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Constrained minimization

Is this how we should formulate nonlinear optimization (NLO) problems?

min
x

f (x)

s.t.

(
cE(x) = 0

cI(x) ≤ 0

(OP)
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Constraint violation minimization

What if the constraints are infeasible?

I modeling errors

I data inconsistency

I branch-and-bound for mixed-integer optimization

Then, we want to solve

min
x

v(x) :=

‚‚‚‚» cE(x)
max{cI(x), 0}

–‚‚‚‚ . (FP)

Many algorithms/codes do this already, either by

I switching back-and-forth;

I transitioning (via penalization).

But are they doing it efficiently?
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Numerical experiments: Infeasible optimization problems

Iterations and evaluations for 8 infeasible optimization problems (2-3 variables):

Prob.
Ipopt Knitro Filter

Iter. Eval. Iter. Eval. Iter. Eval.
1 48 281 38 135 16 16
2 109 170 *10000 *40544 12 12
3 788 3129 12 83 10 10
4 46 105 25 61 11 11
5 72 266 *1060 *3401 26 26
6 63 141 *76 *264 27 27
7 87 152 *10000 *43652 30 30
8 104 206 33 97 28 28

Problems also run with SNOPT and LOQO, but they failed every time.
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Numerical experiments: Feasibility problems (solved directly)

Iterations and evaluations for 8 feasibility problems (2-3 variables):

Problem
Ipopt Knitro Filter

Iter. Eval. Iter. Eval. Iter. Eval.
1 28 29 14 15 17 21
2 31 32 31 33 12 13
3 50 131 10 11 12 13
4 24 79 18 29 10 12
5 166 786 29 40 30 32
6 37 48 20 21 26 27
7 59 65 31 34 25 28
8 46 71 19 20 26 29

=⇒ If we can switch/transition efficiently, then our current tools work well.
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Main contribution

Active-set and interior-point method that complete the convergence picture for NLO:

Problem type Global convergence Fast local convergence
Feasible X X

Infeasible X ?
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Sequential quadratic optimization (SQO)

Compute search direction d and multiplier λ for (OP) by solving

min
d

f (xk ) +∇f (xk )T d + 1
2

dT H(xk , λk )d

s.t.

(
cE(xk ) +∇cE(xk )T d = 0

cI(xk ) +∇cI(xk )T d ≤ 0.

I May reduce to Newton’s method once the active set is identified.

I However, a globalization mechanism is needed.

I Moreover, this subproblem may be infeasible!
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Literature

I (Rich history of SQO methods)

I Fletcher, Leyffer (2002)

I Byrd, Gould, Nocedal (2005)

I Byrd, Nocedal, Waltz (2008)

I Byrd, Curtis, Nocedal (2010)

I Byrd, López-Calva, Nocedal (2010)

I Gould, Robinson (2010)

I Morales, Nocedal, Wu (2010)
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Issue faced by all NLO solvers

Move towards feasibility and/or objective decrease?
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FILTER and steering strategies

I FILTER: “... we make use of a property of the phase I algorithm in our QP solver.
If an infeasible QP is detected, [a feasibility restoration phase is entered].”

I Steering methods solve a sequence of constrained subproblems:
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Our approach: Two-phase strategy

I Exploratory step to determine possible progress toward feasibility.

I Formulation of optimality step exploits information obtained by exploratory step.

I Objective function never ignored (unlike FILTER).

I At most two subproblems solved per iteration (unlike steering).

I Reduces to SQO for optimization problem in feasible cases.

I Reduces to (perturbed) SQO for feasibility problem in infeasible cases.
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Ensuring global convergence

(1) Compute feasibility step dk to determine highest level of feasibility improvement.

(2) Compute optimality step bdk .

(3) Let dk = wk dk + (1− wk )bdk to obtain proportional feasibility improvement.

(4) Update penalty parameter to ensure sufficient decrease in a merit function:

φ(x ; ρ) := ρf (x) + v(x).
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Feasibility step

(1) Compute feasibility step dk to determine highest level of feasibility improvement.

I Solve for (dk , rk , sk , tk ) and (λ
E
k+1, λ

I
k+1):

min
d,r,s,t

eT (r + s) + eT t + 1
2

dT H(xk , 0, λk )d

s.t.

8><>:
cE(xk ) +∇cE(xk )T d = r − s

cI(xk ) +∇cI(xk )T d ≤ t

(r , s, t) ≥ 0.

(QO1)

I Resulting dk yields a reduction in a local model of v at xk :

lk (d) := ‖cE(xk ) +∇cE(xk )T d‖1 + ‖max{cI(xk ) +∇cI(xk )T d , 0}‖1.
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Optimality step

(2) Compute optimality step bdk .

I Determine Ek and Ik for which dk is linearly feasible:

cEk (xk ) +∇cEk (xk )T dk = 0

cIk (xk ) +∇cIk (xk )T dk ≤ 0.

I Solve for (dk , r
Ec

k
k , s

Ec
k

k , t
Ic

k
k ) and (bλEk+1,

bλIk+1):

min
d,r
Ec

k ,s
Ec

k ,t
Ic

k

ρk∇f (xk )T d + eT (rE
c
k + sE

c
k ) + eT tI

c
k + 1

2
dT H(xk , ρk , bλk )d

s.t.

