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Supervised Learning

Expected/empirical risk minimization:
» feature vector X defined over X
» label Y defined over )
> (X,Y) defined on the probability space (2, F,P)
Given a prediction function p : X' X R? — Y and loss function £: )Y x Y — R, solve

N
1
min L(p(z,w),y)dP(z,y) ~ min — Lp(z;,w),y:),
min, /ny (P, w), y)dP(z, y) ~ min, N;:l (p(zs, w), y:)

where {(z;,y;)}Y_, is a set of sample feature-label pairs.

Training faster/better: Choice of p, ¢, and optimization algorithm.

: :
Stochastic-Gradient-based Algorithms for Nonconvex Constrained Optimization and Learning 4 of 37




Motivation Stochastic SQP Extensions Conclusion
00®@00000 0000000000000 000 000000 00000

Prediction and loss functions

These are critical, but not my scope. Related to today’s talk:
» Simple, classical models <= enormous, fully connected, overparameterized ones
» The prediction function model/architecture constrains the search

» ...but there are other ways.
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Constrained training/optimization

Constraints can be used to influence training.
» One option is to embed constraints within the prediction function p
> ...e.g., a layer defining p involves solving equations or an optimization problem.

» These remain with every forward pass after the model is trained.

Another option is to impose constraints during training = constrained optimization.
» p constrains the search for a model
» ...additional constraints (data-driven?) refine it further.

» These constraints can also greatly influence training algorithm behavior!

Note: In some sense this is already done with fine-tuning, e.g., over subspaces, low-rank changes, etc.
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Aside: Constrained optimization

Let’s simplify notation to focus on the optimization algorithm:
[ tole ) arey) = s
AxY

Generally, one might consider various paradigms for imposing the constraints:
> expectation constraints
> (distributionally) robust constraints

> probabilistic (i.e., chance) constraints

For now, assume constraint values and derivatives can be computed:
ce(w) =0 and cz(w) <0

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data.
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Aside: Penalization

Suppose that f : R - R, ¢g : R — R™¢ | and ¢ : R% — R™Z are locally Lipschitz and consider

min f(w) s.t. cg(w)=0 and cz(w) <O0.
weRd

Two common, essentially equivalent ways of solving such a problem:

P> mowve constraints to objective and use an unconstrained method to solve

min  f(w) + Av(w) e.g. v(w) = [leg(w)]| + || max{ez(w), 0}
weR

»> employ a penalty or augmented Lagrangian method

One can refer to this as penalization, regularization, soft constraints, etc.
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Aside: Calmness and exact penalization

mind fw) s.t. cg(w)=0 and cz(w) <0 (P)
weR

Definition : Calmness

Problem (P) is calm at w € R?® with respect to || - || if and only if there exist (e, d) € (0,00) x (0, 00) such

that, for all (w,s) € R? x R ) with || — w|| <, [|s]| <€, —s < cg(w) < s, and cz (W) < s, one has

f(@) +8|ls|| = f(w).

Theorem : Exact penalization

Suppose wi € R is a local minimizer of (P), v:R% — R is defined by ||cg (w)|| + || max{cz(w),0}||, and
(P) is calm at wx with respect to || - ||. Then, for some A« € (0,00), the point wx is a local minimizer of

f+ v forall \€ [\, 00).
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Motivation

It is a mistake to overemphasize the relevance of this theory for practical use.
> Exact penalization only applies for minimizers
> ...and requires a parameter that cannot be known in advance.
» In practice, subject to a computational budget, a minimizer is not reached
» ...and the use of stochastic algorithms makes the theory even less relevant.

Penalization/regularization/soft-constraints can cause slow progress far from a minimizer.

Overall, our aim in this talk is to convince you that:
» It is worthwhile to explore the use of constrained optimization for informed learning.

