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Supervised Learning

Expected/empirical risk minimization:

▶ feature vector X defined over X
▶ label Y defined over Y
▶ (X,Y ) defined on a probability space (Ω,F ,P)

Given a prediction function p : X × Rd → Y and loss function ℓ : Y × Y → R, solve

min
w∈Rd

∫
X×Y

ℓ(p(x,w), y)dP(x, y) ≈ min
w∈Rd

1

N

N∑
i=1

ℓ(p(xi, w), yi),

where {(xi, yi)}Ni=1 is a set of sample feature-label pairs.

Training faster/better: Choice of data, p, ℓ, and optimization algorithm.
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Prediction and loss functions

These are critical, but not my scope. Related to today’s talk:

▶ Simple, classical models ⇐⇒ enormous, fully connected, overparameterized ones

▶ The prediction function model/architecture constrains the search

▶ . . . but there are other ways.
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Constrained training/optimization

Constraints can be used to influence training.

▶ One option is to embed constraints within the prediction function p

▶ . . . e.g., a layer defining p involves solving equations or an optimization problem.

▶ These remain with every forward pass after the model is trained.

Another option is to impose constraints during training ⇒ constrained optimization.

▶ p constrains the search for a model

▶ . . . additional constraints (data-driven?) refine it further.

▶ These constraints can also greatly influence training algorithm behavior!

Note: This is already done with fine-tuning, e.g., over subspaces, low-rank changes, etc.
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Aside: Constrained optimization

Let’s simplify notation to focus on the optimization algorithm:∫
X×Y

ℓ(p(x,w), y)dP(x, y) =: f(w)

Generally, one might consider various paradigms for imposing the constraints:

▶ expectation constraints

▶ (distributionally) robust constraints

▶ probabilistic (i.e., chance) constraints

For now, assume constraint values and derivatives can be computed:

cE(w) = 0 and cI(w) ≤ 0

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data.
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Aside: Penalization

Suppose that f : Rd → R, cE : Rd → RmE , and cI : Rd → RmI are locally Lipschitz and consider

min
w∈Rd

f(w) s.t. cE(w) = 0 and cI(w) ≤ 0.

Two common, essentially equivalent ways of solving such a problem:

▶ move constraints to objective and use an unconstrained method to solve

min
w∈Rd

f(w) + λv(w) e.g. v(w) = ∥cE(w)∥+ ∥max{cI(w), 0}∥

▶ employ a penalty or augmented Lagrangian method

One can refer to this as penalization, regularization, soft constraints, etc.
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Aside: Calmness and exact penalization

min
w∈Rd

f(w) s.t. cE(w) = 0 and cI(w) ≤ 0 (P)

Definition : Calmness

Problem (P) is calm at w ∈ Rd with respect to ∥ · ∥ if and only if there exist (ϵ, δ) ∈ (0,∞)× (0,∞) such
that, for all (w, s) ∈ Rd × Rd

≥0 with ∥w − w∥ ≤ ϵ, ∥s∥ ≤ ϵ, −s ≤ cE(w) ≤ s, and cI(w) ≤ s, one has

f(w) + δ∥s∥ ≥ f(w).

Theorem : Exact penalization

Suppose w∗ ∈ Rd is a local minimizer of (P), v : Rd → R is defined by ∥cE(w)∥+ ∥max{cI(w), 0}∥, and
(P) is calm at w∗ with respect to ∥ · ∥. Then, for some λ∗ ∈ (0,∞), the point w∗ is a local minimizer of

f + λv for all λ ∈ [λ∗,∞).
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Motivation

It is a mistake to overemphasize the relevance of this theory for practical use.

▶ Exact penalization only applies for minimizers

▶ . . . and requires a parameter that cannot be known in advance.

▶ In practice, subject to a computational budget, a minimizer is not reached

▶ . . . and the use of stochastic algorithms makes the theory even less relevant.

Penalization/regularization/soft-constraints can cause slow progress far from a minimizer.

Overall, our aim in this talk is to convince you that:

▶ It is worthwhile to explore the use of constrained optimization for informed learning.

