Stochastic-Gradient-based Algorithms for Solving Nonconvex Constrained Optimization Problems

Frank E. Curtis, Lehigh University

presented at

UPenn Optimization Seminar

April 3, 2025

Outline

Motivation 00000000

Motivation

Stochastic SQP

Extensions

Conclusion

Outline

Motivation

Supervised Learning

Expected/empirical risk minimization:

- ightharpoonup feature vector X defined over \mathcal{X}
- ightharpoonup label Y defined over \mathcal{Y}
- \blacktriangleright (X,Y) defined on a probability space $(\Omega,\mathcal{F},\mathbb{P})$

Given a prediction function $p: \mathcal{X} \times \mathbb{R}^d \to \mathcal{Y}$ and loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, solve

$$\min_{w \in \mathbb{R}^d} \int_{\mathcal{X} \times \mathcal{Y}} \ell(p(x, w), y) d\mathbb{P}(x, y) \approx \min_{w \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N \ell(p(x_i, w), y_i),$$

where $\{(x_i, y_i)\}_{i=1}^N$ is a set of sample feature-label pairs.

Training faster/better: Choice of data, p, ℓ , and optimization algorithm.

Prediction and loss functions

These are critical, but not my scope. Related to today's talk:

- ▶ Simple, classical models ⇔ enormous, fully connected, overparameterized ones
- ▶ The prediction function model/architecture constrains the search
- ▶ ... but there are other ways.

Constrained training/optimization

Constraints can be used to influence training.

- \triangleright One option is to embed constraints within the prediction function p
- \triangleright ...e.g., a layer defining p involves solving equations or an optimization problem.
- ▶ These remain with every forward pass after the model is trained.

Another option is to impose constraints during training \Rightarrow constrained optimization.

- p constrains the search for a model
- ▶ ...additional constraints (data-driven?) refine it further.
- ▶ These constraints can also greatly influence training algorithm behavior!

Note: This is already done with fine-tuning, e.g., over subspaces, low-rank changes, etc.

Aside: Constrained optimization

Let's simplify notation to focus on the optimization algorithm:

$$\int_{\mathcal{X}\times\mathcal{Y}} \ell(p(x,w),y) d\mathbb{P}(x,y) =: f(w)$$

Generally, one might consider various paradigms for imposing the constraints:

- expectation constraints
- (distributionally) robust constraints
- probabilistic (i.e., chance) constraints

For now, assume constraint values and derivatives can be computed:

$$c_{\mathcal{E}}(w) = 0$$
 and $c_{\mathcal{I}}(w) \le 0$

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data.

Aside: Penalization

Suppose that $f: \mathbb{R}^d \to \mathbb{R}, \ c_{\mathcal{E}}: \mathbb{R}^d \to \mathbb{R}^{m_{\mathcal{E}}}, \ \text{and} \ c_{\mathcal{I}}: \mathbb{R}^d \to \mathbb{R}^{m_{\mathcal{I}}} \ \text{are locally Lipschitz and consider}$ $\min_{x \in \mathbb{R}^d} \ f(w) \quad \text{s.t.} \quad c_{\mathcal{E}}(w) = 0 \ \ \text{and} \ \ c_{\mathcal{I}}(w) \leq 0.$

Two common, essentially equivalent ways of solving such a problem:

▶ move constraints to objective and use an unconstrained method to solve

$$\min_{w \in \mathbb{R}^d} \ f(w) + \lambda v(w) \ \text{e.g.} \ v(w) = \|c_{\mathcal{E}}(w)\| + \|\max\{c_{\mathcal{I}}(w), 0\}\|$$

employ a penalty or augmented Lagrangian method

One can refer to this as penalization, regularization, $soft\ constraints$, etc.

