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Very large-scale optimization

I Consider a constrained optimization problem (NLP) of the form

min
x∈Rn

f (x)

s.t. cE(x) = 0

cI(x) ≥ 0

where f : Rn → R, cE : Rn → Rp and cI : Rn → Rq are smooth functions

I We are interested in problems for which the best contemporary methods,

i.e.,

I penalty methods
I sequential quadratic programming
I interior-point methods

cannot be employed due to problem size
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Hyperthermia treatment planning
Regional hyperthermia is a cancer therapy that aims at heating large and
deeply seated tumors by means of radio wave adsorption, which results in the
killing of tumor cells and makes them more susceptible to accompanying radio
or chemotherapy.

See http://www.youtube.com/watch?v=jF-nm8fi3oo
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Hyperthermia treatment planning as a NLP

The problem can be formulated as

min
y,u

∫
Ω

y(x)− yt(x)dx where yt(x) =

{
37 in Ω\Ω0

43 in Ω0

subject to the bio-heat transfer equation1

− ∇ · (κ(x)∇y(x))︸ ︷︷ ︸
thermal conductivity

+ω(x , y(x))π(x)(y(x)− yb)︸ ︷︷ ︸
effects of blood flow

= σ
2

∣∣∑
i ui Ei

∣∣2︸ ︷︷ ︸
electromagnetic field

, in Ω

and the bound constraints

37.0 ≤ y(x) ≤ 37.5, on ∂Ω

41.0 ≤ y(x) ≤ 45.0, in Ω0

where Ω0 is the tumor domain

1Pennes (1948)
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Newton’s method

I An approach that sounds ideal for, say, the equality constrained problem

min
x∈Rn

f (x)

s.t. c(x) = 0
(1.1)

would be a Newton method

I The Lagrangian for (1.1) is given by

L(x , λ) , f (x) + λT c(x)

so if f and c are differentiable, the first-order optimality conditions are

∇L(x , λ) =

[
∇f (x) +∇c(x)λ

c(x)

]
= 0.

(A single system of nonlinear equalities.)
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Inexact Newton methods
I A Newton method for the nonlinear system of equations

F(x) = 0

has the iteration
(∇F(xk))dk = −F(xk)

I Applying an iterative linear system solver to this system yields

(∇F(xk))dk = −F(xk) + rk

and if progress is judged by the merit function

φ(x) , 1
2
‖F(x)‖2

then the (inner) iteration may be terminated as soon as

‖rk‖ ≤ κk‖F(xk)‖

(for superlinear convergence, choose κk → 0)2

2Dembo, Eisenstat, Steihaug (1982)
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A näıve Newton method for NLP

I Consider the problem

min f (x) = x1 + x2, s.t. c(x) = x2
1 + x2

2 − 1 = 0

that has the first-order optimality conditions

F(x , λ) =

 1 + 2x1λ
1 + 2x2λ

x2
1 + x2

2 − 1

 = 0

I A Newton method applied to this problem yields

k 1
2
‖F(xk , λk)‖2

0 +3.5358e+00

1 +2.9081e-02

2 +4.8884e-04

3 +7.9028e-08

4 +2.1235e-15

An Inexact Newton Method for Nonlinear Constrained Optimization New York University



Background Algorithms and Theory Experiments Conclusion

A näıve Newton method for NLP

I Consider the problem

min f (x) = x1 + x2, s.t. c(x) = x2
1 + x2

2 − 1 = 0

that has the first-order optimality conditions

F(x , λ) =

 1 + 2x1λ
1 + 2x2λ

x2
1 + x2

2 − 1

 = 0

I A Newton method applied to this problem yields

k 1
2
‖F(xk , λk)‖2

0 +3.5358e+00

1 +2.9081e-02

2 +4.8884e-04

3 +7.9028e-08

4 +2.1235e-15

k f (xk) ‖c(xk)‖
0 +1.3660e+00 +1.1102e-16

1 +1.3995e+00 +8.3734e-03

2 +1.4358e+00 +3.0890e-02

3 +1.4143e+00 +2.4321e-04

4 +1.4142e+00 +1.7258e-08
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Our goal