8>>>>>>>><>>>>>>>>:

cE
c
k (xk ) +∇cE

c
k (xk )T d = 0

cE
c
k (xk ) +∇cE

c
k (xk )T d = rE

c
k − sE

c
k

cIk (xk ) +∇cIk (xk )T d ≤ 0

cI
c
k (xk ) +∇cI

c
k (xk )T d ≤ tI

c
k

(rE
c
k , sE

c
k , tI

c
k ) ≥ 0.

(QO2)
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Search direction

(3) Let dk = wk dk + (1− wk )bdk to obtain proportional feasibility improvement.

I Find the smallest wk such that, for β ∈ (0, 1), dk satisfies

v(xk )− lk (dk ) ≥ β(v(xk )− lk (dk )).
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ρ update

(4) Update penalty parameter to ensure sufficient decrease in a merit function:

φ(x ; ρ) := ρf (x) + v(x).

I Set ρk+1 so that

ρk+1 ≤
1

‖bλk+1‖∞
.

I Set ρk+1 so that dk yields

φ(xk ; ρk+1)− ρk+1∇f (xk )T d − lk (dk ) ≥ ε(v(xk )− lk (dk )).

This ensures sufficient decrease in φ(·; ρk+1) from xk .
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Ensuring fast local convergence

(1) (OP) feasible: (QO2) reduces to standard SQO subproblem.

(2) (OP) infeasible: Rapidly reduce ρ so that (QO2) reduces to (QO1).
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Feasible case

(1) (OP) feasible: (QO2) reduces to standard SQO subproblem.

min
d,r
Ec

k ,s
Ec

k ,t
Ic

k

ρk∇f (xk )T d + eT (rE
c
k + sE

c
k ) + eT tI

c
k + 1

2
dT H(xk , ρk , bλk )d

s.t.

8>>>>>>>><>>>>>>>>:

cE
c
k (xk ) +∇cE

c
k (xk )T d = 0

cE
c
k (xk ) +∇cE

c
k (xk )T d = rE

c
k − sE

c
k

cIk (xk ) +∇cIk (xk )T d ≤ 0

cI
c
k (xk ) +∇cI

c
k (xk )T d ≤ tI

c
k

(rE
c
k , sE

c
k , tI

c
k ) ≥ 0.

(QO2)
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Infeasible case

(2) (OP) infeasible: Rapidly reduce ρ so that (QO2) reduces to (QO1).

min
d,r,s,t

eT (r + s) + eT t + 1
2

dT H(xk , 0, λk )d

s.t.

8><>:
cE(xk ) +∇cE(xk )T d = r − s

cI(xk ) +∇cI(xk )T d ≤ t

(r , s, t) ≥ 0.

(QO1)

If v(xk ) 6= 0 and v(xk )− lk (dk ) ≤ θv(xk ), then

ρk ≤ KKTinf (xk , λk+1)2

‖bλk − λk‖ ≤ KKTinf (xk , λk+1)2.
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SQuID

Sequential Quadratic Optimization with Fast Infeasibility Detection

(1) Compute feasibility step via (QO1).

(2) Check whether infeasible stationary point has been obtained.

(3) Update ρk and bλk , if necessary (for fast local convergence).

(4) Compute optimality step via (QO2).

(5) Check whether optimal solution has been obtained.

(6) Compute combination of feasibility and optimality steps (for global convergence).

(7) Update ρk , if necessary (for global convergence).

(8) Perform line search to obtain decrease in merit function.
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Global convergence: Assumptions

(1) Positive definiteness: There exist µmax ≥ µmin > 0 such that, for any d ,

µmin‖d‖2 ≤ dT H(xk , 0, λk )d ≤ µmax‖d‖2

µmin‖d‖2 ≤ dT H(xk , ρk , bλk )d ≤ µmax‖d‖2.

(2) Continuity and boundedness: f , cE , cI and their first-order derivatives are
bounded and Lipschitz continuous in a convex set containing {xk}.
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Global convergence

Theorem
All limit points of {xk} are either feasible or infeasible stationary.

Theorem
If ρk ≥ ρ∗ for some constant ρ∗ > 0 for all k, then every limit point {(x∗, ρ∗, λ∗)} of
{(xk , ρk+1, λk+1)} with v(x∗) = 0 is a KKT point for (OP).

Theorem
Suppose ρk → 0 and let Kρ be the subsequence of iterations during which the penalty
parameter ρk is decreased. Then, if all limit points of {xk} are feasible, then all limit
points of {xk}k∈Kρ correspond to Fritz John points for (OP) where MFCQ fails.

Infeasibility Detection in Nonlinear Optimization 25 of 41



Motivation Active-set Method Interior-Point Method Summary

Local convergence: Assumptions

(1) f , cE and cI and their first and second derivatives are bounded and Lipschitz
continuous in an open convex set containing a given point of interest x∗.

(2) If (x∗, λ∗) is a KKT point for (FP), then

(a) ∇cZ∗∪A∗ (x∗)T has full row rank.