Aside: Calmness and exact penalization

$$\min_{w \in \mathbb{R}^d} f(w) \quad \text{s.t.} \quad c_{\mathcal{E}}(w) = 0 \quad \text{and} \quad c_{\mathcal{I}}(w) \le 0$$
 (P)

Definition: Calmness

Problem (P) is calm at $w \in \mathbb{R}^d$ with respect to $\|\cdot\|$ if and only if there exist $(\epsilon, \delta) \in (0, \infty) \times (0, \infty)$ such that, for all $(\overline{w}, s) \in \mathbb{R}^d \times \mathbb{R}^d_{\geq 0}$ with $\|\overline{w} - w\| \leq \epsilon$, $\|s\| \leq \epsilon$, $-s \leq c_{\mathcal{E}}(\overline{w}) \leq s$, and $c_{\mathcal{I}}(\overline{w}) \leq s$, one has

$$f(\overline{w}) + \delta ||s|| \ge f(w).$$

Theorem: Exact penalization

Suppose $w_* \in \mathbb{R}^d$ is a local minimizer of (P), $v : \mathbb{R}^d \to \mathbb{R}$ is defined by $||c_{\mathcal{E}}(w)|| + ||\max\{c_{\mathcal{I}}(w), 0\}||$, and (P) is calm at w_* with respect to $||\cdot||$. Then, for some $\lambda_* \in (0, \infty)$, the point w_* is a local minimizer of

$$f + \lambda v \text{ for all } \lambda \in [\lambda_*, \infty).$$

Motivation

It is a mistake to overemphasize the relevance of this theory for practical use.

- Exact penalization only applies for minimizers
- ▶ ... and requires a parameter that cannot be known in advance.
- ▶ In practice, subject to a computational budget, a minimizer is not reached
- ▶ ... and the use of stochastic algorithms makes the theory even less relevant.

Penalization/regularization/soft-constraints can cause slow progress far from a minimizer.

Overall, our aim in this talk is to convince you that:

- ▶ It is worthwhile to explore the use of constrained optimization for informed learning.
- ▶ Penalization is not often the best route; there are other/better algorithms to consider.

Outline

Motivation 00000000

Stochastic SQP

Equality-constrained example

Consider the problem to learn the solution of a parametric partial differential equation (PDE):

- $\triangleright \mathcal{P}(\phi, u) = 0$, where ϕ are parameters and u solves the PDE with respect to ϕ
- $\triangleright \mathcal{G}(\phi, y, w)$ predicts u, where y encodes PDE domain and w are trainable parameters
- $\blacktriangleright \{(\phi_i, y_i, u_i)\}_{i \in S_1}$ and $\{(\phi_i, y_i)\}_{i \in S_2}$ are datasets

Our training problem involves (at least) two possible terms:

$$\frac{1}{|\mathcal{S}_1|} \sum_{i \in \mathcal{S}_1} \|u_i - \mathcal{G}(\phi_i, y_i, w)\|^p \qquad \text{and/or} \quad \frac{1}{|\mathcal{S}_2|} \sum_{i \in \mathcal{S}_2} \|\mathcal{P}(\phi_i, \mathcal{G}(\phi_i, y_i, w))\|^q$$

Problem from https://benmoseley.blog/blog/, $m\frac{d^2u(t)}{dt} + \mu\frac{du(t)}{dt} + ku(t) = 0$

Equality-constrained example

Consider the problem to learn the solution of a parametric partial differential equation (PDE):

- $\triangleright \mathcal{P}(\phi, u) = 0$, where ϕ are parameters and u solves the PDE with respect to ϕ
- $\triangleright \mathcal{G}(\phi, y, w)$ predicts u, where y encodes PDE domain and w are trainable parameters
- $\blacktriangleright \{(\phi_i, y_i, u_i)\}_{i \in S_1}$ and $\{(\phi_i, y_i)\}_{i \in S_2}$ are datasets

Our training problem involves (at least) two possible terms:

$$\frac{1}{|\mathcal{S}_1|} \sum_{i \in \mathcal{S}_1} \|u_i - \mathcal{G}(\phi_i, y_i, w)\|^p \quad \text{and/or} \quad \mathcal{P}(\phi_i, \mathcal{G}(\phi_i, y_i, w)) = 0$$

