Stochastic-Gradient-based Algorithms for Nonconvex Constrained Optimization and Learning

Frank E. Curtis, Lehigh University

presented at

AlgoPerf Workshop

Meta / ML Commons

February 12, 2025

Outline

Motivation

Stochastic SQP $% \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A}$

Extensions

Conclusion

Outline

Motivation

Stochastic SQP

Extensions

Conclusion

Supervised Learning

Expected/empirical risk minimization:

- ▶ feature vector X defined over \mathcal{X}
- ▶ label Y defined over \mathcal{Y}
- (X, Y) defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$

Given a prediction function $p: \mathcal{X} \times \mathbb{R}^d \to \mathcal{Y}$ and loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, solve

$$\min_{w \in \mathbb{R}^d} \int_{\mathcal{X} \times \mathcal{Y}} \ell(p(x, w), y) d\mathbb{P}(x, y) \approx \min_{w \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N \ell(p(x_i, w), y_i),$$

where $\{(x_i, y_i)\}_{i=1}^N$ is a set of sample feature-label pairs.

Training faster/better: Choice of p, ℓ , and optimization algorithm.

Prediction and loss functions

These are critical, but not my scope. Related to today's talk:

- \blacktriangleright Simple, classical models \iff enormous, fully connected, overparameterized ones
- ▶ The prediction function model/architecture constrains the search
- ▶ ... but there are other ways.

Constrained training/optimization

Constraints can be used to influence training.

- \blacktriangleright One option is to embed constraints within the prediction function p
- \blacktriangleright ...e.g., a layer defining p involves solving equations or an optimization problem.
- ▶ These remain with every forward pass after the model is trained.

Another option is to impose constraints during training \Rightarrow constrained optimization.

- \blacktriangleright p constrains the search for a model
- ▶ ...additional constraints (data-driven?) refine it further.
- ▶ These constraints can also greatly influence training algorithm behavior!

Note: In some sense this is already done with fine-tuning, e.g., over subspaces, low-rank changes, etc.

Aside: Constrained optimization

Let's simplify notation to focus on the optimization algorithm:

$$\int_{\mathcal{X}\times\mathcal{Y}}\ell(p(x,w),y)\mathrm{d}\mathbb{P}(x,y)=:f(w)$$

Generally, one might consider various paradigms for imposing the constraints:

- expectation constraints
- (distributionally) robust constraints
- ▶ probabilistic (i.e., chance) constraints

For now, assume constraint values and derivatives can be computed:

 $c_{\mathcal{E}}(w) = 0$ and $c_{\mathcal{I}}(w) \leq 0$

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data.

Aside: Penalization

Suppose that $f: \mathbb{R}^d \to \mathbb{R}, c_{\mathcal{E}}: \mathbb{R}^d \to \mathbb{R}^{m_{\mathcal{E}}}$, and $c_{\mathcal{I}}: \mathbb{R}^d \to \mathbb{R}^{m_{\mathcal{I}}}$ are locally Lipschitz and consider

$$\min_{w \in \mathbb{R}^d} f(w) \quad \text{s.t.} \quad c_{\mathcal{E}}(w) = 0 \quad \text{and} \quad c_{\mathcal{I}}(w) \le 0.$$

Two common, essentially equivalent ways of solving such a problem:

move constraints to objective and use an unconstrained method to solve

$$\min_{w \in \mathbb{R}^d} f(w) + \lambda v(w) \quad \text{e.g.} \quad v(w) = \|c_{\mathcal{E}}(w)\| + \|\max\{c_{\mathcal{I}}(w), 0\}\|$$

employ a penalty or augmented Lagrangian method

One can refer to this as *penalization*, *regularization*, *soft constraints*, etc.

