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Algorithm Review

Problem Formulation
Nonlinear program with equality constraints

min
x∈IRn

f (x)

s.t. c(x) = 0

Sequential Quadratic Programming (SQP)

min
d∈IRn

fk + gT
k d + 1

2dTWkd

s.t. ck + Akd = 0

Step can be obtained via primal-dual system[
Wk AT

k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
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Algorithm Review

Algorithm Framework
Line Search SQP Method

I Apply an iterative solver to the primal-dual system»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
+

»
ρk

rk

–
until a stopping condition is satisfied1

I Set the penalty parameter π to ensure descent on the penalty function

φπ(x) = f (x) + π‖c(x)‖

I Perform a backtracking line search to find αk satisfying the Armijo
condition

φπk (xk + αkdk) ≤ φπk (xk) + ηαkDφπk (dk)

1(Byrd, Curtis, Nocedal, 2007)
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Algorithm Review

Stopping Conditions
Inexactness determined by reductions in φπ

mredπ(d) = −gT
k d − ω(d)

2
dTWkd + π(‖ck‖ − ‖rk‖)

An accepted step (dk , δk) must satisfy

mredπk
(dk) ≥ σπk max{‖ck‖, ‖rk‖} (1)

for a given constant 0 < σ < 1 and appropriate πk

I Stopping Condition I: (1) satisfied for πk = πk−1

I Stopping Condition II: ‖rk‖ ≤ ε‖ck‖ for 0 < ε < 1 and

πk ≥
gT
k dk + ωk

2 dT
k Wkdk

(1− σ)(‖ck‖ − ‖rk‖)
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Negative Curvature Case

Assumptions for Global Convergence

Global convergence is guaranteed if

ZT
k WkZk � 0

where Zk is a basis for the null space of Ak (i.e., AkZk = 0),
which is known to hold if the primal-dual matrix[

Wk AT
k

Ak 0

]
has n positive and m negative eigenvalues
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Negative Curvature Case

Step Decomposition

Step can be decomposed into a tangential step uk , lying in the null
space of Ak , and a normal step vk , lying in the range space of AT

k

dk = uk + vk , where ‖dk‖2 = ‖uk‖2 + ‖vk‖2

We claim that if Stopping Condition I or II is satisfied

I ... and
θ‖uk‖2 ≤ ‖vk‖2

then step is acceptable

I ... and
θ‖uk‖2 ≤ dT

k Wkdk

then step is acceptable
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Negative Curvature Case

Observing a Bounded Tangential Step

Observe

‖vk‖ ≥ ‖Akvk‖/‖Ak‖
= ‖Akdk‖/‖Ak‖

and so
θ‖dk‖2 ≤ ‖Akdk‖2/‖Ak‖2

implies
θ‖uk‖2 ≤ ‖vk‖2
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Negative Curvature Case

Observing Negative Curvature

Observe

‖uk‖2 = ‖dk‖2 − ‖vk‖2

≤ ‖dk‖2 − ‖Akdk‖2/‖Ak‖2

and so
θ
(
‖dk‖2 − ‖Akdk‖2/‖Ak‖2

)
≤ dT

k Wkdk

implies
θ‖uk‖2 ≤ dT

k Wkdk
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Negative Curvature Case

Preliminary Algorithm
Apply an iterative solver to the primal-dual system[

Wk AT
k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
+

[
ρk

rk

]
If

θ‖dk‖2 > ‖Akdk‖2/‖Ak‖2

and θ
(
‖dk‖2 − ‖Akdk‖2/‖Ak‖2

)
> dT

k Wkdk

then set Wk ← W̃k such that

θ
(
‖dk‖2 − ‖Akdk‖2/‖Ak‖2

)
≤ dT

k W̃kdk

and continue the iteration
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Angle Condition

Problem Formulation

Unconstrained nonlinear optimization

min
x∈IRn

f (x)