Problem from https://benmoseley.blog/blog/,
$$m \frac{d^2 u(t)}{dt^2} + \mu \frac{du(t)}{t} + ku(t) = 0$$

Inequality-constrained example

Suppose that one wants the covariance between a feature and the prediction to be limited by ϵ :

$$\min_{w \in \mathbb{R}^d} \frac{1}{|\mathcal{S}_1|} \sum_{(x_i, y_i) \in \mathcal{S}_1} \ell(p(x_i, w), y_i) \quad \text{s.t.} \quad -\epsilon \leq \frac{1}{|\mathcal{S}_2|} \sum_{(x_i, y_i) \in \mathcal{S}_2} (a_i - \overline{a}) p(x_i, w) \leq \epsilon$$

FIG. 5.5. CPU time versus training accuracy, training infeasibility error, testing accuracy, and testing infeasibility error for a representative run of SQP, Wang & Spall, subgradient (10^{-1}) , and subgradient (10^{-4}) with the German data set.

Stochastic gradient method

Consider $\min_{w \in \mathbb{R}^n} f(w)$, where $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous with constant $L_{\nabla f}$.

Algorithm SG: Stochastic gradient method

- 1: choose an initial point $w_1 \in \mathbb{R}^n$ and step sizes $\{\alpha_k\} > 0$
- 2: **for** $k \in \{1, 2, \dots\} =: \mathbb{N}$ **do**
- 3: set $w_{k+1} \leftarrow w_k \alpha_k g_k$, where $g_k \approx \nabla f(w_k)$
- 4: end for

Algorithm[†] behavior is defined by $(\Omega, \mathcal{F}, \mathbb{P})$, where

- $\Omega = \Gamma \times \Gamma \times \Gamma \times \cdots$ (sequence of draws determining stochastic gradients);
- \triangleright \mathcal{F} is a σ -algebra on Ω , the set of events (i.e., measurable subsets of Ω); and
- $ightharpoonup \mathbb{P}: \mathcal{F} \to [0,1]$ is a probability measure.

View any $\{(w_k, g_k)\}$ as a realization of $\{(W_k, G_k)\}$, where for all $k \in \mathbb{N}$

$$w_k = W_k(\omega)$$
 and $g_k = G_k(\omega)$ given $\omega \in \Omega$.

 $^{^{\}dagger} \text{Robbins}$ and Monro (1951); Sutton Monro = former Lehigh ISE faculty member

Extensions

Convergence of SG

Let $\mathbb{E}[\cdot]$ = expectation w.r.t. $\mathbb{P}[\cdot]$. Analyze through associated sub- σ -algebras $\{\mathcal{F}_k\}$.

Assumption

For all $k \in \mathbb{N}$, one has that

- $ightharpoonup \mathbb{E}[G_k|\mathcal{F}_k] = \nabla f(W_k)$ and
- $\mathbb{E}[\|G_k\|_2^2|\mathcal{F}_k] \le M + M_{\nabla f} \|\nabla f(W_k)\|_2^2$

By Lipschitz continuity of ∇f and construction of the algorithm, one finds

$$\begin{split} f(W_{k+1}) - f(W_k) &\leq \nabla f(W_k)^T (W_{k+1} - W_k) + \frac{1}{2} L_{\nabla f} \|W_{k+1} - W_k\|_2^2 \\ &= -\alpha_k \nabla f(W_k)^T G_k + \frac{1}{2} \alpha_k^2 L_{\nabla f} \|G_k\|_2^2 \\ \Longrightarrow & \mathbb{E}[f(W_{k+1})|\mathcal{F}_k] - f(W_k) \leq -\alpha_k \|\nabla f(W_k)\|_2^2 + \frac{1}{2} \alpha_k^2 L_{\nabla f} \mathbb{E}[\|G_k\|_2^2|\mathcal{F}_k] \\ &\leq -\alpha_k \|\nabla f(W_k)\|_2^2 + \frac{1}{2} \alpha_k^2 L(M + M_{\nabla f} \|\nabla f(W_k)\|_2^2), \end{split}$$

by the assumption and since $f(W_k)$ and $\nabla f(W_k)$ are \mathcal{F}_k -measurable.

