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Supervised Learning

Expected/empirical risk minimization:

▶ feature vector X defined over X
▶ label Y defined over Y
▶ (X,Y ) defined on the probability space (Ω,F ,P)

Given a prediction function p : X × Rd → Y and loss function ℓ : Y × Y → R, solve

min
w∈Rd

∫
X×Y

ℓ(p(x,w), y)dP(x, y) ≈ min
w∈Rd

1

N

N∑
i=1

ℓ(p(xi, w), yi),

where {(xi, yi)}Ni=1 is a set of sample feature-label pairs.

Training faster/better: Choice of p, ℓ, and optimization algorithm.
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Prediction and loss functions

These are critical, but not my scope. Related to today’s talk:

▶ Simple, classical models ⇐⇒ enormous, fully connected, overparameterized ones

▶ The prediction function model/architecture constrains the search

▶ . . . but there are other ways.
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Constrained training/optimization

Constraints can be used to influence training.

▶ One option is to embed constraints within the prediction function p

▶ . . . e.g., a layer defining p involves solving equations or an optimization problem.

▶ These remain with every forward pass after the model is trained.

Another option is to impose constraints during training ⇒ constrained optimization.

▶ p constrains the search for a model

▶ . . . additional constraints (data-driven?) refine it further.

▶ These constraints can also greatly influence training algorithm behavior!

Note: In some sense this is already done with fine-tuning, e.g., over subspaces, low-rank changes, etc.
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Aside: Constrained optimization

Let’s simplify notation to focus on the optimization algorithm:∫
X×Y

ℓ(p(x,w), y)dP(x, y) =: f(w)

Generally, one might consider various paradigms for imposing the constraints:

▶ expectation constraints

▶ (distributionally) robust constraints

▶ probabilistic (i.e., chance) constraints

For now, assume constraint values and derivatives can be computed:

cE(w) = 0 and cI(w) ≤ 0

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data.
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Aside: Penalization

Suppose that f : Rd → R, cE : Rd → RmE , and cI : Rd → RmI are locally Lipschitz and consider

min
w∈Rd

f(w) s.t. cE(w) = 0 and cI(w) ≤ 0.

Two common, essentially equivalent ways of solving such a problem:

▶ move constraints to objective and use an unconstrained method to solve

min
w∈Rd

f(w) + λv(w) e.g. v(w) = ∥cE(w)∥+ ∥max{cI(w), 0}∥

▶ employ a penalty or augmented Lagrangian method

One can refer to this as penalization, regularization, soft constraints, etc.
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Aside: Calmness and exact penalization

min
w∈Rd

f(w) s.t. cE(w) = 0 and cI(w) ≤ 0 (P)

Definition : Calmness

Problem (P) is calm at w ∈ Rd with respect to ∥ · ∥ if and only if there exist (ϵ, δ) ∈ (0,∞)× (0,∞) such
that, for all (w, s) ∈ Rd × Rd

≥0 with ∥w − w∥ ≤ ϵ, ∥s∥ ≤ ϵ, −s ≤ cE(w) ≤ s, and cI(w) ≤ s, one has

f(w) + δ∥s∥ ≥ f(w).

Theorem : Exact penalization

Suppose w∗ ∈ Rd is a local minimizer of (P), v : Rd → R is defined by ∥cE(w)∥+ ∥max{cI(w), 0}∥, and
(P) is calm at w∗ with respect to ∥ · ∥. Then, for some λ∗ ∈ (0,∞), the point w∗ is a local minimizer of

f + λv for all λ ∈ [λ∗,∞).
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Motivation

It is a mistake to overemphasize the relevance of this theory for practical use.

▶ Exact penalization only applies for minimizers

▶ . . . and requires a parameter that cannot be known in advance.

▶ In practice, subject to a computational budget, a minimizer is not reached

▶ . . . and the use of stochastic algorithms makes the theory even less relevant.

Penalization/regularization/soft-constraints can cause slow progress far from a minimizer.

Overall, our aim in this talk is to convince you that:

▶ It is worthwhile to explore the use of constrained optimization for informed learning.

