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Supervised Learning

Expected/empirical risk minimization:
» feature vector X defined over X
» label Y defined over )
> (X,Y) defined on a probability space (2, F,P)
Given a prediction function p : X' X R? — Y and loss function £: ) x Y — R, solve

N
1
min L(p(z,w),y)dP(z,y) ~ min — Lp(z;,w),y:),
min, /ny (p(@,w), y)dP(z, y) ~ min, N;:l (p(zs, w), y:)

where {(z;,y;)}Y_, is a set of sample feature-label pairs.

Training faster/better: Choice of data, p, ¢, and optimization algorithm.

: :
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Prediction and loss functions

These are critical, but not my scope. Related to today’s talk:
» Simple, classical models <= enormous, fully connected, overparameterized ones
» The prediction function model/architecture constrains the search

» ...but there are other ways.
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Constrained training/optimization

Constraints can be used to influence training.
» One option is to embed constraints within the prediction function p
> ...e.g., a layer defining p involves solving equations or an optimization problem.

» These remain with every forward pass after the model is trained.

Another option is to impose constraints during training = constrained optimization.
» p constrains the search for a model
> ...additional constraints (data-driven?) refine it further.

» These constraints can also greatly influence training algorithm behavior!

Note: This is already done with fine-tuning, e.g., over subspaces, low-rank changes, etc.
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Aside: Constrained optimization

Let’s simplify notation to focus on the optimization algorithm:
[ tole ) arey) = s
AxY

Generally, one might consider various paradigms for imposing the constraints:
> expectation constraints
> (distributionally) robust constraints

> probabilistic (i.e., chance) constraints

For now, assume constraint values and derivatives can be computed:
ce(w) =0 and cz(w) <0

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data.
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Aside: Penalization

Suppose that f : R - R, ¢g : R — R™¢ | and ¢ : R% — R™Z are locally Lipschitz and consider

min f(w) s.t. cg(w)=0 and cz(w) <O0.
weRd

Two common, essentially equivalent ways of solving such a problem:

P> mowve constraints to objective and use an unconstrained method to solve

min  f(w) + Av(w) e.g. v(w) = [leg(w)]| + || max{ez(w), 0}
weR

»> employ a penalty or augmented Lagrangian method

One can refer to this as penalization, regularization, soft constraints, etc.

Stochastic-Gradient-based Algorithms for Solving Nonconvex Constrained Optimization Problems 8 of 38




Motivation Stochastic SQP Extensions Conclusion
00000080 000000000000 00000 000000 00000
:

Aside: Calmness and exact penalization

mind fw) s.t. cg(w)=0 and cz(w) <0 (P)
weR

Definition : Calmness

Problem (P) is calm at w € R?® with respect to || - || if and only if there exist (e, d) € (0,00) x (0, 00) such

that, for all (w,s) € R? x RE ) with || — w|| <, [|s]| <€, —s < cg(W) < s, and cz (W) < s, one has

f(@) +8|ls|| = f(w).

Theorem : Exact penalization

Suppose wi € R is a local minimizer of (P), v:R% — R is defined by ||cg (w)|| + || max{cz(w),0}||, and
(P) is calm at wx with respect to || - ||. Then, for some A« € (0,00), the point wx is a local minimizer of

f+ v forall \€ [\, 00).
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Motivation

It is a mistake to overemphasize the relevance of this theory for practical use.
> Exact penalization only applies for minimizers
> ...and requires a parameter that cannot be known in advance.
» In practice, subject to a computational budget, a minimizer is not reached
» ...and the use of stochastic algorithms makes the theory even less relevant.

Penalization/regularization/soft-constraints can cause slow progress far from a minimizer.

Overall, our aim in this talk is to convince you that:
» It is worthwhile to explore the use of constrained optimization for informed learning.