SG theory

Taking total expectation, one arrives at

$$\mathbb{E}[f(W_{k+1}) - f(W_k)] \le -\alpha_k (1 - \frac{1}{2}\alpha_k L_{\nabla f} M_{\nabla f}) \mathbb{E}[\|\nabla f(W_k)\|_2^2] + \frac{1}{2}\alpha_k^2 L_{\nabla f} M_{\nabla f$$

Theorem

$$\begin{split} \alpha_k &= \frac{1}{L_{\nabla f} M_{\nabla f}} &\implies \mathbb{E}\left[\frac{1}{k} \sum_{j=1}^k \|\nabla f(W_j)\|_2^2\right] \leq M_k \xrightarrow{k \to \infty} \mathcal{O}\left(\frac{M}{M_{\nabla f}}\right) \\ \alpha_k &= \Theta\left(\frac{1}{k}\right) &\implies \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^k \alpha_j\right)} \sum_{j=1}^k \alpha_j \|\nabla f(W_j)\|_2^2\right] \to 0 \\ &\implies \liminf_{k \to \infty} \ \mathbb{E}[\|\nabla f(W_k)\|_2^2] = 0 \\ &(\textit{further steps}) &\implies \nabla f(W_k) \to \infty \ \textit{almost surely}. \end{split}$$

Sequential quadratic optimization (SQP)

Consider

$$\min_{w \in \mathbb{R}^n} f(w)
\text{s.t. } c(w) = 0$$

With $J \equiv \nabla c^T$ and H positive definite over Null(J), two viewpoints:

$$\begin{bmatrix} \nabla f(w) + J(w)^T y \\ c(w) \end{bmatrix} = 0 \quad \text{or} \quad \begin{bmatrix} \min_{d \in \mathbb{R}^n} f(w) + \nabla f(w)^T d + \frac{1}{2} d^T H d \\ \text{s.t. } c(w) + J(w) d = 0 \end{bmatrix}$$

both leading to the same "Newton-SQP system":

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} \nabla f(w_k) \\ c_k \end{bmatrix}$$

Stochastic SQP

Algorithm guided by merit function with adaptive parameter τ defined by

$$\phi(w,\tau) = \tau f(w) + ||c(w)||_1$$

Algorithm: Stochastic SQP

- 1: choose $w_1 \in \mathbb{R}^n$, $\tau_0 \in (0, \infty)$, $\{\beta_k\} \in (0, 1]^{\mathbb{N}}$
- 2: for $k \in \{1, 2, \dots\}$ do
- 3: compute step: solve

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} g_k \\ c_k \end{bmatrix}$$

4: update merit parameter: set τ_k to ensure

$$\phi'(w_k, \tau_k, d_k) \le -\Delta q(w_k, \tau_k, g_k, d_k) \ll 0$$

5: compute step size: set

$$\alpha_k = \Theta\left(\frac{\beta_k \tau_k}{\tau_k L_{\nabla f} + L_J}\right)$$

- then $w_{k+1} \leftarrow w_k + \alpha_k d_k$
- 7: end for

Convergence theory in deterministic setting

Assumption

- $ightharpoonup f, c, \nabla f, and J bounded and Lipschitz$
- ▶ singular values of J bounded away from zero
- $\blacksquare u^T H_k u > \zeta ||u||_2^2$ for all $u \in \text{Null}(J_k)$ for all $k \in \mathbb{N}$

Theorem

- \triangleright $\{\alpha_k\} \geq \alpha_{\min}$ for some $\alpha_{\min} > 0$
- \blacktriangleright $\{\tau_k\} > \tau_{\min}$ for some $\tau_{\min} > 0$
- $ightharpoonup \Delta q(w_k, \tau_k, \nabla f(w_k), d_k) \to 0$ implies optimality error vanishes, specifically,

$$||d_k||_2 \to 0, \quad ||c_k||_2 \to 0, \quad ||\nabla f(w_k) + J_k^T y_k||_2 \to 0$$

Extensions

SQP illustration

 w_k^{\bullet}

SQP illustration

SQP illustration

"hard" constraints \implies step in null space

Stochastic setting: What do we want?