> Penalization is not the appropriate route; there are other/better algorithms to consider.
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Equality-constrained example
Consider the problem to learn the solution of a parametric partial differential equation (PDE):
» P(¢,u) = 0, where ¢ are parameters and u solves the PDE with respect to ¢
» G(¢,y,w) predicts u, where y encodes PDE domain and w are trainable parameters
> {(bi,yi,wi)ies, and {(¢i,yi)}ies, are datasets
Our training problem involves (at least) two possible terms:
1 P 1 q
5] X = G@ovwl? andfor o ST P G0r uiw)|
1 ies, 2l ies,
1.0 1.0
0.0 0.0
\/ \_/ Training step: 1 \/ \_/ Training step: 1
—05 ~—— Exact solution —05 ~—— Exact solution
—— Neural network prediction —— Neural network prediction
-1.0 o Training data -1.0 e Training data
@ Physics loss training locations @ Physics loss training locations
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
2
Problem from https://benmoseley.blog/blog/, m%ét) + uduf(t) + ku(t) =0
:
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Inequality-constrained example

Suppose that one wants the covariance between a feature and the prediction to be limited by e:

Z Lp(zi,w),y;) st. —e< L Z (a; —a)p(z;, w) < e

min 1Sl
(zi,y;)€S1 2 (ws,ui)€89

werd  |S1]

B 07
. X
Ersin, - Subgrad(te-4) . 5
N
g £ £ B
2 2 Fha Zo.
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£ i £
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02 01\ pall
| - ubgrad16-1)
o . ~--Subgrad(te-s) . \ ——-Subgradie-4)
o s0 100 100 200 o S w00 1560 2000 o 0 o0 1so0 200 o %0 1000 1500 2000

Fic. 5.5. CPU time versus training accuracy, training infeasibility error, testing accuracy, and
testing infeasibility error for a representative run of SQP, Wang & Spall, subgradient (10_1), and
subgradient (10~%) with the German data set.
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Other examples

Ideas (tested and untested):
d
> d—p(azl, w) < 0 = change in predicted value w/ change in input
a
> U(p(zi,w),y;) < L(p(xj,w),y;) = difference in loss

dal
> %(p(xi,w),yi) < 0 = change in loss w/ change in input

" 2
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Stochastic SQP (equality constraints only, ¢(w) = 0)

Algorithm : Stochastic gradient (w/ diagonal scaling, e.g., ADAM)

1: choose wy € RY
2: for k€ {1,2,...} do
3: set scaling: compute stochastic gradient gi, choose symmetric positive definite Hy € Rxd
4 compute step: solve Hi sk = —gk
5 update iterate: set wr41 ¢ wi + ap sk, where o = © (Lﬁik)
v

6: end for

Algorithm : Stochastic SQP

1: choose wi € R4
2: for k € {1,2,...} do
3: set scaling: compute stochastic gradient gi, choose symmetric positive definite Hj € RExd
T
4 compute step: solve [Vclililj)k) vc(g”“) } [Z'Z] = - [c(ﬂck)} (includes c(wg) + Ve(wi)sk = 0)
. BrTk

5: update iterate: set wr41 ¢ wg + agsk, where ap =0 | ———

Lyymi + Lve
6: end for
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Fundamental lemma

A fundamental lemma in the analysis of the stochastic gradient method:

E[f Wit1)1Fk] — F(We) < =BellVFWi)Il5 + 3B LE[| G 13| Fr]

Lemma
For all k € N, the change in the merit function ¢ satisfies (before taking expectations)
d(Wit1, Tiet+1) — ¢(Wi, Tk)
< — A Aq(Wi, Ti, VF(Wi), Si°)

O(Bg), “deterministic”

+ LA B AG(Wi, Tio, G, Si) + Ak T VEWi) T (S — S37°)

O(ﬁ%), stochastic/noise new in the constrained setting

: :
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Good merit parameter behavior

For a stochastic gradient method, the fundamental lemma allows one to show that

k
Br=6(1) = E {,16 > IVf(Wj)IIZ] = O(constant)

j=1

Br=0 (l) — E [1 f:gjnw(wj)ng} S0 (yields lim inf B [||V£(W,)II3] = 0)
k (Z?:l B]) = k— o0
Theorem : Berahas, Curtis, Robinson, Zhou (2021)

Let € := event that {Tr} eventually remains constant at T > Tmin > 0. Then, conditioned on E:

=

k
Br=06(1) = E [% D UIVEW,) + Ve(W;) Y™ 3 + ||C(Wj)”2):| = O(constant)

1
=0 1 E 1 - Ytrue 2
=o(3) = Tom 5y P07+ T el | 0

: :
Stochastic-Gradient-based Algorithms for Nonconvex Constrained Optimization and Learning 17 of 37