> Penalization is not often the best route; there are other/better algorithms to consider.
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Equality-constrained example
Consider the problem to learn the solution of a parametric partial differential equation (PDE):

» P(¢,u) = 0, where ¢ are parameters and u solves the PDE with respect to ¢
» G(¢,y,w) predicts u, where y encodes PDE domain and w are trainable parameters
> {(bi,yi,wi)ies, and {(¢i,yi)}ies, are datasets

Our training problem involves (at least) two possible terms:

and/or 3" [P(61, 661, i, w))||°

L P . . p
|S E ||u7, g(@,yuw)ﬂ S
1l [S2] ;
1€S] 1€Sy
1.0 1.0
0.5 \ /0\ 0.5 \ /0\
0.0 0.0
\_/ Training step: 1 \_/ Training step: 1
-05 ~—— Exact solution -05 ~—— Exact solution
= Neural network prediction = Neural network prediction
10 o Training data 10 o Training data
@ Physics loss training locations @ Physics loss training locations
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

2
Problem from https://benmoseley.blog/blog/, m%ét) + uduf(t) + ku(t) =0
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Inequality-constrained example

Suppose that one wants the covariance between a feature and the prediction to be limited by e:

Z Lp(zi,w),y;) st. —e< L Z (a; —a)p(z;, w) < e

min 1Sl
(zi,y;)€S1 2 (ws,ui)€89

werd  |S1]

B 07
. X
Ersin, - Subgrad(te-4) . 5
N
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2 2 Fha Zo.
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| - ubgrad16-1)
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Fic. 5.5. CPU time versus training accuracy, training infeasibility error, testing accuracy, and
testing infeasibility error for a representative run of SQP, Wang & Spall, subgradient (10_1), and
subgradient (10~%) with the German data set.
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Stochastic gradient method

Consider m%l? f(w), where Vf : R™ — R™ is Lipschitz continuous with constant Ly ¢.
weR™

Algorithm SG : Stochastic gradient method

1: choose an initial point w1 € R™ and step sizes {ax} > 0
2: for k€ {1,2,...} =:N do

3: set w1 < W — Ak gk, where g = V f(wy)

4: end for

Algorithm® behavior is defined by (Q, F,P), where
> Q=T XTI xTI x--- (sequence of draws determining stochastic gradients);
> F is a o-algebra on €, the set of events (i.e., measurable subsets of €2); and
> P:F — [0,1] is a probability measure.

View any {(wg,gx)} as a realization of {(Wy,Gr)}, where for all k € N

wy, = Wi (w) and g = Gg(w) given w € Q.

TRobbins and Monro (1951); Sutton Monro = former Lehigh ISE faculty member
: :
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Convergence of SG

Let E[-] = expectation w.r.t. P[-]. Analyze through associated sub-c-algebras {Fy}.

Assumption
For all k € N, one has that
> E[Gk|Fk] = V(W) and
> E[|GrlI31Fx] < M + My s ||V (We)ll3

By Lipschitz continuity of V f and construction of the algorithm, one finds

FWig1) = F(Wa) < VEWi)T (Wigr — Wa) + Lo Wigr — Wall3
—ogVIWi)T"Gr + $oi Ly s[IGill3

= E[f(Wrt1)|Fe] = f(W) < —anlIVF(Wi)|3 + $ 02 Ly sE[| G131 F]
—ap|[VFWi)ll5 + 3R L(M + My ||V f(Wi)I3),

IN A

by the assumption and since f(W}) and V f(W},) are Fj-measurable.

: :
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SG theory

Taking total expectation, one arrives at

E[fWis1) — FWe)] < —on(1 — Sox Ly s My p)E[|VfF(Wi)[13] + 3ai Ly s M

Theorem
1 R B M
o = — E =S IvFwIE| < My A2 0 (—)
vava k = va
1 1 B
aw=0(3) = | Lalvimi3] »o

(Z?=1 aj) J=1
= liminf E[|Vf(W)|3] =0
k— oo

(further steps) = Vf(Wg) — oo almost surely.

: :
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Sequential quadratic optimization (SQP)

Consider

wné}l?” f(w)
st c(w) =0
With J = Vel and H positive definite over Null(J), two viewpoints:
. T 14T
d+ 5d* Hd
Vf(w) + J(w)Ty] ol o AR S F Vi)
c(w) s.t. c(w) + J(w)d =0
both leading to the same “Newton-SQP system”:
A6 T
Ji 0| |yk Ck
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Stochastic SQP
Algorithm guided by merit function with adaptive parameter 7 defined by
o(w,7) = 7f(w) + [le(w) 1
Algorithm : Stochastic SQP
1: choose w1 € R™, 7 € (0, 00), {8k} € (0, 1]V
2: for k € {1,2,...} do
3: compute step: solve
Hi  JE [de] _ _ [9x
Jk 0| [uk Ck
4: update merit parameter: set 75 to ensure
&' (wi, Tk, di) < —Aq(wk, Tk, gr, di) K 0
5: compute step size: set
ar = © (L)
TkLvy+ Ly
6: then wr41 < wi + agdy
7: end for
: :
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Convergence theory in deterministic setting