I Our goal is to design an inexact Newton method for constrained
optimization

I Such a framework is important so the user will be able to balance the
computational costs between outer (optimization) and inner (step
computation) iterations for their own applications

I The method must always remember that an optimization problem is
being solved

I Many of the usual techniques in Newton-like methods for optimization for

handling

I non-convex objective and constraint functions
I (near) rank deficiency of the constraint Jacobian
I inequality constraints

are not applicable here! (We need to get creative.)
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A merit function for optimization

I The failure in applying a standard (inexact) Newton method to an
optimization problem is due to the choice of merit function! That is,

φ(x , λ) = 1
2
‖F(x , λ)‖2 = 1

2

∥∥∥∥[∇f (x) +∇c(x)λ
c(x)

]∥∥∥∥2

is inappropriate for purposes of optimization

I Our method will be centered around the merit function

φ(x ;π) , f (x) + π‖c(x)‖

(known as an exact penalty function)
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Algorithm 0: Newton method for optimization

for k = 0, 1, 2, . . .

I Evaluate f (xk), ∇f (xk), c(xk), ∇c(xk), and ∇2
xxL(xk , λk)

I Solve the primal-dual equations[
∇2

xxL(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
dk

δk

]
= −

[
∇f (xk) +∇c(xk)λk

c(xk)

]
I Increase the penalty parameter, if necessary, so that Dφk(dk ;πk)� 0

I Perform a line search to find αk ∈ (0, 1] satisfying the Armijo condition

φ(xk + αkdk ;πk) ≤ φ(xk ;πk) + ηαkDφk(dk ;πk)

I Update iterate (xk+1, λk+1)← (xk , λk) + αk(dk , δk)
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Newton methods and sequential quadratic programming
The primal-dual system[

∇2
xxL(x , λ) ∇c(x)
∇c(x)T 0

] [
d
δ

]
= −

[
∇f (x) +∇c(x)λ

c(x)

]
is equivalent to the SQP subproblem

min
d∈Rn

f (x) +∇f (x)T d + 1
2
dT (∇2

xxL(x , λ))d

s.t. c(x) +∇c(x)T d = 0

if ∇2
xxL(x , λ) is positive definite on the null space of ∇c(x)T
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Minimizing an exact penalty function
Consider the exact penalty function for

min (x − 1)2, s.t. x = 0 i.e. φ(x ;π) = (x − 1)2 + π|x |

for different values of the penalty parameter π

Figure: π = 1 Figure: π = 2
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Convergence of Algorithm 0

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω and

I f , c, and their first derivatives are bounded and Lipschitz continuous on Ω

I (Regularity) ∇c(xk)T has full row rank with smallest singular value
bounded below by a positive constant

I (Convexity) uT (∇2
xxL(xk , λk))u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn

satisfying u 6= 0 and ∇c(xk)T u = 0

Theorem
The sequence {(xk , λk)} yields the limit

lim
k→∞

∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ = 0
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Incorporating inexactness

I An inexact solution to the primal-dual equations; i.e.,[
∇2

xxL(x , λ) ∇c(x)
∇c(x)T 0

] [
d
δ

]
= −

[
∇f (x) +∇c(x)λ

c(x)

]
+

[
ρ
r

]
may yield Dφk(dk ;πk) > 0 for any πk ≥ πk−1, even if for some κ ∈ (0, 1)
we have ∥∥∥∥[ρr

]∥∥∥∥ ≤ κ ∥∥∥∥[∇f (x) +∇c(x)λ
c(x)

]∥∥∥∥
(the standard condition required in inexact Newton methods)

I It is the merit function that tells us what steps are appropriate, and so it
should be what tells us which inexact solutions to the Newton
(primal-dual) system are acceptable search directions
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Model reductions

I Modern optimization techniques focus on models of the problem functions

I We apply an iterative solver to the primal-dual system[
∇2

xxL(x , λ) ∇c(x)
∇c(x)T 0

] [
d
δ

]
= −

[
∇f (x) +∇c(x)λ

c(x)