What we want/expect from the algorithm?

Note: We are interested in the stochastic approximation (SA) regime.

Ultimately, there are many questions to answer:

- convergence guarantees
- complexity guarantees
- tradeoff analysis (Bottou and Bousquet)
- generalization
- ▶ large-scale implementations
- beyond first-order (SG) methods

Fundamental lemma

Recall in the unconstrained setting that

$$\mathbb{E}[f(W_{k+1})|\mathcal{F}_k] - f(W_k) \le -\alpha_k \|\nabla f(W_k)\|_2^2 + \frac{1}{2}\alpha_k^2 L \mathbb{E}[\|G_k\|_2^2|\mathcal{F}_k]$$

Extensions

Lemma

For all $k \in \mathbb{N}$ one finds (before taking expectations)

$$\begin{aligned} & \phi(W_{k+1}, \mathcal{T}_{k+1}) - \phi(W_k, \mathcal{T}_k) \\ & \leq \underbrace{-\mathcal{A}_k \Delta q(W_k, \mathcal{T}_k, \nabla f(W_k), D_k^{\text{true}})}_{\mathcal{O}(\beta_k), \text{ "deterministic"}} \\ & + \underbrace{\frac{1}{2} \mathcal{A}_k \beta_k \Delta q(W_k, \mathcal{T}_k, G_k, D_k)}_{\mathcal{O}(\beta_k^2), \text{ stochastic/noise}} + \underbrace{\mathcal{A}_k \mathcal{T}_k \nabla f(W_k)^T (D_k - D_k^{\text{true}})}_{\text{due to adaptive } \mathcal{A}_k} \end{aligned}$$

Good merit parameter behavior

Theorem 6

Let $\mathcal{E} := event \ that \{\mathcal{T}_k\} \ eventually \ remains \ constant \ at \ \mathcal{T}' \geq \tau_{\min} > 0.$

Then, conditioned on \mathcal{E} .

$$\beta_k = \Theta(1) \implies \mathbb{E}\left[\frac{1}{k} \sum_{j=1}^k \Delta q(W_j, \mathcal{T}', \nabla f(W_j), D_j^{\text{true}})\right] = \mathcal{O}(M)$$

$$\beta_k = \Theta\left(\frac{1}{k}\right) \implies \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^k \beta_j\right)} \sum_{j=1}^k \beta_j \Delta q(W_j, \mathcal{T}', \nabla f(W_j), D_j^{\text{true}})\right] \to 0$$

Good merit parameter behavior

Theorem 6

Let $\mathcal{E} := event \ that \{\mathcal{T}_k\} \ eventually \ remains \ constant \ at \ \mathcal{T}' \geq \tau_{\min} > 0.$

Then, conditioned on \mathcal{E} .

$$\beta_k = \Theta(1) \implies \mathbb{E}\left[\frac{1}{k} \sum_{j=1}^k (\|\nabla f(W_j) + J(W_j)^T Y_j^{\text{true}}\|_2 + \|c(W_j)\|_2)\right] = \mathcal{O}(M)$$

$$\beta_k = \Theta\left(\frac{1}{k}\right) \implies \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^k \beta_j\right)} \sum_{j=1}^k \beta_j (\|\nabla f(W_j) + J(W_j)^T Y_j^{\text{true}}\|_2 + \|c(W_j)\|_2)\right] \to 0$$

Key observation

Key observation is that $c(W_k)$ and $J(W_k)$ are \mathcal{F}_k -measurable.

Therefore, $\mathbb{E}[D_k|\mathcal{F}_k] = \text{true step if } \nabla f(W_k) \text{ were known.}$

Numerical results: https://github.com/frankecurtis/StochasticSQP

Stochastic SQP (hard constraints) vs. stochastic subgradient (soft constraints)

Figure: Box plots for feasibility errors (left) and optimality errors (right).