Assumption
> f, ¢, Vf, and J bounded and Lipschitz

> singular values of J bounded away from zero
> uT Hyu > ¢||lul|2 for all u € Null(Ji) for all k € N

Theorem
» {ap} > amin for some amin > 0
» {74} > Tmin for some Tmin > 0
> Aq(wg, Tk, Vf(wg),dr) — 0 implies optimality error vanishes, specifically,

ldillz = 0, llexllz =0, IVf(wk) + JEyxllz — 0

: :
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SQP illustration

c(wg) + J(wg)d =0

c(w) =0
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SQP illustration

c(wg) + J(wg)d =0

95

regularization / “soft” constraints

w c(w) =0
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SQP illustration

c(wg) + J(wg)d =0

95

constraints

1
1
1
1
. . !
regularization / “so 1
1

c(w) =0

“hard’ constraints

constrained approach = fundamentally different algorithm
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SQP illustration

c(wg) + J(wg)d =0

95

constraints

1
1
1
1
. . !
regularization / “so 1
1

“hard’ constraints == step in null space
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Stochastic setting: What do we want?

What we want/expect from the algorithm?
Note: We are interested in the stochastic approximation (SA) regime.

Ultimately, there are many questions to answer:
P> convergence guarantees

complexity guarantees

tradeoff analysis (Bottou and Bousquet)

generalization

large-scale implementations

beyond first-order (SG) methods

vVvyVYyYVvyy

: :
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Fundamental lemma

Recall in the unconstrained setting that

E[f Wit1)1Fk] — F(Wi) < —arIVF(Wi)ll3 + 2of LE[|Gr 15| Fx]

Lemma
For all k € N one finds (before taking expectations)
d(Wrt1, Te+1) — (Wi, T)
< —ApAq(Wy, Ti, VF(Wi), D)

O(Bg), “deterministic”

+ 3 AwBru Ag(Wi, Tie, Gi, Di) + ArTiV £ (Wi) " (Di — DY)

O(ﬁ%), stochastic/noise due to adaptive Ay

: :
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Good merit parameter behavior

Theorem 6
Let € := event that {Ty} eventually remains constant at T' > Tmin > 0.

Then, conditioned on &,

k
Br=©(1) — E [% Aq(wj,T',Vf<Wj>,D;-“e>] = o(M)
j=1

1 1 k
Br = 6 (—) — E|—-— ;B'Aq(W',’T/,Vf(W'),Dt.me) 0
g [(2?1 55) az=:1 T S

: :
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Good merit parameter behavior

Theorem 6
Let € := event that {Ty} eventually remains constant at T' > Tmin > 0.

Then, conditioned on &,

k
Br=0(1) = E [% S IVEWy) + W) Y™ + ||c(wj)||2>] = o(M)
j=1

k
B =e(1) = E | S8V W) + JW)TY 5 + fle(W)ll2) | =0
k ( leﬁg) i=1

: :
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:
Key observation
Key observation is that ¢(Wy) and J(W}) are Fi-measurable.
c(wg) + J(wg)d =0
c(w) =0
“hard’ constraints |
1
1
1
Therefore, E[Dy|Fj] = true step if V f(W}) were known.
:
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Numerical results: https://github.com/frankecurtis/StochasticSQP

Stochastic SQP (hard constraints) vs. stochastic subgradient (soft constraints)

[ Stochastic SQP I Stochastic SQP
+ Stochastic Subgradient + tochastic Subgradient
2 4 2
10 . . R 10 ¥ ¥ +
. A . + s ; ; i
o * * * + 0 =] =] =
_ 10 ¥ ¥ E F _ 10 % X ; T T :
o o 1
£ ; [ R ST - !
z10? 1 2102 & :
3 + + + s
3 : £ -
10 . i 1 g0 1 '
+ # 1 1
6| I ; i s 1 1
10 % 1 10" ! ! 1
* 1 1 D 1 1 1 1 1
1 1 1 1 1 1 1
08— L j. L L L 108 L L L
10 107 10 107! 10°% 107 102 107
Noise Level Noise Level