Motivation	Stochastic SQP	Extensions	Conclusion
00000000	000000000000000	000000	00000

Aside: Calmness and exact penalization

$$\min_{w \in \mathbb{R}^d} f(w) \quad \text{s.t.} \quad c_{\mathcal{E}}(w) = 0 \quad \text{and} \quad c_{\mathcal{I}}(w) \le 0 \tag{P}$$

Definition : Calmness

Problem (P) is calm at $w \in \mathbb{R}^d$ with respect to $\|\cdot\|$ if and only if there exist $(\epsilon, \delta) \in (0, \infty) \times (0, \infty)$ such that, for all $(\overline{w}, s) \in \mathbb{R}^d \times \mathbb{R}^d_{\geq 0}$ with $\|\overline{w} - w\| \leq \epsilon$, $\|s\| \leq \epsilon$, $-s \leq c_{\mathcal{E}}(w) \leq s$, and $c_{\mathcal{I}}(\overline{w}) \leq s$, one has

 $f(\overline{w}) + \delta \|s\| \ge f(w).$

Theorem : Exact penalization

Suppose $w_* \in \mathbb{R}^d$ is a local minimizer of (P), $v : \mathbb{R}^d \to \mathbb{R}$ is defined by $\|c_{\mathcal{E}}(w)\| + \|\max\{c_{\mathcal{I}}(w), 0\}\|$, and (P) is calm at w_* with respect to $\|\cdot\|$. Then, for some $\lambda_* \in (0, \infty)$, the point w_* is a local minimizer of

 $f + \lambda v$ for all $\lambda \in [\lambda_*, \infty)$.

Motivation

It is a mistake to overemphasize the relevance of this theory for practical use.

- Exact penalization only applies for minimizers
- ▶ ... and requires a parameter that cannot be known in advance.
- ▶ In practice, subject to a computational budget, a minimizer is not reached
- ... and the use of stochastic algorithms makes the theory even less relevant.

Penalization/regularization/soft-constraints can cause *slow* progress far from a minimizer.

Overall, our aim in this talk is to convince you that:

- ▶ It is worthwhile to explore the use of constrained optimization for informed learning.
- ▶ Penalization is not the appropriate route; there are other/better algorithms to consider.

Outline

Motivation

Stochastic SQP $% \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A}$

Extensions

Conclusion

Equality-constrained example

Consider the problem to learn the solution of a parametric partial differential equation (PDE):

- ▶ $\mathcal{P}(\phi, u) = 0$, where ϕ are parameters and u solves the PDE with respect to ϕ
- ▶ $\mathcal{G}(\phi, y, w)$ predicts u, where y encodes PDE domain and w are trainable parameters
- $\{(\phi_i, y_i, u_i)\}_{i \in S_1}$ and $\{(\phi_i, y_i)\}_{i \in S_2}$ are datasets

Our training problem involves (at least) two possible terms:

$$\frac{1}{|\mathcal{S}_1|} \sum_{i \in \mathcal{S}_1} \|u_i - \mathcal{G}(\phi_i, y_i, w)\|^p \qquad \text{and/or} \quad \frac{1}{|\mathcal{S}_2|} \sum_{i \in \mathcal{S}_2} \|\mathcal{P}(\phi_i, \mathcal{G}(\phi_i, y_i, w))\|^q$$

Problem from https://benmoseley.blog/blog/, $m \frac{d^2 u(t)}{dt^2} + \mu \frac{du(t)}{t} + ku(t) = 0$

Equality-constrained example

Consider the problem to learn the solution of a parametric partial differential equation (PDE):

- ▶ $\mathcal{P}(\phi, u) = 0$, where ϕ are parameters and u solves the PDE with respect to ϕ
- ▶ $\mathcal{G}(\phi, y, w)$ predicts u, where y encodes PDE domain and w are trainable parameters
- $\{(\phi_i, y_i, u_i)\}_{i \in S_1}$ and $\{(\phi_i, y_i)\}_{i \in S_2}$ are datasets

Our training problem involves (at least) two possible terms:

$$\frac{1}{|\mathcal{S}_1|} \sum_{i \in \mathcal{S}_1} \|u_i - \mathcal{G}(\phi_i, y_i, w)\|^p \qquad \text{and/or} \quad \mathcal{P}(\phi_i, \mathcal{G}(\phi_i, y_i, w)) = 0$$