Motivation Stochastic SQP Extensions Conclusion
00000000 0000000800000 000 000000 00000

SQP illustration

c(wy) + Ve(wg)Ts =0

c(w) =0

Stochastic-Gradient-based Algorithms for Nonconvex Constrained Optimization and Learning 18 of 37
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SQP illustration

c(wy) + Ve(wg)Ts =0

9)

regularization / “soft” constraints

w c(w) =0
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SQP illustration

c(wy) + Ve(wg)Ts =0

9)

constraints

1
1
1
1
. . !
regularization / “so '
1

c(w) =0

“hard’ constraints

constrained approach = fundamentally different algorithm
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SQP illustration

c(wy) + Ve(wg)Ts =0

1
1
1
1
. . . !
regularization / “soft” constraints 1
1

“hard’ constraints = step in null space
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Accelerated performance
1.0 1.0
0.5 /‘\ 0.5 /\
00 ~—— 00 ~—
\_/ Training step: 1 \_/ Training step: 1
-0.5 ~ Exact solution -0.5 ~ Exact solution
=== Neural network prediction === Neural network prediction
10 o Training data -1.0 o Training data
® _ Physics loss training locations ® _ Physics loss training locations
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Computational costs

Ve(wg)T € Rld+m)x (d+m) 9|

. Hy,
Solve a system with Ve(wy) 0

Stochastic-Gradient-based Algorithms for Nonconvex Constrained Optimization and Learning 20 of 37
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Direct solves

o s

Important notes:
The number of constraints m can be very small (more on this later).

Hj, can also have nice structure. Let’s say (block) diagonal.

>
>
> s; = v + ug is the only part needed (usually), where
P . ..vg is the step to the linearized constraints and

>

... uy is the unique Hy-orthogonal projection of gx + Hyvy onto Null(Jy)

vp = —JE ()P ew and w, = (I — Hy ' T (D Hy VTR T ) Hy g + Hior)
N e’ N—— N—_——— N~

mxm diag mxXm diag

Total cost: O(m?d + m?)

: :
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Iterative solves

o 8=

> Iterative linear system solvers based on Lanczos process, building Krylov subspaces
> MINRES, SYMMLQ), preconditioning techniques, etc.

> Eigenvalues cluster nicely, few iterations needed

> Allow inexact solutions! Curtis, Robinson, Zhou (2024)

Large sparse indefinite system:

: :
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Constraint preconditioning, factorization reuse

e =L

Ji 0 . Ck
JT

J 0

> Effective as a preconditioner for an iterative linear system solver (‘“constraint preconditioner”)

... Keller, Gould, Wathen (2000)

Can also simply reuse factorization over multiple steps (“lagged Newton”)

... Shamanskii (1967); Brown, Brune (2013)

Similarly, could reuse factorizations for reduced-space approach mentioned earlier

Suppose one has a factorization of [ ] , where H ~ Hy, and J =~ J}.

: :
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Diagonal scaling matrix

What choice for Hy in the constraint setting?
» Typical scaling (e.g., Adam) uses only information from {gi}
> Anything different with constraints?

Yes! Idea: Avoid accounting for components of {gx} off of constraints.
» The normal step v = —JE(JkaT)_lck is unaffected by Hy.
> However, the tangential step (in Null(Jy)) is affected:
up = —(I = H " (T H ) 7 k) H gk + Hyor)
~Zk(Zi Hy Zy) " 23, (g1 + Hyor)

Idea: To build Hy, project out component of g that lies in Range(Jg).

: :
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Projected Adam

Algorithm P-Adam Projection-based Adam

Require: 31 € (0’ 1)’ B2 € (Oa 1)’ ne R>0
Compute gi < (I — JE(JkJE)_le)Qk (comes “for free” if computing vy explicitly)
Set px + Bipr—1 + (1 — B1) gk
Set qx = B2ak—1 + (1 — B2)(Gk © k), where (gk 0 gi)i = ()] for all i € {1,...,d}
Set P + (1/(1— ﬁg))l’k
]
Ck

Set gi. = (1/(1 = B3))ak

. = T
Compute s, by solving dlag(\ém) J(lf } [iz] T
k

: :
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Burgers Equation and Darcy Flow

Residual loss (mini-batch, 0.005)

