?



Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 1 (Byrd, Nocedal (1989))
Suppose that, for all k, there exists {n,0} C R, , such that

Sk Uk llvw 113

< an <é. (KEY)
lIskI2 stvg

Then, for any p € (0,1), there exist constants {¢,k, \} C R, such that, for any
K > 2, the following relations hold for at least [pK| values of k € {1,...,K}:

T
sy, Hy sk

- | Hi sl
= Tswll2lHsilz

and k< ——= < A
llskll2

Proof technique.

Building on work of Powell (1976), involves bounding growth of

v(Hy) = tr(Hy) — In(det(Hy)).




Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.
Corollary 2

Suppose the conditions of Theorem 1 hold. Then, for any p € (0, 1), there exist
constants {u, v} C R, | such that, for any K > 2, the following relations hold for
at least [pK'| values of k € {1,...,K}:

wllgrll3 < g Wigr and |[Wigkll3 < vligell3

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using
the facts that s = —apWigr and Wy = H;l for all k.
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Stochastic, Nonconvex Optimization




Stochastic, nonconvex optimization

Consider unconstrained optimization problems of the form

min f(z),

where, in an open set containing {xx},
> f is continously differentiable and bounded below and
» Vf is Lipschitz continuous with constant L > 0,

but

» neither f nor Vf can be computed exactly.



What has been done?

Hy 186 = Yk

AN

Yk < VI(@pt1, &) = Vi(xg, &) or ok ( > V2f($k+1~,§k+1)> Sk

Ek+1€EK4+1

false consistency?




Algorithm VM-DS : Variable-Metric Algorithm with Diminishing Stepsizes

Choose 1 € R™.
Set g1 = Vf(z1).
Choose a symmetric positive definite W, € R?*",
Choose a positive scalar sequence {ay} such that

oo o0
Zak:oo and Zai<oo.
k=1 k=1

=W N =

for k=1,2,... do

Set s +— —arWigk.

Set xp41 < T + 5k

Set gp+1 = VI (Tpt1)-

Set yr < gr+1 — gk-
10: Set Bk < min{B € [0,1] : v(B) := Bsk + (1 — B)aryx satisfies (KEY)}.
11: Set Vi < 'L)(ﬂk)

12: Set
vksT T vksT sksT
Wi < (T— 2 | Wi [ T— 5 |+ 5.
Sk Vi Sk Vk Sk Vi

© ® 3>

13: end for




Global convergence theorem

Theorem 3 (Bottou, Curtis, Nocedal (2016))

Suppose that, for all k, there exists a scalar constant p > 0 such that
—V f(zr) B, [Wrgr] < —pl V£ (k)3
and there exist scalars o > 0 and 7 > 0 such that
Eg, [IWigr|l3] < o + 7|V f (k)3
Then, {E[f(zk)]} converges to a finite limit and

l}cni)gréfE[Vf(ack)} =0.

Proof technique.

Follows from the critical inequality

Ee, [f(zr+1)] — flzn) < —axV (k) Ee, [Wig] + af LEe, [||[Wigrl|3]-




Reality

The conditions in this theorem cannot be verified in practice.
» They require knowing V f(zg).
» They require knowing E¢, [Wigi] and E¢, [||Wkgsll3]
> ...but Wi and g are not independent!
» That said, Corollary 2 ensures that they hold with g = V f(zx); recall

pllgrlld < g Wigr and [Wiegells < vligell3-




Reality

The conditions in this theorem cannot be verified in practice.
» They require knowing V f(zg).
» They require knowing E¢, [Wigi] and E¢, [||Wkgsll3]
> ...but Wi and g are not independent!
» That said, Corollary 2 ensures that they hold with g = V f(zx); recall

pllgrlld < g Wigr and [Wiegells < vligell3-

End of iteration k, loop over (stochastic) gradient computation until

pllars1l3 < i Wir19k41
and [[Wiy1gk113 < o+ 7lldrsall3-

Recompute gi41, gr+1, and Wi 1 until these hold.



Numerical Experiments: ala
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Numerical Experiments: mnist
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Deterministic, Nonsmooth Optimization




Nonsmooth optimization

Consider unconstrained optimization problems of the form

min f(z),

where

> f is locally Lipschitz in R™ and

> differentiable in an open, dense subset of R,
but

» nonsmooth.



What has been done?

Many have observed improved performance with quasi-Newton schemes.

“Unadulterated” BFGS
> Lemardchal (1982)
> Lewis, Overton (2012)
BFGS (with restricted updates)
> Haarala, Miettinen, Makeld (2004)
» Curtis, Que (2015)

To our knowledge, none have tried to exploit self-correcting properties.



Subproblems in nonsmooth optimization algorithms

With sets of points, scalars, and (sub)gradients

{zr e Afeadien Aoksdien

nonsmooth optimization methods involve the primal subproblem

S, (jG{IR?j)-(,m} Ui + 9,50 = 2} + 3@ — o) Hilo - xk))

P)
st ||z — zgll < Ok,
but, with G < [gr,1 - gr,m], it is typically more efficient to solve the dual
sup = 2(Grw +NT Wi (Grw +7) + b w — Skl
(w,7) ERT XR™ (D)

s.t. le;w =1.

The primal solution can then be recovered by

xy o — Wi (Grwi + 1) -
—_—

9k



Algorithm Self-Correcting BFGS for Nonsmooth Optimization

1: Choose z1 € R™.

2: Choose a symmetric positive definite W7 € R"X™,

3: Choose a € (0,1)

4: for k=1,2,... do

5: Solve (P)—(D) such that setting
G + [gk,l cee gk,m] )
sk —Wi(Grwr + k),

and Tpy1 < Tk + Sk
6: yields

F(@rg1) < flar) — 3a(Grwr + 1) " Wi (Grwr + Yk)-
7 Choose yi, € R™.

8: Set By < min{B € [0,1] : v(B) := Bsk + (1 — B)yy, satisfies (KEY)}.
9: Set vg < v(Bk)-

10: Set
vksT r ’UkST SkST
Wipr < (1— 55 ) Wi [I— 5 )+ 5.
Sp Vk Sp, Vk Sp Vk

11: end for




Instances of the framework

Cutting plane / bundle methods
» Points added incrementally until sufficient decrease obtained
» Finite number of additions until accepted step
Gradient sampling methods
» Points added randomly, incrementally until sufficient decrease obtained

» Sufficient number of iterations with “good” steps

We believe that either could use line search or trust region ideas
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Summary




Contributions

Proposed two methods for unconstrained optimization
> one for stochastic, nonconvex problems
» one for deterministic, nonsmooth problems

> exploit self-correcting properties of BEGS-type updates

* F. E. Curtis.
A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization.

In Proceedings of the 33rd International Conference on Machine Learning, New
York, NY, USA, 2016. JMLR.
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