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Constrained continuous optimization

Consider the setting of solving constrained continuous optimization problems of the form

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x) ≤ 0

when at any x ∈ Rn one has that

▶ cE(x) and cI(x) can be computed exactly

▶ ∇cE(x) and ∇cI(x) can be computed exactly

▶ f(x) and ∇f(x) cannot be computed exactly—only have (unbiased) estimates
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Supervised learning

Aim: Determine a prediction function p(·, x) in a family P by finding the optimal x for

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj)

where {(aj , bj)}n0
j=1 is a set of known input-output pairs.
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Supervised learning, informed with soft constraints

To incorporate some prior knowledge (e.g., physical laws), we may consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) +
1

nc

nc∑
j=1

ϕ(p(ãj , x), . . . , b̃j)

where {(ãj , b̃j)}nc
j=1 are (other) known input-output pairs and ϕ encodes information.
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Supervised learning, informed with hard constraints

Alternatively, or in addition, we may include some hard constraints

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) +
1

nc

nc∑
j=1

ϕ(p(ãj , x), . . . , b̃j)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for some i ∈ {1, . . . , nc}

which has a significant effect on performance if (and only if!) certain algorithms are employed
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Expected-loss training problems

For the sake of generality/generalizability, the expected-loss objective function can be written as∫
A×B

ℓ(p(a, x), b)dP(a, b) ≡ Eω [F (x, ω)] =: f(x)

The constraints, on the other hand, can be expressed as

cE(x) = 0 and cI(x) ≤ 0

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data
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Predicting movement of a spring

Problem from https://benmoseley.blog/blog/
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SQP illustration: Why does it work?

c(xk) + J(xk)d = 0

xk
c(x) = 0

regularization / “soft” constraints

“hard” constraints

constrained approach = fundamentally different algorithm

xk

c(x) = 0

regularization / “soft” constraints

“hard” constraints =⇒ step in null space
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Constrained stochastic optimization

min
x∈Rn

f(x)

s.t. c(x) = 0

where

▶ f(x) = Eω [F (x, ω)]

▶ c is continuously differentiable

▶ ∇f has Lipschitz constant L

▶ ∇c has Lipschitz constant Γ

▶ stationarity conditions:

∇f(x) +∇c(x)y = 0

c(x) = 0

Algorithm : Stochastic SQP

1: choose x1 ∈ Rn, τ ∈ R>0
2: for k ∈ {1, 2, . . . } do
3: estimate gradient: gk ≈ ∇f(xk)
4: compute step: solve[

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
5: choose step size: for small βk ∈ R>0,

αk ←
βkτ

τL + Γ

6: update iterate: set xk+1 ← xk + αkdk
7: end for
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Convergence in probability to stationarity

Assumption

▶ τ is sufficiently small

▶ {βk} = O(1/k) with β1 sufficiently small

Theorem (Berahas, Curtis, Robinson, Zhou (2021))

lim inf
k→∞

E
[
∥∇f(Xk) +∇c(Xk)TY true

k ∥2 + ∥c(Xk)∥
]

= 0

This shows that over some sequence the expected stationarity measure vanishes, but

▶ it does not guarantee that {Xk} converges in any sense and

▶ the values {Y true
k } are not realized by the algorithm, so

▶ it does not guarantee anything about {Yk}
Multipliers are important for verifying stationarity, active-set identification, etc.
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Toward stronger guarantees
Convergence of the algorithm is driven by the exact merit function

ϕτ (X) = τf(X) + ∥c(X)∥

Reductions in a local model of ϕτ can be tied to a stationarity measure

∆qτ (X,∇f(X), H,Dtrue) ∼ ∥∇f(X) +∇c(X)Y ∥2 + ∥c(X)∥

Lemma

Suppose E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)|Fk∥2] ≤ σ2. Using Robbins and Siegmund (1971) with

Pk := βkτ
τL+Γ

∆qτ (Xk,∇f(Xk), Hk, D
true
k ), Qk :=

β2
kτ

2σ2

2ζ(τL+Γ)
, and Rk := ϕτ (Xk)− τfinf

shows that, almost surely,

lim
k→∞

{ϕτ (Xk)} exists and is finite and

lim inf
k→∞

∆qτ (Xk,∇f(Xk), Hk, D
true
k ) = 0
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Almost-sure convergence of the primal iterates