▶ Penalization is not the appropriate route; there are other/better algorithms to consider.
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Equality-constrained example
Consider the problem to learn the solution of a parametric partial differential equation (PDE):

▶ P(ϕ, u) = 0, where ϕ are parameters and u solves the PDE with respect to ϕ

▶ G(ϕ, y, w) predicts u, where y encodes PDE domain and w are trainable parameters

▶ {(ϕi, yi, ui)}i∈S1
and {(ϕi, yi)}i∈S2

are datasets

Our training problem involves (at least) two possible terms:

1

|S1|
∑
i∈S1

∥ui − G(ϕi, yi, w)∥p and/or
1

|S2|
∑
i∈S2

∥P(ϕi,G(ϕi, yi, w))∥q

Problem from https://benmoseley.blog/blog/, m
d2u(t)

dt2
+ µ

du(t)
t

+ ku(t) = 0
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Inequality-constrained example

Suppose that one wants the covariance between a feature and the prediction to be limited by ϵ:

min
w∈Rd

1

|S1|
∑

(xi,yi)∈S1

ℓ(p(xi, w), yi) s.t. −ϵ ≤
1

|S2|
∑

(xi,yi)∈S2

(ai − a)p(xi, w) ≤ ϵ
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Other examples

Ideas (tested and untested):

▶ dp

da
(xi, w) ≤ 0 ≡ change in predicted value w/ change in input

▶ ℓ(p(xi, w), yi) < ℓ(p(xj , w), yj) ≡ difference in loss

▶ dℓ

da
(p(xi, w), yi) ≤ 0 ≡ change in loss w/ change in input
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Stochastic SQP (equality constraints only, c(w) = 0)

Algorithm : Stochastic gradient (w/ diagonal scaling, e.g., ADAM)

1: choose w1 ∈ Rd

2: for k ∈ {1, 2, . . . } do

3: set scaling: compute stochastic gradient gk, choose symmetric positive definite Hk ∈ Rd×d

4: compute step: solve Hksk = −gk
5: update iterate: set wk+1 ← wk + αksk, where αk = Θ

(
βk

L∇f

)
6: end for

Algorithm : Stochastic SQP

1: choose w1 ∈ Rd

2: for k ∈ {1, 2, . . . } do

3: set scaling: compute stochastic gradient gk, choose symmetric positive definite Hk ∈ Rd×d

4: compute step: solve

[
Hk ∇c(wk)

T

∇c(wk) 0

] [
sk
yk

]
= −

[
gk

c(wk)

]
(includes c(wk) +∇c(wk)sk = 0)

5: update iterate: set wk+1 ← wk + αksk, where αk = Θ

(
βkτk

L∇fτk + L∇c

)
6: end for
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Fundamental lemma

A fundamental lemma in the analysis of the stochastic gradient method:

E[f(Wk+1)|Fk]− f(Wk) ≤ −βk∥∇f(Wk)∥22 + 1
2
β2
kLE[∥Gk∥22|Fk]

Lemma

For all k ∈ N, the change in the merit function ϕ satisfies (before taking expectations)

ϕ(Wk+1, Tk+1)− ϕ(Wk, Tk)

≤ −Ak∆q(Wk, Tk,∇f(Wk), S
true
k )︸ ︷︷ ︸

O(βk), “deterministic”

+ 1
2Akβk∆q(Wk, Tk, Gk, Sk)︸ ︷︷ ︸

O(β2
k
), stochastic/noise

+AkTk∇f(Wk)
T
(Sk − S

true
k )︸ ︷︷ ︸

new in the constrained setting
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Good merit parameter behavior
For a stochastic gradient method, the fundamental lemma allows one to show that

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

∥∇f(Wj)∥22

 = O(constant)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj∥∇f(Wj)∥22

→ 0

(
yields lim inf

k→∞
E
[
∥∇f(Wj)∥22

]
= 0

)

Theorem : Berahas, Curtis, Robinson, Zhou (2021)

Let E := event that {Tk} eventually remains constant at T ≥ τmin > 0. Then, conditioned on E:

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

(∥∇f(Wj) +∇c(Wj)Y
true
j ∥22 + ∥c(Wj)∥2)

 = O(constant)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj(∥∇f(Wj) +∇c(Wj)Y
true
j ∥22 + ∥c(Wj)∥2)

