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Copper Mountain, 2008

Matrix-free Optimization New York University



Problem Statement Algorithm Methodology Analysis and Experiments Conclusion

Outline

Problem Statement
The Optimization Problem
Computational Challenges

Algorithm Methodology
Penalty Function Model Reductions
Handling Rank Deficiency

Analysis and Experiments
Overview of Convergence Results
Numerical Experiments

Matrix-free Optimization New York University



Problem Statement Algorithm Methodology Analysis and Experiments Conclusion

The Optimization Problem

Outline

Problem Statement
The Optimization Problem
Computational Challenges

Algorithm Methodology
Penalty Function Model Reductions
Handling Rank Deficiency

Analysis and Experiments
Overview of Convergence Results
Numerical Experiments

Matrix-free Optimization New York University



Problem Statement Algorithm Methodology Analysis and Experiments Conclusion

The Optimization Problem

Equality constrained optimization

We consider very large problems of the form

min
x∈Rn

f (x)

s.t. c(x) = 0

where f : Rn → R and c : Rn → Rt are smooth functions

I First, we describe a matrix-free primal-dual method for nice cases

I Then, we show how we handle (near) rank deficiency

I Assume strict convexity here, but we can handle non-convexity as well
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The Optimization Problem

First-order optimality
Defining the Lagrangian

L(x , λ) , f (x) + λT c(x)

we are interested in finding a first-order optimal point; i.e., one satisfying

∇L =

[
g(x) + A(x)Tλ

c(x)

]
= 0

where g(x) is the gradient of f (x) and A(x) is the Jacobian of c(x)
Note: if the problem is infeasible, we would like to at least guarantee
convergence toward a stationary point of the feasibility measure

ϕ(x) = ‖c(x)‖;

that is, one satisfying
A(x)T c(x) = 0
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The Optimization Problem

Method of choice: Newton/SQP

A Newton iteration from the point (xk , λk) has the form[
W (xk , λk) A(xk)T

A(xk) 0

] [
dk

δk

]
= −

[
g(xk) + A(xk)Tλk

c(xk)

]
where W (xk , λk) ≈ ∇2

xxL(xk , λk), which is equivalent to solving the Sequential
Quadratic Programming (SQP) subproblem

min
d∈Rn

f (xk) + g(xk)Td + 1
2
dTW (xk , λk)d

s.t. c(xk) + A(xk)d = 0

Note: step may be arbitrarily large in norm if A is ill-conditioned, and step
computation may not even be defined if rank(A) < t
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The Optimization Problem

Globalization with an exact penalty function

Algorithm outline: for k = 0, 1, 2, . . .

I ... evaluate fk , gk , ck , Ak , and Wk

I ... solve the primal-dual equations[
Wk AT

k
Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
min

d∈Rn
f (xk ) + g(xk )T d + 1

2
dT W (xk , λk )d

s.t. c(xk ) + A(xk )d = 0

I ... set the penalty parameter πk

I ... perform a line search for the merit function

φ(x ;πk) , f (x) + πk‖c(x)‖

to find αk ∈ (0, 1] satisfying the Armijo condition

φ(xk + αkdk ;πk) ≤ φ(xk ;πk) + ηαkDφ(dk ;πk)
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Computational Challenges

Working with matrices may be impractical

[
Wk AT

k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]

What if...

I Ak , AT
k , and Wk cannot be computed explicitly?

I Ak , AT
k , and Wk cannot be stored?

I the primal-dual matrix cannot be factored?

I an iterative method may be more efficient?

If the products Akp, AT
k q, and Wky can be computed, we have answers...
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Computational Challenges

Iterative step computations

From now on, let us assume that we have an iterative procedure for solving the
primal-dual equations, which during each inner iteration yields (dk , δk) solving[

Wk AT
k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
+

[
ρk

rk

]
for the residuals (ρk , rk)

I How can we be sure that a given inexact step is acceptable?

I How small do the residuals need to be?