▶ Penalization is not often the best route; there are other/better algorithms to consider.
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Equality-constrained example
Consider the problem to learn the solution of a parametric partial differential equation (PDE):

▶ P(ϕ, u) = 0, where ϕ are parameters and u solves the PDE with respect to ϕ

▶ G(ϕ, y, w) predicts u, where y encodes PDE domain and w are trainable parameters

▶ {(ϕi, yi, ui)}i∈S1
and {(ϕi, yi)}i∈S2

are datasets

Our training problem involves (at least) two possible terms:

1

|S1|
∑
i∈S1

∥ui − G(ϕi, yi, w)∥p and/or
1

|S2|
∑
i∈S2

∥P(ϕi,G(ϕi, yi, w))∥q

Problem from https://benmoseley.blog/blog/, m
d2u(t)

dt2
+ µ

du(t)
t

+ ku(t) = 0
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Inequality-constrained example

Suppose that one wants the covariance between a feature and the prediction to be limited by ϵ:

min
w∈Rd

1

|S1|
∑

(xi,yi)∈S1

ℓ(p(xi, w), yi) s.t. −ϵ ≤
1

|S2|
∑

(xi,yi)∈S2

(ai − a)p(xi, w) ≤ ϵ
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Stochastic gradient method
Consider min

w∈Rn
f(w), where ∇f : Rn → Rn is Lipschitz continuous with constant L∇f .

Algorithm SG : Stochastic gradient method

1: choose an initial point w1 ∈ Rn and step sizes {αk} > 0
2: for k ∈ {1, 2, . . . } =: N do
3: set wk+1 ← wk − αkgk, where gk ≈ ∇f(wk)
4: end for

Algorithm† behavior is defined by (Ω,F ,P), where

▶ Ω = Γ× Γ× Γ× · · · (sequence of draws determining stochastic gradients);

▶ F is a σ-algebra on Ω, the set of events (i.e., measurable subsets of Ω); and

▶ P : F → [0, 1] is a probability measure.

View any {(wk, gk)} as a realization of {(Wk, Gk)}, where for all k ∈ N

wk = Wk(ω) and gk = Gk(ω) given ω ∈ Ω.

†Robbins and Monro (1951); Sutton Monro = former Lehigh ISE faculty member
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Convergence of SG

Let E[·] = expectation w.r.t. P[·]. Analyze through associated sub-σ-algebras {Fk}.

Assumption

For all k ∈ N, one has that

▶ E[Gk|Fk] = ∇f(Wk) and

▶ E[∥Gk∥22|Fk] ≤M +M∇f∥∇f(Wk)∥22

By Lipschitz continuity of ∇f and construction of the algorithm, one finds

f(Wk+1)− f(Wk) ≤ ∇f(Wk)
T (Wk+1 −Wk) +

1
2
L∇f∥Wk+1 −Wk∥22

= −αk∇f(Wk)
TGk + 1

2
α2
kL∇f∥Gk∥22

=⇒ E[f(Wk+1)|Fk]− f(Wk) ≤ −αk∥∇f(Wk)∥22 + 1
2
α2
kL∇fE[∥Gk∥22|Fk]

≤ −αk∥∇f(Wk)∥22 + 1
2
α2
kL(M +M∇f∥∇f(Wk)∥22),

by the assumption and since f(Wk) and ∇f(Wk) are Fk-measurable.
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SG theory

Taking total expectation, one arrives at

E[f(Wk+1)− f(Wk)] ≤ −αk(1− 1
2
αkL∇fM∇f )E[∥∇f(Wk)∥22] + 1

2
α2
kL∇fM

Theorem

αk =
1

L∇fM∇f
=⇒ E

 1

k

k∑
j=1

∥∇f(Wj)∥22

 ≤Mk
k→∞−−−−→ O

(
M

M∇f

)

αk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 αj

) k∑
j=1

αj∥∇f(Wj)∥22

→ 0

=⇒ lim inf
k→∞

E[∥∇f(Wk)∥22] = 0

(further steps) =⇒ ∇f(Wk)→∞ almost surely.