]
(since an exact solution will produce an acceptable search direction)

I A search direction is deemed acceptable if the improvement in the model

m(d ;π) , f (x) +∇f (x)T d + π(‖c(x) +∇c(x)T d‖)

is sufficiently large; i.e., if we have

∆m(d ;π) , m(0;π)−m(d ;π)

= −∇f (x)T d + π(‖c(x)‖ − ‖c(x) +∇c(x)T d‖)� 0
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Termination test 1
An inexact solution (d , δ) to the primal-dual system is acceptable if∥∥∥∥[ρr

]∥∥∥∥ ≤ κ ∥∥∥∥[∇f (x) +∇c(x)λ
c(x)

]∥∥∥∥
for some κ ∈ (0, 1) and if

∆m(d ;π) ≥ max{ 1
2
dT (∇2

xxL(x , λ))d , 0}+ σπmax{‖c(x)‖, ‖r‖ − ‖c(x)‖}

for some σ ∈ (0, 1)
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Termination test 2
An inexact solution to the primal-dual system is acceptable if

‖ρ‖ ≤ β‖c(x)‖
‖r‖ ≤ ε‖c(x)‖

for some β > 0 and ε ∈ (0, 1)

Increasing the penalty parameter can then yield

∆m(d ;π) ≥ max{ 1
2
dT (∇2

xxL(x , λ))d , 0}+ σπ‖c(x)‖
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Algorithm 1: Inexact Newton for optimization
for k = 0, 1, 2, . . .

I Evaluate f (xk), ∇f (xk), c(xk), ∇c(xk), and ∇2
xxL(xk , λk)

I Iteratively solve the primal-dual equations[
∇2

xxL(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
dk

δk

]
= −

[
∇f (xk) +∇c(xk)λk

c(xk)

]
until termination test 1 or 2 is satisfied

I If only termination test 2 is satisfied, increase the penalty parameter so

πk ≥
∇f (xk)T dk + max{ 1

2
dT

k (∇2
xxL(xk , λk))dk , 0}

(1− τ)(‖c(xk)‖ − ‖rk‖)

I Perform a line search to find αk ∈ (0, 1] satisfying the sufficient decrease
condition

φ(xk + αkdk ;πk) ≤ φ(xk ;πk)− ηαk∆m(dk ;πk)

I Update iterate (xk+1, λk+1)← (xk , λk) + αk(dk , δk)

An Inexact Newton Method for Nonlinear Constrained Optimization New York University



Background Algorithms and Theory Experiments Conclusion

Convergence of Algorithm 1

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω and

I f , c, and their first derivatives are bounded and Lipschitz continuous on Ω

I (Regularity) ∇c(xk)T has full row rank with smallest singular value
bounded below by a positive constant

I (Convexity) uT (∇2
xxL(xk , λk))u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn

satisfying u 6= 0 and ∇c(xk)T u = 0

Theorem
(Byrd, Curtis, Nocedal (2008)) The sequence {(xk , λk)} yields the limit

lim
k→∞

∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ = 0
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Take-away idea #1

In a (inexact) Newton method for optimization, global convergence depends on
the use of a merit function appropriate for optimization. This function should
dictate which inexact solutions to the primal-dual system are acceptable search
directions.
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Handling nonconvexity and rank deficiency

I There are two assumptions we aim to drop:

I (Regularity) ∇c(xk)T has full row rank with smallest singular
value bounded below by a positive constant

I (Convexity) uT (∇2
xxL(xk , λk))u ≥ µ‖u‖2 for µ > 0 for all

u ∈ Rn satisfying u 6= 0 and ∇c(xk)Tu = 0

I If the constraints are ill-conditioned, Algorithm 1 may compute long
unproductive search directions

I If the problem is non-convex, Algorithm 1 can easily converge to a
maximizer or saddle point

I There is also a danger in each case that the algorithm may stall during a
given iteration since an acceptable search direction cannot be computed
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No factorizations means no clue