Matrix-free Optimization New York University



Problem Statement Algorithm Methodology Analysis and Experiments Conclusion

Penalty Function Model Reductions

Outline

Problem Statement
The Optimization Problem
Computational Challenges

Algorithm Methodology
Penalty Function Model Reductions
Handling Rank Deficiency

Analysis and Experiments
Overview of Convergence Results
Numerical Experiments

Matrix-free Optimization New York University



Problem Statement Algorithm Methodology Analysis and Experiments Conclusion

Penalty Function Model Reductions

A näıve approach
Algorithm outline: given 0 < κ < 1, for k = 0, 1, 2, . . .

I ... evaluate fk , gk , ck , AT
k λk

I ... solve the primal-dual equations[
Wk AT

k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
+

[
ρk

rk

]
until ‖(ρk , rk)‖ ≤ κ‖(gk + AT

k λk , ck)‖
I ... set the penalty parameter πk

I ... perform a line search to find αk ∈ (0, 1] satisfying

φ(xk + αkdk ;πk) ≤ φ(xk ;πk) + ηαkDφ(dk ;πk)
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Penalty Function Model Reductions

A näıve approach
Algorithm outline: given 0 < κ < 1, for k = 0, 1, 2, . . .

I ... evaluate fk , gk , ck , AT
k λk

I ... solve the primal-dual equations[
Wk AT

k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
+

[
ρk

rk

]
until ‖(ρk , rk)‖ ≤ κ‖(gk + AT

k λk , ck)‖
I ... set the penalty parameter πk

I ... perform a line search to find αk ∈ (0, 1] satisfying

φ(xk + αkdk ;πk) ≤ φ(xk ;πk) + ηαk Dφ(dk ;πk)︸ ︷︷ ︸
>0 ∀π?

κ 2−1 2−5 2−10

% Solved 45% 80% 86%
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Penalty Function Model Reductions

Optimization, not nonlinear equations

[
Wk AT

k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
+

[
ρk

rk

]
min
d∈Rn

fk + gT
k d + 1

2
dT Wkd

s.t. ck + Akd = 0

Take (dk , δk) and...

I ... “forget” about it being an inexact Newton step

I ... “forget” about it being an approximate SQP solution

We want a technique for determining if (dk , δk) is acceptable that...

I ... allows for possibly very inexact solutions to Newton’s equations

I ... integrates both step computation and step selection to solve the
optimization problem
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Penalty Function Model Reductions

Central idea: Sufficient Model Reductions

Modern optimization algorithms work with models.

Take the penalty function

φ(x ;π) , f (x) + π‖c(x)‖

and consider the model

mk(d ;π) , fk + gT
k d + π‖ck + Akd‖

The reduction in mk attained by dk is computed easily as

∆mk(dk ;π) , mk(0;π)−mk(dk ;π)

= −gT
k dk + π(‖ck‖ − ‖rk‖)

and yields
Dφ(dk ;π) ≤ −∆mk(dk ;π)
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Penalty Function Model Reductions

Main tool: “SMART” Tests
We develop two types of
Sufficient Merit function Approximation Reduction Termination Tests.

Termination Test I: A sufficient model reduction is attained for πk−1 (i.e., the
most recent penalty parameter value):

∆mk(dk ;πk−1) = −gT
k dk + πk−1(‖ck‖ − ‖rk‖)� 0
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Penalty Function Model Reductions

Main tool: “SMART” Tests
We develop two types of
Sufficient Merit function Approximation Reduction Termination Tests.

Termination Test II: A sufficient reduction in the constraint model is attained
for some ε ∈ (0, 1)

‖rk‖ ≤ ε‖ck‖
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Penalty Function Model Reductions

Step acceptance criteria:

Model Reduction Condition. A step (dk , δk ) is acceptable if and only if

∆mk (dk ;πk ) ≥ 1
2
dT

k Wkdk + σπk max{‖ck‖, ‖ck + Akdk‖ − ‖ck‖}

for some σ ∈ (0, 1) and an appropriate πk > 0.