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Projected Adam

Algorithm P-Adam Projection-based Adam

Require: £ € (0,1), B2 € (0,1), p € Ry
Compute gi < (I — JE(JkJE)_le)Qk (comes “for free” if computing vy explicitly)
Set px + Bipr—1 + (1 — B1) gk
Set qx = B2ak—1 + (1 — B2)(Gk © k), where (gk 0 gi)i = ()] for all i € {1,...,d}
Set P + (1/(1— ﬁg))l’k
Set g+ (1/(1 = B3))ax
Compute dj, by solving diag( VJZk +u) Jg:| [dk} =— [pk]

0] |y Ck

: :
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Accelerated performance with P-Adam
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: :
Summary

Since our original work, we have considered various extensions.

> stronger convergence guarantees (almost-sure convergence)
convergence of Lagrange multiplier estimates
relaxed constraint qualifications
worst-case complexity guarantees
generally constrained problems (with inequality constraints as well)
interior-point methods

iterative linear system solvers and inexactness

vyVvVvyVvyVvyVvyYyvyy

diagonal scaling methods for saddle-point systems
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Almost-sure convergence of merit function value

Convergence of the algorithm is driven by the exact merit function
bz (W) = 7f(W) + llec(W)]|
Reductions in a local model of ¢, can be tied to a stationarity measure

Aq-(W,Vf(W),H,D"™)  ~  [[VFW)+ JW)TY|? + [le(W)]|

Lemma

Suppose E[Gr|Fr] = V(W) and E[||Gr — Vf(Wg)|Fx|?] < M. Then, by Robbins and Siegmund (1971),
one finds that, almost surely,

klim {p+ (W)} exists and is finite and
—» 00

lim inf Agr (Wi, Vf(Wg), Hi, DI™®) = 0
k— o0

:
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Conclusion

Almost-sure convergence of the primal iterates

Theorem

Suppose there exists ws € W with c(ws«) =0, p € Ry, and € € Ry such that for all
W E Wew, :={weW: ||lw— w2 <€}

one finds that

3 » =0 if w = wx
prtm) ol *){e(o,u<r||2(w)TVf(w)||%+||c(w)||z>1 otherwise,

where for all w € We w, one defines Z(w) € R™X(n=m) g5 some orthonormal matriz whose columns form
a basis for the null space of J(w). Then, if limsup{||[Wy — w«||2} < € almost surely, it follows that
k—oo

(6} 255 6 (), W} 255wy ana {[TIO)FIOTE 2

Stochastic-Gradient-based Algorithms for Solving Nonconvex Constrained Optimization Problems
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Lagrange multiplier convergence

Theorem
Suppose (wx,yx) is a stationary point. Then, for any k € N, one finds ||Wy, — w«||2 < € implies
1Y — yullz < myl Wi — wsll2 + 71|V F (W) — Gill2

and [V = yull2 < myllWi — well2 for some (s,r) € Rug x Rsg.

Computed multipliers always have error. Consider averaged multipliers {Y,;iL Vel

Theorem

If the iterate sequence converges almost surely to wx, i.e., {Wy} L2 W, then

{Ykgrue} a.s. Ys ] {Ykavg} a.s. Y-

: :
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:
Constrained logistic regression: australian dataset (LIBSVM)
101 australian
Nl = wll2
= 2
0 [lyg=t = 2
10 e =2
— sy — w2
— i — e
10—1 = = e — 22
1072 ¢
107 ]
-4
10
0 2 4 6 8 10
x10%
:
33 of 38
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Summary

Stochastic-gradient/Newton-based algorithms for constrained optimization.

» A lot of work so far, but many open questions.

Open questions:
> tradeoff analysis (Bottou and Bousquet)?
generalization guarantees?
beyond projected ADAM, etc.?
Lagrange multiplier estimators for inequality-constrained setting?

active-set identification?

vVvyVvVYyVvyy

expectation/probabilistic constraints?
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Constraint engineering

Neural network engineering, feature engineering, and now constraint engineering. . .

» The number of constraints m can be controlled:

c(p(z1,w),y1) =0
c(p(z2,w),y2) =0 1

i€S

> Selection of constraint data {(z;,y;)}ics also requires some care.

In all cases, also due to “vanishing gradients” and other possible effects, beware rank-deficient Jacobians:
» Berahas, Curtis, O’Neill, Robinson (2023)
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