Richard H. Byrd¹ Frank E. Curtis² Jorge Nocedal²

¹University of Colorado at Boulder

²Northwestern University

Computational Science and Engineering, 2003

Outline

Inexact SQP Method for Equality Constrained Optimization

Unconstrained Optimization

Algorithm Review Negative Curvature Case

Unconstrained Optimization

Angle Condition
Verifying the Angle Condition

Constrained Optimization

Angle Condition
Verifying the Angle Condition

Outline

Inexact SQP Method for Equality Constrained Optimization Algorithm Review

Negative Curvature Case

Unconstrained Optimization

Angle Condition
Verifying the Angle Condition

Constrained Optimization

Angle Condition
Verifying the Angle Condition

0000

Inexact SQP Method

Problem Formulation

Nonlinear program with equality constraints

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

Sequential Quadratic Programming (SQP)

$$\min_{d \in \mathbf{R}^n} f_k + g_k^T d + \frac{1}{2} d^T W_k a$$
s.t. $c_k + A_k d = 0$

Step can be obtained via primal-dual system

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

0000

Problem Formulation

Nonlinear program with equality constraints

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

Sequential Quadratic Programming (SQP)

$$\min_{d \in R^n} f_k + g_k^T d + \frac{1}{2} d^T W_k d$$
s.t. $c_k + A_k d = 0$

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

Algorithm Review

0000

Problem Formulation

Nonlinear program with equality constraints

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

Sequential Quadratic Programming (SQP)

$$\min_{d \in R^n} f_k + g_k^T d + \frac{1}{2} d^T W_k d$$
s.t. $c_k + A_k d = 0$

Step can be obtained via primal-dual system

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

00.00

Algorithm Framework

Line Search SQP Method

Apply an iterative solver to the primal-dual system

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

until a stopping condition is satisfied¹

 \triangleright Set the penalty parameter π to ensure descent on the penalty function

$$\phi_{\pi}(x) = f(x) + \pi \|c(x)\|$$

Perform a backtracking line search to find α_k satisfying the Armijo

$$\phi_{\pi_k}(x_k + \alpha_k d_k) \le \phi_{\pi_k}(x_k) + \eta \alpha_k D \phi_{\pi_k}(d_k)$$

¹(Byrd, Curtis, Nocedal, 2007)

00.00

Algorithm Framework

Line Search SQP Method

Apply an iterative solver to the primal-dual system

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

until a stopping condition is satisfied¹

Set the penalty parameter π to ensure descent on the penalty function

$$\phi_{\pi}(x) = f(x) + \pi \|c(x)\|$$

Perform a backtracking line search to find α_k satisfying the Armijo

$$\phi_{\pi_k}(x_k + \alpha_k d_k) \le \phi_{\pi_k}(x_k) + \eta \alpha_k D \phi_{\pi_k}(d_k)$$

¹(Byrd, Curtis, Nocedal, 2007)

00.00

Algorithm Framework

Line Search SQP Method

Apply an iterative solver to the primal-dual system

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

until a stopping condition is satisfied¹

 \triangleright Set the penalty parameter π to ensure descent on the penalty function

$$\phi_{\pi}(x) = f(x) + \pi \|c(x)\|$$

Perform a backtracking line search to find α_k satisfying the Armijo condition

$$\phi_{\pi_k}(\mathsf{x}_k + \alpha_k \mathsf{d}_k) \le \phi_{\pi_k}(\mathsf{x}_k) + \eta \alpha_k \mathsf{D} \phi_{\pi_k}(\mathsf{d}_k)$$

¹(Bvrd, Curtis, Nocedal, 2007)

000

Stopping Conditions

Inexactness determined by reductions in ϕ_{π}

$$\operatorname{mred}_{\pi}(d) = -g_k^{\mathsf{T}} d - \frac{\omega(d)}{2} d^{\mathsf{T}} W_k d + \pi(\|c_k\| - \|r_k\|)$$

An accepted step (d_k, δ_k) must satisfy

$$\operatorname{mred}_{\pi_k}(a_k) \geq \sigma \pi_k \max\{\|c_k\|, \|r_k\|\}$$

for a given constant $0 < \sigma < 1$ and appropriate π_k

- ▶ Stopping Condition I: (1) satisfied for $\pi_k = \pi_{k-1}$
- ▶ Stopping Condition II: $||r_k|| \le \epsilon ||c_k||$ for $0 < \epsilon < 1$ and

$$\pi_k \geq rac{g_k^{\mathsf{T}} d_k + rac{\omega_k}{2} d_k^{\mathsf{T}} W_k d_k}{(1-\sigma)(\lVert c_k \rVert - \lVert r_k \rVert)}$$