Residual loss (mini-batch, 0.0005)

Loss (full batch, 0.001) Loss (mini-batch, 0.001)
102 102 10t

—=— Adam(unc) —=— Adam(unc) —=— Adam(unc) —=— Adam(unc)

—o— Adam(con) ~e— Adam(con) —e— Adam(con) —e— Adam(con)

—=— P-Adam(con) ~+— P-Adam(con) —=— P-Adam(con) —+— P-Adam(con)
10° 10° 100
102 107 101
107 1072 1072

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 200 400 600 800 1000 o 200 400 600 800 1000
Epoch Epoch Epoch Epoch

Epoch 10001 Input v True Solution Epoch 1001

True Solution
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: :
Summary

Since our original work, we have considered various extensions.
> iterative linear system solvers and inexactness

diagonal scaling methods for saddle-point systems

stronger convergence guarantees (almost-sure convergence)

convergence of Lagrange multiplier estimates

relaxed constraint qualifications

worst-case complexity guarantees

generally constrained problems (with inequality constraints as well)

vyVvVvyVvyVvyVvyYyvyy

interior-point methods
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Almost-sure convergence of the primal iterates

Theorem

Suppose there exists T € X with c(x+) =0, p € Ry, and € € Ry such that for all
T EXen, ={x€X:|z—zi]2 < €}

one finds that

3 . =0 W @ = B
erie) = orte) {e (0, u(T|Z@) TV I @)I3 + lle(@)ll2)]  otherwise,

where for all x € Xe o, one defines Z(x) € R™X("=m) g5 some orthonormal matriz whose columns form a
basis for the null space of J(z). Then, if limsup{|| Xy — z«||2} < € almost surely, it follows that
k—oo

(6000} 25 0@, (X6} =5, ana {[VTER IO oy,

:
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Lagrange multiplier convergence

Theorem
Suppose (z«,y«) is a stationary point. Then, for any k € N, one finds || Xi — z«||2 < € implies

Yk = yull2 < myllXp — all2 +rHIVF(XR) — Grll2

and [V = yull2 < myl| Xk — 2all2 for some (k,7) € Rug x Rsg.

Computed multipliers always have error. Consider averaged multipliers {Y,;iL Vel

Theorem

If the iterate sequence converges almost surely to x«, i.e., {Xi} L2 2., then

{Ykgrue} a.s. Ys - {Ykavg} a.s. Y.

: :
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Worst-case iteration complexity of 6(6_4)

Theorem
Suppose the algorithm is run kmax iterations with B = v/vVkmax + 1 and

» the merit parameter is reduced at most smax € {0,1,..., kmax} times.

Let k« be sampled uniformly over {1,...,kmax}. Then, with probability 1 — 4,

E(IVf(Xk,) + J(Xe,) Vi, 15 + lle(Xk, )]
7—1(fo = fint) + llcolls + M 4 (T—1 — Timin) (Smax log(kmax) + log(1/9))
V kmax + 1

<

- vkmax+1

Theorem

If the stochastic gradient estimates are sub-Gaussian, then with probabiliy 1 — §

o = 0 10 1 (222 )).

: :
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Stochastic-gradient-based interior-point method

Single-loop interior-point (SLIP) method: barrier parameter {uy} vanishes by prescribed rate.

’ B
fty !

training loss, stochastic, 1 epoch

testing loss, stochastic, 1 epoch

(S ugg

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models
(with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.
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Summary

Stochastic-gradient/Newton-based algorithms for constrained optimization.

» A lot of work so far, but many open questions.

Open questions:
> tradeoff analysis (Bottou and Bousquet)?
generalization guarantees?
beyond projected ADAM, etc.?
Lagrange multiplier estimators?

active-set identification?

vVvyVvVYyVvyy

expectation/probabilistic constraints?

: :
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Constraint engineering

Neural network engineering, feature engineering, and now constraint engineering. . .

» The number of constraints m can be controlled:

c(p(z1,w),y1) =0
c(p(z2,w),y2) =0 1

i€S

> Selection of constraint data {(z;,y;)}ics also requires some care.

In all cases, also due to “vanishing gradients” and other possible effects, beware rank-deficient Jacobians:
» Berahas, Curtis, O’Neill, Robinson (2023)
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