→ 0
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SQP illustration

c(wk) +∇c(wk)
T s = 0

wk
c(w) = 0

regularization / “soft” constraints

“hard” constraints

constrained approach = fundamentally different algorithm

wk

c(w) = 0

regularization / “soft” constraints

“hard” constraints =⇒ step in null space
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Accelerated performance
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Computational costs

Solve a system with

[
Hk ∇c(wk)

T

∇c(wk) 0

]
∈ R(d+m)×(d+m)?!
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Direct solves

[
Hk JT

k
Jk 0

] [
sk
·

]
= −

[
gk
ck

]

Important notes:

▶ The number of constraints m can be very small (more on this later).

▶ Hk can also have nice structure. Let’s say (block) diagonal.

▶ sk = vk + uk is the only part needed (usually), where

▶ . . . vk is the step to the linearized constraints and

▶ . . .uk is the unique Hk-orthogonal projection of gk +Hkvk onto Null(Jk)

vk = −JT
k (JkJ

T
k )−1︸ ︷︷ ︸

m×m

ck and uk = −(I −H−1
k︸ ︷︷ ︸

diag

JT
k (JkH

−1
k JT

k︸ ︷︷ ︸
m×m

)−1Jk)H
−1
k︸ ︷︷ ︸

diag

(gk +Hkvk)

Total cost: O(m2d+m3)
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Iterative solves

[
Hk JT

k
Jk 0

] [
sk
·

]
= −

[
gk
ck

]

Large sparse indefinite system:

▶ Iterative linear system solvers based on Lanczos process, building Krylov subspaces

▶ MINRES, SYMMLQ, preconditioning techniques, etc.

▶ Eigenvalues cluster nicely, few iterations needed

▶ Allow inexact solutions! Curtis, Robinson, Zhou (2024)
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Constraint preconditioning, factorization reuse

[
Hk JT

k
Jk 0

] [
sk
·

]
= −

[
gk
ck

]

Suppose one has a factorization of

[
H JT

J 0

]
, where H ≈ Hk and J ≈ Jk.

▶ Effective as a preconditioner for an iterative linear system solver (“constraint preconditioner”)

▶ . . . Keller, Gould, Wathen (2000)

▶ Can also simply reuse factorization over multiple steps (“lagged Newton”)

▶ . . . Shamanskii (1967); Brown, Brune (2013)

▶ Similarly, could reuse factorizations for reduced-space approach mentioned earlier
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Diagonal scaling matrix

What choice for Hk in the constraint setting?

▶ Typical scaling (e.g., Adam) uses only information from {gk}
▶ Anything different with constraints?

Yes! Idea: Avoid accounting for components of {gk} off of constraints.

▶ The normal step vk = −JT
k (JkJ

T
k )−1ck is unaffected by Hk.

▶ However, the tangential step (in Null(Jk)) is affected:

uk = −(I −H−1
k JT

k (JkH
−1
k JT

k )−1Jk)H
−1
k (gk +Hkvk)

= −Zk(Z
T
k HkZk)

−1ZT
k (gk +Hkvk)

Idea: To build Hk, project out component of gk that lies in Range(JT
k ).
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Projected Adam

Algorithm P-Adam Projection-based Adam

Require: β1 ∈ (0, 1), β2 ∈ (0, 1), µ ∈ R>0

Compute ḡk ← (I − JT
k (JkJ

T
k )−1Jk)gk (comes “for free” if computing vk explicitly)

Set pk ← β1pk−1 + (1− β1)ḡk
Set qk ← β2qk−1 + (1− β2)(ḡk ◦ ḡk), where (ḡk ◦ ḡk)i = (ḡk)

2
i for all i ∈ {1, . . . , d}

Set p̂k ← (1/(1− βk
1 ))pk

Set q̂k ← (1/(1− βk
2 ))qk

Compute sk by solving

[
diag(

√
q̂k + µ) JT

k
Jk 0

] [
sk
λk

]
= −

[
p̂k
ck

]
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Burgers Equation and Darcy Flow
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Summary

Since our original work, we have considered various extensions.