I A significant challenge in overcoming these obstacles is that we have no
way of recognizing when the problem is non-convex or ill-conditioned,
since we do not form or factor the primal-dual matrix[

∇2
xxL(xk , λk) ∇c(xk)
∇c(xk)T 0

]
I Common practice is to perturb the matrix to be[

∇2
xxL(xk , λk) + ξ1I ∇c(xk)
∇c(xk)T −ξ2I

]
where ξ1 convexifies the model and ξ2 regularizes the constraints, but
arbitrary choices of these parameters can have terrible consequences on
the behavior of the algorithm
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Decomposing the step into two components
We guide the step computation by decomposing the primal search direction
into a normal component (toward satisfying the constraints) and a tangential
component (toward optimality)
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Normal component computation

I We define the trust region subproblem

min 1
2
‖c(xk) +∇c(xk)T v‖2

s.t. ‖v‖ ≤ ω‖(∇c(xk))c(xk)‖

for some ω > 0

I An (approximate) solution vk satisfying the
Cauchy decrease condition

‖c(xk)‖ − ‖c(xk) +∇c(xk)T vk‖

≥ εv (‖c(xk)‖ − ‖c(xk) +∇c(xk)T ṽk‖)

for εv ∈ (0, 1), where ṽk = −(∇c(xk))c(xk) is the
direction of steepest descent, can be computed
without any matrix factorizations (conjugate
gradient method, inexact dogleg method)

An Inexact Newton Method for Nonlinear Constrained Optimization New York University



Background Algorithms and Theory Experiments Conclusion

Normal component computation

I We define the trust region subproblem

min 1
2
‖c(xk) +∇c(xk)T v‖2

s.t. ‖v‖ ≤ ω‖(∇c(xk))c(xk)‖

for some ω > 0

I An (approximate) solution vk satisfying the
Cauchy decrease condition

‖c(xk)‖ − ‖c(xk) +∇c(xk)T vk‖

≥ εv (‖c(xk)‖ − ‖c(xk) +∇c(xk)T ṽk‖)

for εv ∈ (0, 1), where ṽk = −(∇c(xk))c(xk) is the
direction of steepest descent, can be computed
without any matrix factorizations (conjugate
gradient method, inexact dogleg method)
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Tangential component computation (idea #1)

I Standard practice is to then consider the trust
region subproblem

min (∇f (xk) +∇2
xxL(xk , λk)vk)T u + 1

2
uT (∇2

xxL(xk , λk))u

s.t. ∇c(xk)T u = 0, ‖u‖ ≤ ∆k

I Note that an exact solution would yield
∇c(xk)T dk = ∇c(xk)T vk

I An iterative procedure for solving this problem
(e.g., a projected conjugate gradient method),
however, requires repeated (inexact) projections of
vectors onto the null space of ∇c(xk)T (to
maintain

∇c(xk)T u ≈ 0

while respecting the trust region constraint)
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Tangential component computation

I Instead, we formulate the primal-dual system[
∇2

xxL(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
uk

δk

]
= −

[
∇f (xk) +∇c(xk)λk +∇2

xxL(xk , λk)vk

0

]
I Our ideas for assessing search directions based on

reductions in a model of an exact penalty function
carry over to this perturbed system
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Handling non-convexity

I The only remaining component is a mechanism for handling non-convexity

I We follow the idea of convexifying the Hessian matrix as in[
∇2

xxL(xk , λk) + ξ1I ∇c(xk)
∇c(xk)T 0

]
by monitoring properties of the computed trial search directions

I Hessian modification strategy: During the iterative step computation,
modify the Hessian matrix by increasing its smallest eigenvalue whenever
an approximate solution satisfies

‖uk‖ > ψ‖vk‖
1
2
uT

k (∇2
xxL(xk , λk))uk < θ‖uk‖2

for ψ, θ > 0
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Inexact Newton Algorithm 2
for k = 0, 1, 2, . . .