Projected Adam

Algorithm P-Adam Projection-based Adam

```
Require: \beta_1 \in (0,1), \ \beta_2 \in (0,1), \ \mu \in \mathbb{R}_{>0}

Compute \bar{g}_k \leftarrow (I - J_k^T (J_k J_k^T)^{-1} J_k) g_k (comes "for free" if computing v_k explicitly)

Set p_k \leftarrow \beta_1 p_{k-1} + (1 - \beta_1) \bar{g}_k

Set q_k \leftarrow \beta_2 q_{k-1} + (1 - \beta_2) (\bar{g}_k \circ \bar{g}_k), where (\bar{g}_k \circ \bar{g}_k)_i = (\bar{g}_k)_i^2 for all i \in \{1, \dots, d\}

Set \hat{p}_k \leftarrow (1/(1 - \beta_1^k)) p_k

Set \hat{q}_k \leftarrow (1/(1 - \beta_2^k)) q_k

Compute d_k by solving \begin{bmatrix} \operatorname{diag}(\sqrt{\hat{q}_k + \mu}) & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = -\begin{bmatrix} \hat{p}_k \\ c_k \end{bmatrix}
```

Accelerated performance with P-Adam

Motivation 00000000

Extensions
•00000

Outline

Extensions

Extensions 000000

Summary

Since our original work, we have considered various extensions.

- stronger convergence guarantees (almost-sure convergence)
- convergence of Lagrange multiplier estimates
- relaxed constraint qualifications
- worst-case complexity guarantees
- generally constrained problems (with inequality constraints as well)
- interior-point methods
- iterative linear system solvers and inexactness
- diagonal scaling methods for saddle-point systems

Almost-sure convergence of merit function value

Convergence of the algorithm is driven by the exact merit function

$$\phi_{\tau}(W) = \tau f(W) + ||c(W)||$$

Extensions 000000

Reductions in a local model of ϕ_{τ} can be tied to a stationarity measure

$$\Delta q_{\tau}(W, \nabla f(W), H, D^{\text{true}}) \sim \|\nabla f(W) + J(W)^T Y\|^2 + \|c(W)\|$$

Lemma

Suppose $\mathbb{E}[G_k|\mathcal{F}_k] = \nabla f(W_k)$ and $\mathbb{E}[||G_k - \nabla f(W_k)|\mathcal{F}_k||^2] < M$. Then, by Robbins and Siegmund (1971), one finds that, almost surely,

$$\lim_{k\to\infty} \{\phi_{\tau}(W_k)\}$$
 exists and is finite and

$$\liminf_{k \to \infty} \Delta q_{\tau}(W_k, \nabla f(W_k), H_k, D_k^{\text{true}}) = 0$$

Almost-sure convergence of the primal iterates

Theorem

Suppose there exists $w_* \in \mathcal{W}$ with $c(w_*) = 0$, $\mu \in \mathbb{R}_{>0}$, and $\epsilon \in \mathbb{R}_{>0}$ such that for all

$$w \in \mathcal{W}_{\epsilon, w_*} := \{ w \in \mathcal{W} : ||w - w_*||_2 \le \epsilon \}$$

Extensions 000000

one finds that

$$\phi_{\tau}(w) - \phi_{\tau}(w_{*}) \begin{cases} = 0 & \text{if } w = w_{*} \\ \in (0, \mu(\tau || Z(w)^{T} \nabla f(w) ||_{2}^{2} + || c(w) ||_{2})] & \text{otherwise,} \end{cases}$$

where for all $w \in W_{\epsilon,w}$, one defines $Z(w) \in \mathbb{R}^{n \times (n-m)}$ as some orthonormal matrix whose columns form a basis for the null space of J(w). Then, if $\limsup\{\|W_k - w_*\|_2\} \le \epsilon$ almost surely, it follows that

$$\{\phi_{\tau}(W_k)\} \xrightarrow{a.s.} \phi_{\tau}(w_*), \quad \{W_k\} \xrightarrow{a.s.} w_*, \quad and \quad \left\{ \begin{bmatrix} \nabla f(W_k) + J(W_k)^T Y_k^{\text{true}} \\ c(W_k) \end{bmatrix} \right\} \xrightarrow{a.s.} 0.$$