▶ iterative linear system solvers and inexactness

▶ diagonal scaling methods for saddle-point systems

▶ stronger convergence guarantees (almost-sure convergence)

▶ convergence of Lagrange multiplier estimates

▶ relaxed constraint qualifications

▶ worst-case complexity guarantees

▶ generally constrained problems (with inequality constraints as well)

▶ interior-point methods
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Almost-sure convergence of the primal iterates

Theorem

Suppose there exists x∗ ∈ X with c(x∗) = 0, µ ∈ R>1, and ϵ ∈ R>0 such that for all

x ∈ Xϵ,x∗ := {x ∈ X : ∥x− x∗∥2 ≤ ϵ}

one finds that

ϕτ (x)− ϕτ (x∗)

{
= 0 if x = x∗

∈ (0, µ(τ∥Z(x)T∇f(x)∥22 + ∥c(x)∥2)] otherwise,

where for all x ∈ Xϵ,x∗ one defines Z(x) ∈ Rn×(n−m) as some orthonormal matrix whose columns form a
basis for the null space of J(x). Then, if lim sup

k→∞
{∥Xk − x∗∥2} ≤ ϵ almost surely, it follows that

{ϕτ (Xk)}
a.s.−−−→ ϕτ (x∗), {Xk}

a.s.−−−→ x∗, and

{[
∇f(Xk) + J(Xk)

TY true
k

c(Xk)

]}
a.s.−−−→ 0.
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Lagrange multiplier convergence

Theorem

Suppose (x∗, y∗) is a stationary point. Then, for any k ∈ N, one finds ∥Xk − x∗∥2 ≤ ϵ implies

∥Yk − y∗∥2 ≤ κy∥Xk − x∗∥2 + r−1∥∇f(Xk)−Gk∥2
and ∥Y true

k − y∗∥2 ≤ κy∥Xk − x∗∥2 for some (κ, r) ∈ R>0 × R>0.

Computed multipliers always have error. Consider averaged multipliers {Y avg
k }:

Theorem

If the iterate sequence converges almost surely to x∗, i.e., {Xk}
a.s.−−−→ x∗, then

{Y true
k } a.s.−−−→ y∗ and {Y avg

k } a.s.−−−→ y∗.
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Worst-case iteration complexity of Õ(ϵ−4)

Theorem

Suppose the algorithm is run kmax iterations with βk = γ/
√
kmax + 1 and

▶ the merit parameter is reduced at most smax ∈ {0, 1, . . . , kmax} times.

Let k∗ be sampled uniformly over {1, . . . , kmax}. Then, with probability 1− δ,

E[∥∇f(Xk∗ ) + J(Xk∗ )
TYk∗∥

2
2 + ∥c(Xk∗ )∥1]

≤
τ−1(f0 − finf) + ∥c0∥1 +M

√
kmax + 1

+
(τ−1 − τmin)(smax log(kmax) + log(1/δ))

√
kmax + 1

Theorem

If the stochastic gradient estimates are sub-Gaussian, then with probabiliy 1− δ̄

smax = O
(
log

(
log

(
kmax

δ̄

)))
.
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Stochastic-gradient-based interior-point method

Single-loop interior-point (SLIP) method: barrier parameter {µk} vanishes by prescribed rate.

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models
(with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.
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Summary

Stochastic-gradient/Newton-based algorithms for constrained optimization.

▶ A lot of work so far, but many open questions.

Open questions:

▶ tradeoff analysis (Bottou and Bousquet)?

▶ generalization guarantees?

▶ beyond projected ADAM, etc.?

▶ Lagrange multiplier estimators?

▶ active-set identification?

▶ expectation/probabilistic constraints?
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Constraint engineering

Neural network engineering, feature engineering, and now constraint engineering. . .

▶ The number of constraints m can be controlled:

c(p(x1, w), y1) = 0

c(p(x2, w), y2) = 0

...

 vs.
1

|S|
∑
i∈S

c(p(xi, w), yi) = 0.

▶ Selection of constraint data {(xi, yi)}i∈S also requires some care.

In all cases, also due to “vanishing gradients” and other possible effects, beware rank-deficient Jacobians:

▶ Berahas, Curtis, O’Neill, Robinson (2023)
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