SQP subproblem

min
d∈IRn

fk + gT
k d + 1

2dTHkd

Step can be computed via Newton system

Hkdk = −gk
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Angle Condition

Applying an iterative solver

Inexact step satisfies

Hkdk = −gk + ρk

Line search method converges if the angle condition

−gT
k dk

‖gk‖‖dk‖
≥ θ

is satisfied, which can be verified directly
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Verifying the Angle Condition

Hypothetical situation
Suppose we cannot verify an angle condition directly

gT
k dk ≤ −θ‖gk‖‖dk‖

I Verified indirectly if

dT
k Wkdk ≥ θ‖dk‖2 and ‖ρk‖ ≤ θ‖gk‖

(Wk ← W̃k in a line search method)

I Verified indirectly if

gT
k dk ≤ −θ‖dk‖2 and ‖dk‖ ≥ θ‖gk‖

(∆k reduced in a trust region method)
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Angle Condition

Inexact SQP Framework

Recall step computation[
Wk AT

k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
+

[
ρk

rk

]
Step quality ensured by Stopping Conditions I and II

I SC I: descent for φπ for current π

I SC II: descent for φπ for increased π

Step length ensured by problem characteristics

I ... but properties are lost for indefinite ZT
k WkZk
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Angle Condition

“Angle Test” for Constrained Optimization

An inexact SQP step is acceptable if it satisfies an “angle test” for
the penalty function φπ

I Taylor expansion yields

Dφπ(dk) ≤ gT
k dk − π(‖ck‖ − ‖rk‖)

I What is the steepest descent direction? (π not fixed)

“Angle test” cannot be verified directly
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Verifying the Angle Condition

Sufficient Descent

Step satisfying Stopping Condition I or II is acceptable if

Dφπ(dk) ≤ −θ‖dk‖2

and Dφπ(dk) ≤ −θ
(
‖uk‖2 + ‖ck‖

)
which hold if

Dφπ(dk) ≤ −θ‖dk‖2

and Dφπ(dk) ≤ −θ
(
‖dk‖2 − ‖Akdk‖2/‖Ak‖2 + ‖ck‖

)
where π is current (SC I) or increased (bounded) value (SC II)
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Verifying the Angle Condition

Proposed Algorithm
Apply an iterative solver to the primal-dual system until SC I or II is satisfied

I Accept step if

I ... tangential step is bounded

θ‖dk‖2 ≤ ‖Akdk‖2/‖Ak‖2

I ... or curvature is sufficiently positive

θ
(
‖dk‖2 − ‖Akdk‖2/‖Ak‖2

)
≤ dT

k Wkdk

I ... or direction is of sufficient descent

Dφπ(dk) ≤ −θ‖dk‖2

and Dφπ(dk) ≤ −θ
(
‖dk‖2 − ‖Akdk‖2/‖Ak‖2 + ‖ck‖

)
I If θ‖dk‖2 > ‖Akdk‖2/‖Ak‖2, then set Wk ← W̃k to satisfy

θ
“
‖dk‖2 − ‖Akdk‖2/‖Ak‖2

”
≤ dT

k W̃kdk
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Conclusion

We have

I ... observed that an inexact line search SQP algorithm may
fail if negative curvature is present

I ... proposed a method for modifying Wk during the
application of the iterative solver to ensure global convergence

I ... proposed techniques for avoiding modifications of Wk
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Final Note on Modifying Wk

The Hessian of the Lagrangian has the form

Wk = ∇2
xx f (x) +

mX
i=1

λi∇2
xxc

i (x)

so we may consider modifications of the form

W̃k = ∇2
xx f (x) +

mX
i=1

λi∇2
xxc

i (x) + Gk

where Gk � 0, or
W̃k = ∇2

xx f (x) +
X
i∈I

λi∇2
xxc

i (x)

if ∇2
xx f (x) � 0 is known and I ⊆ {1, . . . , m}
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Thanks!
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