Termination Test I. For some σ ∈ (0, 1) and πk = πk−1 the Model Reduction
Condition is satisfied and for some κ ∈ (0, 1) we have∥∥∥∥[

ρk

rk

]∥∥∥∥ ≤ κ∥∥∥∥[
gk + AT

k λk

ck

]∥∥∥∥
Termination Test II. For some ε ∈ (0, 1) and β > 0 we have

‖rk‖ ≤ ε‖ck‖ and ‖ρk‖ ≤ β‖ck‖

and we set

πk ≥
gT

k dk + 1
2
dT

k Wkdk

(1− τ)(‖ck‖ − ‖rk‖)
for τ ∈ (0, 1)
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Penalty Function Model Reductions

Inexact SQP with SMART Tests1

Algorithm outline: for k = 0, 1, 2 . . .

I ... evaluate fk , gk , ck , AT
k λk

I ... solve the primal-dual equations[
Wk AT

k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
+

[
ρk

rk

]
until Termination Test I or II holds

I ... set the penalty parameter πk

I ... perform a line search to find αk ∈ (0, 1] satisfying

φ(xk + αkdk ;πk) ≤ φ(xk ;πk)− ηαk∆mk(dk ;πk)

1
R. H. Byrd, F. E. Curtis, and J. Nocedal, “An Inexact SQP Method for Equality Constrained Optimization,”

to appear in SIAM Journal on Optimization.
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Handling Rank Deficiency

(Near) Rank-deficient Jacobians

If at any point the Jacobian A of c is ill-conditioned or rank deficient, the
Newton system[

W (xk , λk) A(xk)T

A(xk) 0

] [
dk

δk

]
= −

[
g(xk) + A(xk)Tλk

c(xk)

]
and the SQP subproblem

min
d∈Rn

f (xk) + g(xk)Td + 1
2
dTW (xk , λk)d

s.t. c(xk) + A(xk)d = 0

may not be well-defined or may lead to very long steps (i.e., ‖dk‖ � 0, αk ≈ 0,
and algorithm may stall)
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Handling Rank Deficiency

Regularizing the constraint model with trust regions

We decompose the step by first considering the trust region subproblem

min
v∈Rn

1
2
‖ck + Akv‖2

s.t. ‖v‖ ≤ Ωk

Notice that this subproblem fits well within our context of matrix-free
optimization; e.g., apply CG/LSQR with Steihaug-Toint stop tests
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Handling Rank Deficiency

Trust regions

The trust region keeps us in a local
region of the search space:

min
v∈Rn

1
2
‖ck + Akv‖2

s.t. ‖v‖ ≤ Ωk
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Handling Rank Deficiency

Trust regions

Once v is computed, we could consider
computing a step toward optimality
within a larger trust region:

min
u∈Rn

(gk + Wkvk)Tu + 1
2
uTWku

s.t. Aku = 0, ‖u‖ ≤ Ω′k ,

but then we may need

Zk s.t. AkZk ≈ 0

or to (approximately) project vectors
onto the null space of Ak
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Handling Rank Deficiency

Trust regions only for v !

Instead, we set no trust region for u:

min
u∈Rn

(gk + Wkvk)Tu + 1
2
uTWku

s.t. Aku = 0

which, with dk = vk + uk , has the same
solutions as[

Wk AT
k

Ak 0

] [
dk

δk

]
=

[
−(gk + AT

k λk)
Akvk

]
Notice that this system is consistent
(though perhaps (near) singular)
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Handling Rank Deficiency

Setting the trust region radius

In fact, we propose a very specific form for the trust region radius:

min
v∈Rn

1
2
‖ck + Akv‖2

s.t. ‖v‖ ≤ ω‖AT
k ck‖

for a given constant ω > 0

I We incorporate problem information in the right-hand-side (recall that a
stationary point for the feasibility measure has AT c = 0)

I The radius is set dynamically without a heuristic update

I ω should be set to correspond to the reciprocal of the smallest allowable
singular value of Ak
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Handling Rank Deficiency

Step acceptance criteria:2
Tangential Component Condition. The component uk must satisfy