Problem from https://benmoseley.blog/blog/, $m \frac{d^2 u(t)}{dt^2} + \mu \frac{du(t)}{t} + ku(t) = 0$

Motivation 00000000	Stochastic SQP 000000000000000000000000000000000000	Extensions 000000	Conclusion 00000

Inequality-constrained example

Suppose that one wants the covariance between a feature and the prediction to be limited by ϵ :

$$\min_{w \in \mathbb{R}^d} \frac{1}{|\mathcal{S}_1|} \sum_{\substack{(x_i, y_i) \in \mathcal{S}_1}} \ell(p(x_i, w), y_i) \quad \text{s.t.} \quad -\epsilon \leq \frac{1}{|\mathcal{S}_2|} \sum_{\substack{(x_i, y_i) \in \mathcal{S}_2}} (a_i - \overline{a}) p(x_i, w) \leq \epsilon$$

FIG. 5.5. CPU time versus training accuracy, training infeasibility error, testing accuracy, and testing infeasibility error for a representative run of SQP, Wang & Spall, subgradient (10^{-1}) , and subgradient (10^{-4}) with the German data set.

Other examples

Ideas (tested and untested):

- ▶ $\frac{dp}{da}(x_i, w) \le 0 \equiv$ change in predicted value w/ change in input
- ▶ $\ell(p(x_i, w), y_i) < \ell(p(x_j, w), y_j) \equiv$ difference in loss
- ▶ $\frac{d\ell}{da}(p(x_i, w), y_i) \le 0 \equiv$ change in loss w/ change in input

Motivation Stochastic SQP Extensions Conclu 00000000 000000000000000000000000000000000000	otivation	Stochastic SQP	Extensions	Conclusion
	2000000	000000000000000000000000000000000000	000000	00000

Stochastic SQP (equality constraints only, c(w) = 0)

Algorithm : Stochastic gradient (w/ diagonal scaling, e.g., ADAM)

1: choose $w_1 \in \mathbb{R}^d$ 2: for $k \in \{1, 2, ...\}$ do

3: set scaling: compute stochastic gradient g_k , choose symmetric positive definite $H_k \in \mathbb{R}^{d \times d}$

4: compute step: solve
$$H_k s_k = -g_k$$

5: update iterate: set $w_{k+1} \leftarrow w_k + \alpha_k s_k$, where $\alpha_k = \Theta\left(\frac{\beta_k}{L_{\nabla f}}\right)$

6: end for

Algorithm : Stochastic SQP

1: choose $w_1 \in \mathbb{R}^d$ 2: for $k \in \{1, 2, ...\}$ do 3: set scaling: compute stochastic gradient g_k , choose symmetric positive definite $H_k \in \mathbb{R}^{d \times d}$ 4: compute step: solve $\begin{bmatrix} H_k & \nabla c(w_k)^T \\ \nabla c(w_k) & 0 \end{bmatrix} \begin{bmatrix} s_k \\ y_k \end{bmatrix} = -\begin{bmatrix} g_k \\ c(w_k) \end{bmatrix}$ (includes $c(w_k) + \nabla c(w_k)s_k = 0$) 5: update iterate: set $w_{k+1} \leftarrow w_k + \alpha_k s_k$, where $\alpha_k = \Theta\left(\frac{\beta_k \tau_k}{L_{\nabla f} \tau_k + L_{\nabla c}}\right)$ 6: end for

Fundamental lemma

A fundamental lemma in the analysis of the stochastic gradient method:

 $\mathbb{E}[f(W_{k+1})|\mathcal{F}_k] - f(W_k) \le -\beta_k \|\nabla f(W_k)\|_2^2 + \frac{1}{2}\beta_k^2 L\mathbb{E}[\|G_k\|_2^2|\mathcal{F}_k]$