I Evaluate f (xk ), ∇f (xk ), c(xk ), ∇c(xk ), and ∇2
xxL(xk , λk )

I Compute an approximate solution vk to the trust region subproblem

min 1
2
‖c(xk ) +∇c(xk )T v‖2, s.t. ‖v‖ ≤ ‖(∇c(xk ))c(xk )‖

satisfying the normal component condition

I Iteratively solve the primal-dual equations[
∇2

xxL(xk , λk ) ∇c(xk )
∇c(xk )T 0

] [
dk

δk

]
= −

[
∇f (xk ) +∇c(xk )λk

−∇c(xk )T vk

]
until termination test 1 or 2 is satisfied, modifying ∇2

xxL(xk , λk ) based on the
Hessian modification strategy

I If only termination test 2 is satisfied, increase the penalty parameter so

πk ≥
∇f (xk )T dk + max{ 1

2
uT

k (∇2
xxL(xk , λk ))uk , θ‖uk‖2}

(1− τ)(‖c(xk )‖ − ‖c(xk ) +∇c(xk )T dk‖)
I Perform a line search to find αk ∈ (0, 1] satisfying the sufficient decrease

condition
φ(xk + αkdk ;πk ) ≤ φ(xk ;πk )− ηαk∆m(dk ;πk )

I Update iterate (xk+1, λk+1)← (xk , λk ) + αk (dk , δk )
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Convergence of Algorithm 2

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω on which f , c, and
their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Nocedal, Wächter (2009)) If all limit points of {∇c(xk)T} have full
row rank, then the sequence {(xk , λk)} yields the limit

lim
k→∞

∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ = 0.

Otherwise,
lim

k→∞
‖(∇c(xk))c(xk)‖ = 0

and if {πk} is bounded, then

lim
k→∞

‖∇f (xk) +∇c(xk)λk‖
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Take-away ideas #2 and #3

In an inexact Newton method for optimization...

I ill-conditioning can be handled by regularizing the constraint model with
a trust region. However, a trust region for the tangential component may
result in an expensive algorithm. The method we propose avoids these
costs and emulates a true inexact Newton method.

I non-convexity can be handled by monitoring properties of the iterative
solver iterates and modifying the Hessian only when it appears that a
sufficient model reduction may not be obtained. This process may not
(and need not) result in a convex model.
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Handling inequalities

I The most attractive class of algorithms for our purposes are interior point
methods

I A class of interior point methods that satisfying

c(xk) +∇c(xk)T dk = 0

may fail to converge from remote starting points3

I Fortunately, the trust region subproblem we use to regularize the
constraints also saves us from this type of failure!

3(Wächter, Biegler (2000)
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Algorithm 2 (Interior-point version)
I We apply Algorithm 2 to the logarithmic-barrier subproblem

min f (x)− µ
q∑

i=1

ln s i , s.t. cE(x) = 0, cI(x) = s

for µ→ 0

I We scale quantities related to the slack variables d s
k so that the step

computation subproblems still have the form

min 1
2
‖c(xk , sk) + A(xk , sk)v‖2, s.t. ‖v‖ ≤ ω‖A(xk , sk)T c(xk , sk)‖

and [
H(xk , sk , λk) A(xk , sk)T

A(xk , sk) 0

] [
dk

δk

]
= −

[
g(xk , sk) + A(xk , sk)Tλk

c(xk , sk)

]
where the Hessian Hk and constraint Jacobian Ak have the same
properties as before

I We incorporate a fraction-to-the-boundary rule in the line search and a
slack reset in the algorithm to maintain s ≥ max{0, cI(x)}
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Convergence of Algorithm 2 (Interior-point)

Under the same assumption as before, our convergence theorem for Algorithm
2 still holds for the barrier subproblem for a given µ

Theorem
(Curtis, Schenk, Wächter (2009)) If Algorithm 2 yields a sufficiently accurate
solution to the barrier subproblem for each {µj} → 0 and if the linear
independence constraint qualification (LICQ) holds at a limit point x̄ of {xj},
then there exists Lagrange multipliers λ̄ such that the first-order optimality
conditions of the nonlinear program are satisfied

An Inexact Newton Method for Nonlinear Constrained Optimization New York University



Background Algorithms and Theory Experiments Conclusion

Take-away ideas #4

In an inexact Newton method for optimization...