‖uk‖ ≤ ψ‖vk‖ or (gk + Wkvk )T uk + 1
2
uT

k Wkuk ≤ 0

Model Reduction Condition. A step (dk , δk ) is acceptable if and only if

∆mk (dk ;πk ) ≥ 1
2
uT

k Wkuk + σπk (‖ck‖ − ‖ck + Akvk‖)

for some σ ∈ (0, 1) and an appropriate πk > 0.
Termination Test I. For some σ ∈ (0, 1) and πk = πk−1 the Tangential Component
Condition holds, the Model Reduction Condition is satisfied, and for some κ ∈ (0, 1)
we have ∥∥∥∥[

ρk

rk

]∥∥∥∥ ≤ κmin

{∥∥∥∥[
gk + AT

k λk

Akvk

]∥∥∥∥ ,∥∥∥∥[
gk−1 + AT

k−1λk

Ak−1vk−1

]∥∥∥∥}
Termination Test II. For some ε ∈ (0, 1) and β > 0, the Tangential Component
Condition holds and we have

‖ck‖ − ‖ck + Akdk‖ ≥ ε(‖ck‖ − ‖ck + Akvk‖)
and ‖ρk‖ ≤ β(‖ck‖ − ‖ck + Akvk‖),

and we set πk ≥ (gT
k dk + 1

2
uT

k Wkuk )/((1− τ)(‖ck‖ − ‖ck + Akdk‖))

2
F. E. Curtis, J. Nocedal, and A. Wächter, in preparation.
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Overview of Convergence Results

Main result

Assumptions: The generated sequence {xk , λk} is contained in a convex set
over which f and c and their first derivatives are bounded, and the iterative
linear system solver can solve the primal-dual equations to an arbitrary accuracy

Theorem: If all limit points satisfy the linear independence constraint
qualification (LICQ), then {πk} is bounded and

lim
k→∞

∥∥∥∥[gk + AT
k λk+1

ck

]∥∥∥∥ = 0

Otherwise,

lim
k→∞

∥∥∥AT
k ck

∥∥∥ = 0

and if {πk} is bounded then

lim
k→∞

∥∥∥gk + AT
k λk+1

∥∥∥ = 0

Matrix-free Optimization New York University
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Overview of Convergence Results

Brief overview of analysis

I The step length (dk , vk , uk) is explicitly or implicitly controlled...

I The reduction in the model of the penalty function satisfies

∆mk(dk ;πk) ≥ γ(‖uk‖2 + πk‖AT
k ck‖2)

I In particular

∆mk(dk ;πk) ≥ γ′‖AT
k ck‖2 ⇒ lim

k→∞
‖AT

k ck‖ = 0

I If {πk} remains bounded (guaranteed if LICQ holds), then

lim
k→∞

∥∥∥gk + AT
k λk+1

∥∥∥ = 0,

and otherwise π →∞
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Numerical Experiments

Implementation details

We use MINRES to solve the primal-dual equations

[
Wk AT

k

Ak 0

] [
dk

δk

]
=


−
[
gk + AT

k λk

ck

]
−
[
gk + AT

k λk

−Akvk

]
and LSQR (algebraically equivalent to CG, but with better numerical
properties) with Steihaug-Toint stop tests to solve the trust region subproblem

min
v∈Rn

1
2
‖ck + Akv‖2

s.t. ‖v‖ ≤ ω‖AT
k ck‖

All experiments performed in Matlab
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Numerical Experiments

Briefly, the nice case

κ 2−1 2−5 2−10 iSQP

% Solved 45% 80% 86% 100%
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Numerical Experiments

Problems with rank-deficiency

Total of 73 problems from the CUTEr collection

I Original and perturbed models have

c1(x) = 0 and

{
c1(x) = 0

c1(x)− c2
1 (x) = 0

respectively

I Success rates:

iSQP TRINS

Original 95% 100%
Perturbed 46% 93%

I A few of the failures of TRINS was due to the Maratos effect, so
second-order correction steps may be beneficial
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Conclusion

We have...

I ... focused on a particular class of problems to which contemporary
optimization techniques cannot be applied

I ... considered the fundamental question of how to ensure global
convergence via a type of inexact SQP/Newton approach

I ... developed a novel methodology where inexact solutions are appraised
based on the reductions obtained in linear models of an exact penalty
function

I ... extended the algorithm and analysis for cases involving rank deficiency
(and nonconvexity)
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