Stochastic-Gradient-based Algorithms for Solving Nonconvex Constrained Optimization Problems 16 of 38



Motivation Stochastic SQP Extensions Conclusion

Sequential quadratic optimization (SQP)

Consider

min
w∈Rn

f(w)

s.t. c(w) = 0

With J ≡ ∇cT and H positive definite over Null(J), two viewpoints:

[
∇f(w) + J(w)T y

c(w)

]
= 0 or

min
d∈Rn

f(w) +∇f(w)T d+ 1
2
dTHd

s.t. c(w) + J(w)d = 0

both leading to the same “Newton-SQP system”:[
Hk JT

k
Jk 0

] [
dk
yk

]
= −

[
∇f(wk)

ck

]
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Stochastic SQP
Algorithm guided by merit function with adaptive parameter τ defined by

ϕ(w, τ) = τf(w) + ∥c(w)∥1

Algorithm : Stochastic SQP

1: choose w1 ∈ Rn, τ0 ∈ (0,∞), {βk} ∈ (0, 1]N

2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk

yk

]
= −

[
gk
ck

]
4: update merit parameter: set τk to ensure

ϕ
′
(wk, τk, dk) ≤ −∆q(wk, τk, gk, dk)≪ 0

5: compute step size: set

αk = Θ

(
βkτk

τkL∇f + LJ

)
6: then wk+1 ← wk + αkdk

7: end for
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Convergence theory in deterministic setting

Assumption

▶ f , c, ∇f , and J bounded and Lipschitz

▶ singular values of J bounded away from zero

▶ uTHku ≥ ζ∥u∥22 for all u ∈ Null(Jk) for all k ∈ N

Theorem

▶ {αk} ≥ αmin for some αmin > 0

▶ {τk} ≥ τmin for some τmin > 0

▶ ∆q(wk, τk,∇f(wk), dk)→ 0 implies optimality error vanishes, specifically,

∥dk∥2 → 0, ∥ck∥2 → 0, ∥∇f(wk) + JT
k yk∥2 → 0
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SQP illustration

c(wk) + J(wk)d = 0

wk
c(w) = 0

regularization / “soft” constraints

“hard” constraints

constrained approach = fundamentally different algorithm

wk

c(w) = 0

regularization / “soft” constraints

“hard” constraints =⇒ step in null space
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Stochastic setting: What do we want?

What we want/expect from the algorithm?

Note: We are interested in the stochastic approximation (SA) regime.

Ultimately, there are many questions to answer:

▶ convergence guarantees

▶ complexity guarantees

▶ tradeoff analysis (Bottou and Bousquet)

▶ generalization

▶ large-scale implementations

▶ beyond first-order (SG) methods
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Fundamental lemma

Recall in the unconstrained setting that

E[f(Wk+1)|Fk]− f(Wk) ≤ −αk∥∇f(Wk)∥22 + 1
2
α2
kLE[∥Gk∥22|Fk]

Lemma

For all k ∈ N one finds (before taking expectations)

ϕ(Wk+1, Tk+1)− ϕ(Wk, Tk)

≤ −Ak∆q(Wk, Tk,∇f(Wk), D
true
k )︸ ︷︷ ︸

O(βk), “deterministic”

+ 1
2Akβk∆q(Wk, Tk, Gk, Dk)︸ ︷︷ ︸

O(β2
k
), stochastic/noise

+AkTk∇f(Wk)
T
(Dk −D

true
k )︸ ︷︷ ︸

due to adaptive Ak
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Good merit parameter behavior

Theorem 6

Let E := event that {Tk} eventually remains constant at T ′ ≥ τmin > 0.

Then, conditioned on E,

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

∆q(Wj , T ′
,∇f(Wj), D

true
j )

 = O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj∆q(Wj , T ′
,∇f(Wj), D

true
j )

→ 0
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k
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T
Y
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1

k
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Key observation

Key observation is that c(Wk) and J(Wk) are Fk-measurable.

c(wk) + J(wk)d = 0

wk
c(w) = 0

“hard” constraints

Therefore, E[Dk|Fk] = true step if ∇f(Wk) were known.
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Numerical results: https://github.com/frankecurtis/StochasticSQP

Stochastic SQP (hard constraints) vs. stochastic subgradient (soft constraints)

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Projected Adam

Algorithm P-Adam Projection-based Adam

Require: β1 ∈ (0, 1), β2 ∈ (0, 1), µ ∈ R>0

Compute ḡk ← (I − JT
k (JkJ

T
k )−1Jk)gk (comes “for free” if computing vk explicitly)

Set pk ← β1pk−1 + (1− β1)ḡk
Set qk ← β2qk−1 + (1− β2)(ḡk ◦ ḡk), where (ḡk ◦ ḡk)i = (ḡk)

2
i for all i ∈ {1, . . . , d}

Set p̂k ← (1/(1− βk
1 ))pk

Set q̂k ← (1/(1− βk
2 ))qk

Compute dk by solving

[
diag(

√
q̂k + µ) JT

k
Jk 0

] [
dk
yk

]
= −

[
p̂k
ck

]
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Accelerated performance with P-Adam
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Summary

Since our original work, we have considered various extensions.