(b) −e < λ
Z∗
∗ < e and 0 < λ

A∗
∗ < e.

(c) dT H(x∗, 0, λ∗)d > 0 for all d 6= 0 such that ∇cZ∗∪A∗ (x∗)T d = 0.

(3) If (x∗, ρ∗, bλ∗) is a KKT point for (OP), then (2) holds, ρk → ρ∗ > 0, and

(a) bλA∗∗ + cA∗ (x∗) > 0.

(b) dT H(x∗, ρ∗, bλ∗)d > 0 for all d 6= 0 such that ∇cE∗∪A∗ (x∗)T d = 0.
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Local convergence

Theorem
If v(x∗) > 0, and (xk , λk ) and (xk , bλk ) are each sufficiently close to (x∗, λ∗), then‚‚‚‚»xk+1 − x∗

λk+1 − λ∗

–‚‚‚‚ ≤ C

‚‚‚‚»xk − x∗
λk − λ∗

–‚‚‚‚2

+ O(‖bλk − λk‖) + O(ρ)

for some constant C > 0 independent of k.

Theorem
If ‖(xk , λk )− (x∗, λ∗)‖ and ‖(xk , bλk )− (x∗, bλ∗)‖ each sufficiently small, then‚‚‚‚»xk+1 − x∗bλk+1 − bλ∗

–‚‚‚‚ ≤ C

‚‚‚‚»xk − x∗bλk − bλ∗
–‚‚‚‚2

for some constant C > 0 independent of k.
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Numerical experiments: Infeasible optimization problems

Iterations and f evaluations for 8 infeasible optimization problems (2-3 variables):

Prob.
Filter SQuID

Iter. Eval. Iter. Eval.
1 16 16 16 18
2 12 12 16 55
3 10 10 37 41
4 11 11 21 28
5 26 26 21 78
6 27 27 33 121
7 30 30 17 32
8 28 28 47 59
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Feasible and infeasible test problems

Table: Performance statistics of SQuID on feasible problems

Problem type Succeed Fail Infeasible Total
Feasible 110 (90.16%) 11 (9.02%) 1 (0.82%) 122

Table: Performance statistics of SQuID on infeasible problems

Problem type Succeed Fail Feasible Total
Infeasible 111 (90.24%) 12 (9.76%) 0 (0.0%) 123
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Feasible and infeasible test problems

0 2 4 6 8 10
−20

−18

−16

−25

−12

−10

−8

−6

−4

−2

0

(a)

lo
gR

i
n

f

0 2 4 6 8 10
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

(b)

lo
gR

o
p

t

Infeasibility Detection in Nonlinear Optimization 30 of 41



Motivation Active-set Method Interior-Point Method Summary

Outline

Motivation

Active-set Method

Interior-Point Method

Summary

Infeasibility Detection in Nonlinear Optimization 31 of 41



Motivation Active-set Method Interior-Point Method Summary

Penalty and interior-point methods

Constrained subproblems in penalty methods can be expensive:

min
x,r,s,t

ρf (x) + eT r + eT s + eT t

s.t.

8><>:
cE(x) = r − s

cI(x) ≤ t

(r , s, t) ≥ 0

(PP)

Interior-point methods are more efficient for large-scale problems:

min
x,u

f (x)− µ
X

ln ui

s.t.

8><>:
cE(x) = 0

cI(x) = −u

u ≥ 0

(IP)
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Penalty-interior-point method

Applying a penalty-interior-point reformulation to (OP):

min
x,r,s,t,u

ρf (x)− µ
“X

(ln r i + ln s i ) +
X

(ln t i + ln ui )
”

+ eT r + eT s + eT t

s.t.

(
cE(x) = r − s

cI(x) = t − u

(PIP)

The optimization problem (OP) and feasibility problem (FP) can be solved via (PIP):

I µ→ 0 and ρ→ ρ̄ > 0 to solve (OP).

I µ→ 0 and ρ→ 0 to solve (FP).

Infeasibility Detection in Nonlinear Optimization 33 of 41



Motivation Active-set Method Interior-Point Method Summary

Literature

Previous work with similar motivations:

I Jittorntrum and Osborne (1980)

I Polyak (1982, 1992, 2008)

I Breitfeld and Shanno (1994, 1996)

I Goldfarb, Polyak, Scheinberg, and Yuzefovich (1999)

I Gould, Orban, and Toint (2003)

I Chen and Goldfarb (2006, 2006)

I Benson, Sen, and Shanno (2008)

Parameter updates are essential to have a practical algorithm.
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Numerical results: Feasible problems (sample size = 417)
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Numerical results: Feasible problems w/ ρ decrease (sample size = 132)
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Numerical results: Degenerate problems (sample size = 120)

Added constraints: c i (x)2 ≤ 0
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Numerical results: Infeasible problems (sample size = 105)

Added constraints: c i (x)2 ≤ −1
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Summary

I Developed an SQO method that completes the convergence picture for NLO:

Problem type Global convergence Fast local convergence
Feasible X X

Infeasible X X

I Referred to a penalty-interior-point method with similar motivations.

I Numerical results for both algorithms are encouraging.
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Thanks!!
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