Lemma

For all $k \in \mathbb{N}$, the change in the merit function ϕ satisfies (before taking expectations)

$$\begin{split} & \phi(W_{k+1}, \mathcal{T}_{k+1}) - \phi(W_k, \mathcal{T}_k) \\ & \leq \underbrace{-\mathcal{A}_k \Delta q(W_k, \mathcal{T}_k, \nabla f(W_k), S_k^{\text{true}})}_{\mathcal{O}(\beta_k), \quad \text{"deterministic"}} \\ & + \underbrace{\frac{1}{2} \mathcal{A}_k \beta_k \Delta q(W_k, \mathcal{T}_k, G_k, S_k)}_{\mathcal{O}(\beta_k^2), \quad \text{stochastic/noise}} + \underbrace{\mathcal{A}_k \mathcal{T}_k \nabla f(W_k)^T (S_k - S_k^{\text{true}})}_{new \text{ in the constrained setting}} \end{split}$$

Motivation 00000000	Stochastic SQP 00000000000000	Extensions 000000	Conclusion 00000

Good merit parameter behavior

For a stochastic gradient method, the fundamental lemma allows one to show that

$$\begin{split} \beta_k &= \Theta(1) \implies \mathbb{E}\left[\frac{1}{k} \sum_{j=1}^k \|\nabla f(W_j)\|_2^2\right] = \mathcal{O}(\text{constant}) \\ \beta_k &= \Theta\left(\frac{1}{k}\right) \implies \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^k \beta_j\right)} \sum_{j=1}^k \beta_j \|\nabla f(W_j)\|_2^2\right] \to 0 \qquad \left(\text{yields } \liminf_{k \to \infty} \mathbb{E}\left[\|\nabla f(W_j)\|_2^2\right] = 0\right) \end{split}$$

Theorem : Berahas, Curtis, Robinson, Zhou (2021)

Let $\mathcal{E} :=$ event that $\{\mathcal{T}_k\}$ eventually remains constant at $\mathcal{T} \ge \tau_{\min} > 0$. Then, conditioned on \mathcal{E} :

$$\beta_{k} = \Theta(1) \implies \mathbb{E}\left[\frac{1}{k} \sum_{j=1}^{k} (\|\nabla f(W_{j}) + \nabla c(W_{j})Y_{j}^{\text{true}}\|_{2}^{2} + \|c(W_{j})\|_{2})\right] = \mathcal{O}(constant)$$

$$\beta_{k} = \Theta\left(\frac{1}{k}\right) \implies \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^{k} \beta_{j}\right)} \sum_{j=1}^{k} \beta_{j} (\|\nabla f(W_{j}) + \nabla c(W_{j})Y_{j}^{\text{true}}\|_{2}^{2} + \|c(W_{j})\|_{2})\right] \to 0$$

Motivation	Stochastic SQP	Extensions	Conclusion
00000000	000000000000000	000000	00000

Motivation	Stochastic SQP	Extensions	Conclusion
00000000	000000000000000	000000	00000

Motivation 00000000	Stochastic SQP 000000000000000	Extensions 000000	Conclusion 00000

|--|

Accelerated performance

Computational costs

Solve a system with
$$\begin{bmatrix} H_k & \nabla c(w_k)^T \\ \nabla c(w_k) & 0 \end{bmatrix} \in \mathbb{R}^{(d+m) \times (d+m)}$$
?!

Motivation	Stochastic SQP 000000000000000000000000000000000000	Extensions	Conclusion
00000000		000000	00000

Direct solves

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} s_k \\ \cdot \end{bmatrix} = - \begin{bmatrix} g_k \\ c_k \end{bmatrix}$$

Important notes:

- The number of constraints m can be very small (more on this later).
- \blacktriangleright H_k can also have nice structure. Let's say (block) diagonal.
- ▶ $s_k = v_k + u_k$ is the only part needed (usually), where
- ... v_k is the step to the linearized constraints and
- ... u_k is the unique H_k -orthogonal projection of $g_k + H_k v_k$ onto $\text{Null}(J_k)$

$$v_{k} = -J_{k}^{T} \underbrace{(J_{k}J_{k}^{T})^{-1}}_{m \times m} c_{k} \text{ and } u_{k} = -(I - \underbrace{H_{k}^{-1}}_{diag} J_{k}^{T} \underbrace{(J_{k}H_{k}^{-1}J_{k}^{T})^{-1}J_{k}}_{m \times m} \underbrace{H_{k}^{-1}(g_{k} + H_{k}v_{k})}_{diag}$$

Total cost: $\mathcal{O}(m^2d + m^3)$

Iterative solves

Large sparse indefinite system:

- ▶ Iterative linear system solvers based on Lanczos process, building Krylov subspaces
- ▶ MINRES, SYMMLQ, preconditioning techniques, etc.
- ▶ Eigenvalues cluster nicely, few iterations needed
- Allow inexact solutions! Curtis, Robinson, Zhou (2024)

Motivation	Stochastic SQP	Extensions	Conclusion
00000000	00000000000●000	000000	00000

Constraint preconditioning, factorization reuse

$$\begin{array}{cc} H_k & J_k^T \\ J_k & 0 \end{array} \right] \begin{bmatrix} s_k \\ \cdot \end{bmatrix} = - \begin{bmatrix} g_k \\ c_k \end{bmatrix}$$

Suppose one has a factorization of $\begin{bmatrix} H & J^T \\ J & 0 \end{bmatrix}$, where $H \approx H_k$ and $J \approx J_k$.

- ▶ Effective as a preconditioner for an iterative linear system solver ("constraint preconditioner")
- ...Keller, Gould, Wathen (2000)
- Can also simply reuse factorization over multiple steps ("lagged Newton")
- Shamanskii (1967); Brown, Brune (2013)
- ▶ Similarly, could reuse factorizations for *reduced-space* approach mentioned earlier

Diagonal scaling matrix

What choice for H_k in the constraint setting?

- ▶ Typical scaling (e.g., Adam) uses only information from $\{g_k\}$
- Anything different with constraints?

Yes! Idea: Avoid accounting for components of $\{g_k\}$ off of constraints.

- ▶ The normal step $v_k = -J_k^T (J_k J_k^T)^{-1} c_k$ is unaffected by H_k .
- However, the tangential step (in $\text{Null}(J_k)$) is affected:

$$u_{k} = -(I - H_{k}^{-1}J_{k}^{T}(J_{k}H_{k}^{-1}J_{k}^{T})^{-1}J_{k})H_{k}^{-1}(g_{k} + H_{k}v_{k})$$

= $-Z_{k}(Z_{k}^{T}H_{k}Z_{k})^{-1}Z_{k}^{T}(g_{k} + H_{k}v_{k})$

Idea: To build H_k , project out component of g_k that lies in $\text{Range}(J_k^T)$.

Projected Adam

Algorithm P-Adam Projection-based Adam

 $\begin{aligned} & \text{Require: } \beta_1 \in (0,1), \ \beta_2 \in (0,1), \ \mu \in \mathbb{R}_{>0} \\ & \text{Compute } \ \bar{g}_k \leftarrow (I - J_k^T (J_k J_k^T)^{-1} J_k) g_k \ (\text{comes "for free" if computing } v_k \text{ explicitly}) \\ & \text{Set } p_k \leftarrow \beta_1 p_{k-1} + (1 - \beta_1) \bar{g}_k \\ & \text{Set } q_k \leftarrow \beta_2 q_{k-1} + (1 - \beta_2) (\bar{g}_k \circ \bar{g}_k), \text{ where } (\bar{g}_k \circ \bar{g}_k)_i = (\bar{g}_k)_i^2 \text{ for all } i \in \{1, \dots, d\} \\ & \text{Set } \widehat{p}_k \leftarrow (1/(1 - \beta_1^K)) p_k \\ & \text{Set } \widehat{q}_k \leftarrow (1/(1 - \beta_2^K)) q_k \\ & \text{Compute } s_k \text{ by solving } \begin{bmatrix} \text{diag}(\sqrt{\widehat{q}_k + \mu}) & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} s_k \\ \lambda_k \end{bmatrix} = - \begin{bmatrix} \widehat{p}_k \\ c_k \end{bmatrix} \end{aligned}$