Extensions

Lagrange multiplier convergence

Theorem

Suppose (w_*, y_*) is a stationary point. Then, for any $k \in \mathbb{N}$, one finds $||W_k - w_*||_2 \le \epsilon$ implies

$$||Y_k - y_*||_2 \le \kappa_y ||W_k - w_*||_2 + r^{-1} ||\nabla f(W_k) - G_k||_2$$

and $||Y_k^{\text{true}} - y_*||_2 \le \kappa_y ||W_k - w_*||_2$ for some $(\kappa, r) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}$.

Computed multipliers always have error. Consider averaged multipliers $\{Y_k^{\text{avg}}\}$:

Theorem

If the iterate sequence converges almost surely to w_* , i.e., $\{W_k\} \xrightarrow{a.s.} w_*$, then

$$\{Y_k^{\text{true}}\} \xrightarrow{a.s.} y_* \text{ and } \{Y_k^{\text{avg}}\} \xrightarrow{a.s.} y_*.$$

Motivation 00000000

Extensions

Outline

Motivation 00000000

Conclusion

Summary

Stochastic-gradient/Newton-based algorithms for constrained optimization.

▶ A lot of work so far, but many open questions.

Open questions:

- ▶ tradeoff analysis (Bottou and Bousquet)?
- generalization guarantees?
- beyond projected ADAM, etc.?
- ▶ Lagrange multiplier estimators for inequality-constrained setting?
- active-set identification?
- expectation/probabilistic constraints?

Constraint engineering

Neural network engineering, feature engineering, and now constraint engineering...

 \triangleright The number of constraints m can be controlled:

$$c(p(x_1, w), y_1) = 0 c(p(x_2, w), y_2) = 0$$

$$\vdots$$

$$vs. \frac{1}{|S|} \sum_{i \in S} c(p(x_i, w), y_i) = 0.$$

▶ Selection of constraint data $\{(x_i, y_i)\}_{i \in S}$ also requires some care.

In all cases, also due to "vanishing gradients" and other possible effects, beware rank-deficient Jacobians:

▶ Berahas, Curtis, O'Neill, Robinson (2023)

References

- A. S. Berahas, F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization," SIAM Journal on Optimization, 31(2):1352-1379, 2021.
- A. S. Berahas, F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians," *Mathematics of Operations Research*, https://doi.org/10.1287/moor.2021.0154, 2023.
- ► F. E. Curtis, D. P. Robinson, and B. Zhou, "A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization," INFORMS Journal on Optimization, , 2024.
- ► F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization," *Mathematical Programming*, https://doi.org/10.1007/s10107-023-01981-1, 2023.
- ► F. E. Curtis, S. Liu, and D. P. Robinson, "Fair Machine Learning through Constrained Stochastic Optimization and an e-Constraint Method," Optimization Letters, https://doi.org/10.1007/s11590-023-02024-6, 2023.
- ▶ F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Stochastic Optimization with Deterministic Nonlinear Inequality and Equality Constraints," SIAM Journal on Optimization, 34(4):3592–3622, 2024.
- ▶ F. E. Curtis, X. Jiang, and Q. Wang, "Almost-sure convergence of iterates and multipliers in stochastic sequential quadratic optimization," Journal of Optimization Theory and Applications, https://rdcu.be/d5OwU, 2024.
- ▶ F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems," to appear in SIAM Journal on Optimization, https://arxiv.org/abs/2304.14907.
- ▶ F. E. Curtis, X. Jiang, and Q. Wang, "Single-Loop Deterministic and Stochastic Interior-Point Algorithms for Nonlinearly Constrained Optimization," https://arxiv.org/abs/2408.16186.

Questions?

Extensions 000000