Algorithm Review

000

Stopping Conditions

Inexactness determined by reductions in ϕ_{π}

$$\mathsf{mred}_{\pi}(d) = -g_k^{\mathsf{T}} d - \frac{\omega(d)}{2} d^{\mathsf{T}} W_k d + \pi(\|c_k\| - \|r_k\|)$$

An accepted step (d_k, δ_k) must satisfy

$$\mathsf{mred}_{\pi_k}(d_k) \ge \sigma \pi_k \max\{\|c_k\|, \|r_k\|\} \tag{1}$$

for a given constant $0 < \sigma < 1$ and appropriate π_k

- ▶ Stopping Condition I: (1) satisfied for $\pi_k = \pi_{k-1}$
- ▶ Stopping Condition II: $||r_k|| \le \epsilon ||c_k||$ for $0 < \epsilon < 1$ and

$$\pi_k \geq rac{g_k^{\, T} d_k + rac{\omega_k}{2} d_k^{\, T} W_k d_k}{(1-\sigma)(\lVert c_k
Vert - \lVert r_k
Vert)}$$

Algorithm Review

000

Stopping Conditions

Inexactness determined by reductions in ϕ_{π}

$$\operatorname{mred}_{\pi}(d) = -g_k^{\mathsf{T}} d - \frac{\omega(d)}{2} d^{\mathsf{T}} W_k d + \pi(\|c_k\| - \|r_k\|)$$

An accepted step (d_k, δ_k) must satisfy

$$\operatorname{mred}_{\pi_k}(d_k) \ge \sigma \pi_k \max\{\|c_k\|, \|r_k\|\} \tag{1}$$

for a given constant $0 < \sigma < 1$ and appropriate π_k

- ▶ Stopping Condition I: (1) satisfied for $\pi_k = \pi_{k-1}$
- ▶ Stopping Condition II: $||r_k|| \le \epsilon ||c_k||$ for $0 < \epsilon < 1$ and

$$\pi_k \geq \frac{g_k^T d_k + \frac{\omega_k}{2} d_k^T W_k d_k}{(1 - \sigma)(\|c_k\| - \|r_k\|)}$$

Outline

•00000

Inexact SQP Method

Inexact SQP Method for Equality Constrained Optimization

Negative Curvature Case

Angle Condition

Constrained Optimization

Negative Curvature Case

000000

Assumptions for Global Convergence

Global convergence is guaranteed if

$$Z_k^T W_k Z_k \succ 0$$

where Z_k is a basis for the null space of A_k (i.e., $A_k Z_k = 0$),

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix}$$

Assumptions for Global Convergence

Global convergence is guaranteed if

$$Z_k^T W_k Z_k \succ 0$$

where Z_k is a basis for the null space of A_k (i.e., $A_k Z_k = 0$), which is known to hold if the primal-dual matrix

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix}$$

has n positive and m negative eigenvalues

000000

Step Decomposition

Step can be decomposed into a tangential step u_k , lying in the null space of A_k , and a normal step v_k , lying in the range space of A_k^T

$$d_k = u_k + v_k$$
, where $||d_k||^2 = ||u_k||^2 + ||v_k||^2$

We claim that if Stopping Condition I or II is satisfied

▶ ... and

$$\theta \|u_k\|^2 \le \|v_k\|^2$$

then step is acceptable

▶ ... and

$$\theta \|u_k\|^2 \le d_k^T W_k d_k$$

then step is acceptable

Negative Curvature Case

Step Decomposition

Step can be decomposed into a tangential step u_k , lying in the null space of A_k , and a normal step v_k , lying in the range space of A_k^T

$$d_k = u_k + v_k$$
, where $||d_k||^2 = ||u_k||^2 + ||v_k||^2$

We claim that if Stopping Condition I or II is satisfied

Unconstrained Optimization

... and

$$\theta \|u_k\|^2 \le \|v_k\|^2$$

then step is acceptable

... and

$$\theta \|u_k\|^2 \le d_k^T W_k d_k$$

then step is acceptable

Negative Curvature Case

Observing a Bounded Tangential Step

Observe

$$||v_k|| \ge ||A_k v_k|| / ||A_k||$$

= $||A_k d_k|| / ||A_k||$

and so

$$\|\theta\|d_k\|^2 \le \|A_k d_k\|^2 / \|A_k\|^2$$

implies

$$\theta \|u_k\|^2 \le \|v_k\|^2$$

000000

Observing Negative Curvature

Observe

$$||u_k||^2 = ||d_k||^2 - ||v_k||^2$$

$$\leq ||d_k||^2 - ||A_k d_k||^2 / ||A_k||^2$$

and so

$$\theta (\|d_k\|^2 - \|A_k d_k\|^2 / \|A_k\|^2) \le d_k^T W_k d_k$$

implies

$$\theta \|u_k\|^2 \le d_k^T W_k d_k$$

00000

Preliminary Algorithm

Apply an iterative solver to the primal-dual system

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

If

$$\theta \|d_k\|^2 > \|A_k d_k\|^2 / \|A_k\|^2$$
 and $\theta (\|d_k\|^2 - \|A_k d_k\|^2 / \|A_k\|^2) > d_k^T W_k d_k$