I inequality constraints can be easily incorporated into Algorithm 2 if
quantities related to the slack variables are scaled appropriately
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Implementation details

I We implemented our interior-point version of Algorithm 2 in the IPOPT

software package and used PARDISO for the iterative linear system solves

I The normal and tangential (primal-dual) step computation was performed
with the symmetric quasi-minimum residual method (SQMR)

I We solved two model PDE-constrained problems on the three-dimensional
grid Ω = [0, 1]× [0, 1]× [0, 1], using an equidistant Cartesian grid with N
grid points in each spatial direction and a standard 7-point stencil for
discretizing the operators

An Inexact Newton Method for Nonlinear Constrained Optimization New York University



Background Algorithms and Theory Experiments Conclusion

Boundary control problem
Let u(x) be defined on ∂Ω and solve

min 1
2

∫
Ω(y(x)− yt(x))2dx

s.t. −∇ · (ey(x) · ∇y(x)) = 20, in Ω

y(x) = u(x), on ∂Ω

2.5 ≤ u(x) ≤ 3.5, on ∂Ω

where
yt(x) = 3 + 10x1(x1 − 1)x2(x2 − 1) sin(2πx3)

N n p q # nnz f ∗ # iter CPU sec
20 8000 5832 4336 95561 1.3368e-2 12 33.4
30 27000 21952 10096 339871 1.3039e-2 12 139.4
40 64000 54872 18256 827181 1.2924e-2 12 406.0
50 125000 110592 28816 1641491 1.2871e-2 12 935.6
60 216000 195112 41776 2866801 1.2843e-2 13 1987.2

(direct) 40 64000 54872 18256 827181 1.2924e-2 10 3196.3

An Inexact Newton Method for Nonlinear Constrained Optimization New York University



Background Algorithms and Theory Experiments Conclusion

(Simplified) Hyperthermia Treatment Planning
Let uj = aje

iφj be a complex vector of amplitudes a ∈ R10 and phases φ ∈ R10 of 10
antennas, let Mij (x) =< Ei (x),Ej (x) > with Ej = sin(jx1x2x3π), and let the tumor be
defined by Ω0 = [3/8, 5/8]3, and solve

min 1
2

∫
Ω(y(x)− yt(x))2dx

s.t. −∆y(x)− 10(y(x)− 37) = u∗M(x)u, in Ω

37.0 ≤ y(x) ≤ 37.5, on ∂Ω

42.0 ≤ y(x) ≤ 44.0, in Ω0

where

yt(x) =

{
37 in Ω\Ω0

43 in Ω0

N n p q # nnz f ∗ # iter CPU sec
10 1020 512 1070 20701 2.3037 40 15.0
20 8020 5832 4626 212411 2.3619 62 564.7
30 27020 21952 10822 779121 2.3843 146 4716.5
40 64020 54872 20958 1924831 2.6460 83 9579.7

(direct) 30 27020 21952 10822 779121 2.3719 91 10952.4
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(Simplified) Hyperthermia Treatment Planning
An example solution (N = 40)

Figure: y(x) Figure: yt(x)
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Numerical experiments (coming soon)

Further numerical experimentation is now underway with Andreas Wächter
(IBM) and Olaf Schenk (U. of Basel)

I Hyperthermia treatment planning with real patient geometry (with
Matthias Christen, U. of Basel)

I Geophysical modeling applications (with Johannes Huber, U. of Basel)

I Image registration (with Stefan Heldmann, U. of Lübeck)
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Conclusion and final remarks

I We have presented an inexact Newton method for constrained
optimization

I The method hinges on a merit function appropriate for optimization, and
the iterative linear system solves focus on a model of this function to
decide when to terminate

I We have extended the basic algorithm to solve non-convex and
ill-conditioned problems, and to solve problems with inequality constraints

I The algorithm is globally convergent to first-order optimal points or
infeasible stationary points

I Numerical experiments are promising so far, and further testing on
real-world problems is underway
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