▶ stronger convergence guarantees (almost-sure convergence)

▶ convergence of Lagrange multiplier estimates

▶ relaxed constraint qualifications

▶ worst-case complexity guarantees

▶ generally constrained problems (with inequality constraints as well)

▶ interior-point methods

▶ iterative linear system solvers and inexactness

▶ diagonal scaling methods for saddle-point systems
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Almost-sure convergence of merit function value

Convergence of the algorithm is driven by the exact merit function

ϕτ (W ) = τf(W ) + ∥c(W )∥

Reductions in a local model of ϕτ can be tied to a stationarity measure

∆qτ (W,∇f(W ), H,Dtrue) ∼ ∥∇f(W ) + J(W )TY ∥2 + ∥c(W )∥

Lemma

Suppose E[Gk|Fk] = ∇f(Wk) and E[∥Gk −∇f(Wk)|Fk∥2] ≤M . Then, by Robbins and Siegmund (1971),
one finds that, almost surely,

lim
k→∞

{ϕτ (Wk)} exists and is finite and

lim inf
k→∞

∆qτ (Wk,∇f(Wk), Hk, D
true
k ) = 0
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Almost-sure convergence of the primal iterates

Theorem

Suppose there exists w∗ ∈ W with c(w∗) = 0, µ ∈ R>1, and ϵ ∈ R>0 such that for all

w ∈ Wϵ,w∗ := {w ∈ W : ∥w − w∗∥2 ≤ ϵ}

one finds that

ϕτ (w)− ϕτ (w∗)

{
= 0 if w = w∗

∈ (0, µ(τ∥Z(w)T∇f(w)∥22 + ∥c(w)∥2)] otherwise,

where for all w ∈ Wϵ,w∗ one defines Z(w) ∈ Rn×(n−m) as some orthonormal matrix whose columns form
a basis for the null space of J(w). Then, if lim sup

k→∞
{∥Wk − w∗∥2} ≤ ϵ almost surely, it follows that

{ϕτ (Wk)}
a.s.−−−→ ϕτ (w∗), {Wk}

a.s.−−−→ w∗, and

{[
∇f(Wk) + J(Wk)

TY true
k

c(Wk)

]}
a.s.−−−→ 0.
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Lagrange multiplier convergence

Theorem

Suppose (w∗, y∗) is a stationary point. Then, for any k ∈ N, one finds ∥Wk − w∗∥2 ≤ ϵ implies

∥Yk − y∗∥2 ≤ κy∥Wk − w∗∥2 + r−1∥∇f(Wk)−Gk∥2
and ∥Y true

k − y∗∥2 ≤ κy∥Wk − w∗∥2 for some (κ, r) ∈ R>0 × R>0.

Computed multipliers always have error. Consider averaged multipliers {Y avg
k }:

Theorem

If the iterate sequence converges almost surely to w∗, i.e., {Wk}
a.s.−−−→ w∗, then

{Y true
k } a.s.−−−→ y∗ and {Y avg

k } a.s.−−−→ y∗.
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Constrained logistic regression: australian dataset (LIBSVM)
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Summary

Stochastic-gradient/Newton-based algorithms for constrained optimization.

▶ A lot of work so far, but many open questions.

Open questions:

▶ tradeoff analysis (Bottou and Bousquet)?

▶ generalization guarantees?

▶ beyond projected ADAM, etc.?

▶ Lagrange multiplier estimators for inequality-constrained setting?

▶ active-set identification?

▶ expectation/probabilistic constraints?
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Constraint engineering

Neural network engineering, feature engineering, and now constraint engineering. . .

▶ The number of constraints m can be controlled:

c(p(x1, w), y1) = 0

c(p(x2, w), y2) = 0

...

 vs.
1

|S|
∑
i∈S

c(p(xi, w), yi) = 0.

▶ Selection of constraint data {(xi, yi)}i∈S also requires some care.

In all cases, also due to “vanishing gradients” and other possible effects, beware rank-deficient Jacobians:

▶ Berahas, Curtis, O’Neill, Robinson (2023)
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