then set $W_{\nu} \leftarrow \tilde{W}_{\nu}$ such that

$$\theta(\|d_k\|^2 - \|A_k d_k\|^2 / \|A_k\|^2) \le d_k^T \tilde{W}_k d_k$$

and continue the iteration

Outline

Inexact SQP Method for Equality Constrained Optimization

Algorithm Review

Negative Curvature Case

Unconstrained Optimization

Angle Condition

Verifying the Angle Condition

Constrained Optimization

Angle Condition

Verifying the Angle Condition

Unconstrained Optimization

Inexact SQP Method

Problem Formulation

Unconstrained nonlinear optimization

$$\min_{x \in \mathbf{R}^n} f(x)$$

SQP subproblem

$$\min_{d \in \mathbb{R}^n} f_k + g_k^T d + \frac{1}{2} d^T H_k d$$

Step can be computed via Newton system

$$H_k d_k = -g$$

Problem Formulation

Unconstrained nonlinear optimization

$$\min_{x \in \mathbf{R}^n} f(x)$$

SQP subproblem

$$\min_{d \in \mathbb{R}^n} f_k + g_k^T d + \frac{1}{2} d^T H_k d$$

Step can be computed via Newton system

$$H_k d_k = -g_k$$

Problem Formulation

Unconstrained nonlinear optimization

$$\min_{x \in \mathbf{R}^n} f(x)$$

SQP subproblem

$$\min_{d \in \mathbb{R}^n} f_k + g_k^T d + \frac{1}{2} d^T H_k d$$

Step can be computed via Newton system

$$H_k d_k = -g_k$$

000

Inexact SQP Method

Applying an iterative solver

Inexact step satisfies

$$H_k d_k = -g_k + \rho_k$$

Line search method converges if the angle condition

Unconstrained Optimization

$$\frac{-g_k^T d_k}{\|g_k\| \|d_k\|} \ge$$

is satisfied, which can be verified directly

Applying an iterative solver

Inexact step satisfies

$$H_k d_k = -g_k + \rho_k$$

Line search method converges if the angle condition

Unconstrained Optimization

000

$$\frac{-g_k^T d_k}{\|g_k\| \|d_k\|} \ge \theta$$

is satisfied, which can be verified directly

Outline

Unconstrained Optimization

Verifying the Angle Condition

Hypothetical situation

Suppose we cannot verify an angle condition directly

$$g_k^T d_k \le -\theta \|g_k\| \|d_k\|$$

► Verified indirectly if

$$d_k^T W_k d_k \ge \theta \|d_k\|^2$$
 and $\|\rho_k\| \le \theta \|g_k\|$

 $(W_k \leftarrow \tilde{W}_k \text{ in a line search method})$

Verified indirectly if

$$g_k^\mathsf{T} d_k \le - \theta \|d_k\|^2$$
 and $\|d_k\| \ge \theta \|g_k\|$

 $(\Delta_k \text{ reduced in a trust region method})$

Verifying the Angle Condition

Hypothetical situation

Suppose we cannot verify an angle condition directly

$$g_k^T d_k \le -\theta \|g_k\| \|d_k\|$$

▶ Verified indirectly if

$$d_k^T W_k d_k \geq \theta \|d_k\|^2 \ \text{and} \ \|\rho_k\| \leq \theta \|g_k\|$$

 $(W_k \leftarrow \tilde{W}_k \text{ in a line search method})$

Verified indirectly if

$$g_k^T d_k \le -\theta \|d_k\|^2$$
 and $\|d_k\| \ge \theta \|g_k\|$

 $(\Delta_k \text{ reduced in a trust region method})$

Hypothetical situation

Suppose we cannot verify an angle condition directly

$$g_k^T d_k \le -\theta \|g_k\| \|d_k\|$$

Verified indirectly if

$$d_k^T W_k d_k \ge \theta \|d_k\|^2$$
 and $\|\rho_k\| \le \theta \|g_k\|$

 $(W_k \leftarrow \tilde{W}_k \text{ in a line search method})$

Verified indirectly if

$$\|g_k^T d_k \le -\theta \|d_k\|^2$$
 and $\|d_k\| \ge \theta \|g_k\|$

 $(\Delta_k \text{ reduced in a trust region method})$

000

Conclusion

Angle Condition

Outline

Inexact SQP Method for Equality Constrained Optimization

Algorithm Review
Negative Curvature Case

Unconstrained Optimization

Angle Condition
Verifying the Angle Condition

Constrained Optimization

Angle Condition

Verifying the Angle Condition

Inexact SQP Framework

Recall step computation

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

- ▶ SC I: descent for ϕ_{π} for current π
- ▶ SC II: descent for ϕ_{π} for increased π