If {Xk} stays within a neighborhood of x∗ almost surely, where x∗ is a stationary point at which a
generalization of the Polyak– Lojasiewicz condition holds, then almost-sure convergence follows:

Theorem

Suppose that there exists x∗ ∈ X with c(x∗) = 0, µ ∈ R>1, and ϵ ∈ R>0 such that for all

x ∈ Xϵ,x∗ := {x ∈ X : ∥x− x∗∥2 ≤ ϵ}

one finds that

ϕτ (x)− ϕτ (x∗)

{
= 0 if x = x∗

∈ (0, µ(τ∥Z(x)T∇f(x)∥22 + ∥c(x)∥2)] otherwise,

where for all x ∈ Xϵ,x∗ one defines Z(x) ∈ Rn×(n−m) as some orthonormal matrix whose columns form a
basis for the null space of ∇c(x)T . Then, if lim sup

k→∞
{∥Xk − x∗∥2} ≤ ϵ almost surely, it follows that

{ϕτ (Xk)} a.s.−−−→ ϕτ (x∗), {Xk}
a.s.−−−→ x∗, and

{[
∇f(Xk) +∇c(Xk)Y true

k
c(Xk)

]}
a.s.−−−→ 0.
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Lagrange multipliers as a (noisy) mapping of the primal iterates

In a standard manner, it can be shown that

Yk = Mk(Hk(∇c(Xk)†)T c(Xk)−Gk) ∈ Rm,

where Mk is a product of a pseudoinverse of the derivative of c at Xk and a projection matrix:

Mk = ∇c(Xk)†(I −HkZk(ZT
k HkZk)−1ZT

k ) ∈ Rm×n

If {Xk}
a.s.−−−→ x∗, then one would expect

▶ {Y true
k } a.s.−−−→ y∗ (i.e., as above with ∇f(Xk) in place of Gk)

▶ {Yk} noisy with error proportional to error in stochastic gradient estimators
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True and average Lagrange multiplier convergence

Theorem

Suppose (x∗, y∗) is a stationary point. Then, for any k ∈ N, one finds ∥Xk − x∗∥2 ≤ ϵ implies

∥Yk − y∗∥2 ≤ κy∥Xk − x∗∥2 + r−1∥∇f(Xk)−Gk∥2
and ∥Y true

k − y∗∥2 ≤ κy∥Xk − x∗∥2,

where κy := κHLcr−2 + Lr−1 + κ∇fLM.

Unfortunately, this means that
▶ {Yk} always has error
▶ {Y true

k } converges if {Xk} does, but these are not realized (requires {∇f(Xk)})!
Idea: Averaging! Applying the Martingale central limit theorem, one can show that

Theorem

If the iterate sequence converges almost surely to x∗, i.e., {Xk}
a.s.−−−→ x∗, then

{Y true
k } a.s.−−−→ y∗ and {Y avg

k } a.s.−−−→ y∗.
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Projected Adam

Algorithm P-Adam Projection-based Adam

Require: mk−1 ∈ Rd, vk−1 ∈ Rd, wk ∈ Rd, gk ∈ Rd, β1 ∈ (0, 1), β2 ∈ (0, 1), µ ∈ R>0

Compute ḡk ← (I − J(wk)T (J(wk)J(wk)T )−1J(wk))gk
Set pk ← β1pk−1 + (1− β1)ḡk
Set qk ← β2qk−1 + (1− β2)(ḡk ◦ ḡk), where (ḡk ◦ ḡk)i = (ḡk)2i for all i ∈ {1, . . . , d}
Set p̂k ← (1/(1− βk

1 ))pk
Set q̂k ← (1/(1− βk

2 ))qk

Compute sk by solving

[
diag(

√
q̂k + µ) J(wk)T

J(wk) 0

] [
sk
λk

]
= −

[
p̂k
ck

]
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Predicting an ODE solution
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Mass-balance-informed learning
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Where do we go from here?

There are many open questions:

▶ other algorithm variants with same guarantees

▶ strengthened guarantees (e.g., other growth conditions, convex settings)

▶ improved worst-case complexity properties

▶ loosened constraint qualification requirements

▶ second-order-type methods

▶ generalization properties

▶ trade-off analyses (Bottou–Bosquet)

▶ data-driven constraints
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Thank you!

Questions?
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