Motivation 00000000	Stochastic SQP 00000000000000●	Extensions 000000	Conclusion 00000
Burgers Equation	and Dargy Flow		

Burgers Equation and Darcy Flow

Motivation	Stochastic SQP	Extensions	Conclusion
00000000	00000000000000	•00000	00000

Outline

Motivation

Stochastic SQP

Extensions

Conclusion

Summary

Since our original work, we have considered various extensions.

- iterative linear system solvers and inexactness
- diagonal scaling methods for saddle-point systems
- stronger convergence guarantees (almost-sure convergence)
- convergence of Lagrange multiplier estimates
- relaxed constraint qualifications
- worst-case complexity guarantees
- generally constrained problems (with inequality constraints as well)
- interior-point methods

Almost-sure convergence of the primal iterates

Theorem

Suppose there exists $x_* \in \mathcal{X}$ with $c(x_*) = 0$, $\mu \in \mathbb{R}_{>1}$, and $\epsilon \in \mathbb{R}_{>0}$ such that for all

 $x \in \mathcal{X}_{\epsilon, x_*} := \{x \in \mathcal{X} : \|x - x_*\|_2 \le \epsilon\}$

one finds that

$$\phi_{\tau}(x) - \phi_{\tau}(x_{*}) \begin{cases} = 0 & \text{if } x = x_{*} \\ \in (0, \mu(\tau \| Z(x)^{T} \nabla f(x) \|_{2}^{2} + \| c(x) \|_{2})] & \text{otherwise}, \end{cases}$$

where for all $x \in \mathcal{X}_{\epsilon,x_*}$ one defines $Z(x) \in \mathbb{R}^{n \times (n-m)}$ as some orthonormal matrix whose columns form a basis for the null space of J(x). Then, if $\limsup_{k \to \infty} \{ \|X_k - x_*\|_2 \} \leq \epsilon$ almost surely, it follows that

$$\{\phi_{\tau}(X_k)\} \xrightarrow{a.s.} \phi_{\tau}(x_*), \quad \{X_k\} \xrightarrow{a.s.} x_*, \quad and \quad \left\{ \begin{bmatrix} \nabla f(X_k) + J(X_k)^T Y_k^{\text{true}} \\ c(X_k) \end{bmatrix} \right\} \xrightarrow{a.s.} 0.$$

Lagrange multiplier convergence

a

Theorem

Suppose (x_*, y_*) is a stationary point. Then, for any $k \in \mathbb{N}$, one finds $||X_k - x_*||_2 \leq \epsilon$ implies

$$\|Y_k - y_*\|_2 \le \kappa_y \|X_k - x_*\|_2 + r^{-1} \|\nabla f(X_k) - G_k\|_2$$

and $\|Y_k^{\text{true}} - y_*\|_2 \le \kappa_y \|X_k - x_*\|_2$ for some $(\kappa, r) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}$.

Computed multipliers always have error. Consider averaged multipliers $\{Y_k^{avg}\}$:

Theorem

If the iterate sequence converges almost surely to x_* , i.e., $\{X_k\} \xrightarrow{a.s.} x_*$, then

$$\{Y_k^{\mathrm{true}}\} \xrightarrow{a.s.} y_* \quad and \quad \{Y_k^{\mathrm{avg}}\} \xrightarrow{a.s.} y_*.$$

Worst-case iteration complexity of $\widetilde{\mathcal{O}}(\epsilon^{-4})$

Theorem

Suppose the algorithm is run k_{\max} iterations with $\beta_k = \gamma/\sqrt{k_{\max}+1}$ and

▶ the merit parameter is reduced at most $s_{\max} \in \{0, 1, ..., k_{\max}\}$ times.