 \triangleright ... but properties are lost for indefinite $Z_k^T W_k Z_k$

Constrained Optimization

Inexact SQP Framework

Recall step computation

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

Step quality ensured by Stopping Conditions I and II

- ▶ SC I: descent for ϕ_{π} for current π
- ▶ SC II: descent for ϕ_{π} for increased π

 \triangleright ... but properties are lost for indefinite $Z_k^T W_k Z_k$

Constrained Optimization

Inexact SQP Method

Inexact SQP Framework

Recall step computation

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

Step quality ensured by Stopping Conditions I and II

- ▶ SC I: descent for ϕ_{π} for current π
- ▶ SC II: descent for ϕ_{π} for increased π

Step length ensured by problem characteristics

 \triangleright ... but properties are lost for indefinite $Z_k^T W_k Z_k$

Inexact SQP Framework

Recall step computation

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

Step quality ensured by Stopping Conditions I and II

- ▶ SC I: descent for ϕ_{π} for current π
- ▶ SC II: descent for ϕ_{π} for increased π

Step length ensured by problem characteristics

 \triangleright ... but properties are lost for indefinite $Z_k^T W_k Z_k$

Constrained Optimization

"Angle Test" for Constrained Optimization

An inexact SQP step is acceptable if it satisfies an "angle test" for the penalty function ϕ_π

▶ Taylor expansion yields

$$D\phi_{\pi}(d_k) \leq g_k^T d_k - \pi(\|c_k\| - \|r_k\|)$$

▶ What is the steepest descent direction? (π not fixed)

"Angle test" cannot be verified directly

Outline

Angle Condition

Constrained Optimization

Verifying the Angle Condition

Constrained Optimization

•00

Sufficient Descent

Step satisfying Stopping Condition I or II is acceptable if

$$D\phi_{\pi}(d_k) \leq - heta \|d_k\|^2$$
 and $D\phi_{\pi}(d_k) \leq - heta \left(\|u_k\|^2 + \|c_k\|
ight)$

which hold if

$$D\phi_{\pi}(d_k) \le -\theta \|d_k\|^2$$
 and $D\phi_{\pi}(d_k) \le -\theta (\|d_k\|^2 - \|A_k d_k\|^2 / \|A_k\|^2 + \|c_k\|)$

where π is current (SC I) or increased (bounded) value (SC II)

Proposed Algorithm

Apply an iterative solver to the primal-dual system until SC I or II is satisfied

- Accept step if
 - ... tangential step is bounded

$$\|\theta\|d_k\|^2 \le \|A_k d_k\|^2 / \|A_k\|^2$$

... or curvature is sufficiently positive

$$\theta(\|d_k\|^2 - \|A_k d_k\|^2 / \|A_k\|^2) \le d_k^T W_k d_k$$

... or direction is of sufficient descent

$$D\phi_{\pi}(d_k) \le -\theta \|d_k\|^2$$
 and $D\phi_{\pi}(d_k) \le -\theta (\|d_k\|^2 - \|A_k d_k\|^2 / \|A_k\|^2 + \|c_k\|)$

▶ If $\theta \|d_k\|^2 > \|A_k d_k\|^2 / \|A_k\|^2$, then set $W_k \leftarrow \tilde{W}_k$ to satisfy

$$\theta (\|d_k\|^2 - \|A_k d_k\|^2 / \|A_k\|^2) \le d_k^T \tilde{W}_k d_k$$

Conclusion

We have

- ... observed that an inexact line search SQP algorithm may fail if negative curvature is present
- ightharpoonup ... proposed a method for modifying W_k during the application of the iterative solver to ensure global convergence
- lacktriangleright ... proposed techniques for avoiding modifications of W_k

Final Note on Modifying W_k

The Hessian of the Lagrangian has the form

$$W_k = \nabla_{xx}^2 f(x) + \sum_{i=1}^m \lambda^i \nabla_{xx}^2 c^i(x)$$

so we may consider modifications of the form

$$\tilde{W}_k = \nabla_{xx}^2 f(x) + \sum_{i=1}^m \lambda^i \nabla_{xx}^2 c^i(x) + G_k$$

where $G_k \succeq 0$, or

$$\tilde{W}_k = \nabla_{xx}^2 f(x) + \sum_{i \in \mathcal{I}} \lambda^i \nabla_{xx}^2 c^i(x)$$

if $\nabla_{xx}^2 f(x) \succ 0$ is known and $\mathcal{I} \subseteq \{1, \dots, m\}$

Conclusion

Unconstrained Optimization

000

Thanks!

Inexact SQP Method