Let k_* be sampled uniformly over $\{1, \ldots, k_{\max}\}$. Then, with probability $1 - \delta$,

$$\mathbb{E}[\|\nabla f(X_{k_*}) + J(X_{k_*})^T Y_{k_*}\|_2^2 + \|c(X_{k_*})\|_1] \\ \leq \frac{\tau_{-1}(f_0 - f_{\inf}) + \|c_0\|_1 + M}{\sqrt{k_{\max} + 1}} + \frac{(\tau_{-1} - \tau_{\min})(s_{\max}\log(k_{\max}) + \log(1/\delta))}{\sqrt{k_{\max} + 1}}$$

Theorem

If the stochastic gradient estimates are sub-Gaussian, then with probabiliy $1-\bar{\delta}$

$$s_{\max} = \mathcal{O}\left(\log\left(\log\left(\frac{k_{\max}}{\bar{\delta}}\right)\right)\right).$$

Stochastic SQP 00000000000000000 Extensions 000000

Stochastic-gradient-based interior-point method

Single-loop interior-point (SLIP) method: barrier parameter $\{\mu_k\}$ vanishes by prescribed rate.

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models (with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.

Motivation 00000000	Stochastic SQP 00000000000000	Extensions 000000	Conclusion •0000
Outline			

Motivation

Stochastic SQP

Extensions

Conclusion

Summary

Stochastic-gradient/Newton-based algorithms for constrained optimization.

▶ A lot of work so far, but many open questions.

Open questions:

- tradeoff analysis (Bottou and Bousquet)?
- generalization guarantees?
- ▶ beyond projected ADAM, etc.?
- Lagrange multiplier estimators?
- active-set identification?
- expectation/probabilistic constraints?

Constraint engineering

Neural network engineering, feature engineering, and now constraint engineering...

• The number of constraints m can be controlled:

$$\begin{array}{c} c(p(x_1, w), y_1) = 0 \\ c(p(x_2, w), y_2) = 0 \\ \vdots \end{array} \right\} \qquad vs. \qquad \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} c(p(x_i, w), y_i) = 0. \end{array}$$

▶ Selection of constraint data $\{(x_i, y_i)\}_{i \in S}$ also requires some care.

In all cases, also due to "vanishing gradients" and other possible effects, beware rank-deficient Jacobians:

Berahas, Curtis, O'Neill, Robinson (2023)

References

- A. S. Berahas, F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization," SIAM Journal on Optimization, 31(2):1352–1379, 2021.
- A. S. Berahas, F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians," *Mathematics of Operations Research*, https://doi.org/10.1287/moor.2021.0154, 2023.
- F. E. Curtis, D. P. Robinson, and B. Zhou, "A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization," INFORMS Journal on Optimization, , 2024.
- F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization," *Mathematical Programming*, https://doi.org/10.1007/s10107-023-01981-1, 2023.
- ▶ F. E. Curtis, S. Liu, and D. P. Robinson, "Fair Machine Learning through Constrained Stochastic Optimization and an *e*-Constraint Method," Optimization Letters, https://doi.org/10.1007/s11590-023-02024-6, 2023.
- F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Stochastic Optimization with Deterministic Nonlinear Inequality and Equality Constraints," SIAM Journal on Optimization, 34(4):3592-3622, 2024.
- F. E. Curtis, X. Jiang, and Q. Wang, "Almost-sure convergence of iterates and multipliers in stochastic sequential quadratic optimization," *Journal of Optimization Theory and Applications*, https://rdcu.be/d5OwU, 2024.
- F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems," to appear in SIAM Journal on Optimization, https://arxiv.org/abs/2304.14907.
- F. E. Curtis, X. Jiang, and Q. Wang, "Single-Loop Deterministic and Stochastic Interior-Point Algorithms for Nonlinearly Constrained Optimization," https://arxiv.org/abs/2408.16186.

Questions?

