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Constrained continuous optimization

Consider the setting of solving constrained continuous optimization problems of the form

2ip @
st.ce(z) =0
ez(z) <0

when at any x € R™ one has that
» cg(z) and cz(x) can be computed exactly
» Veg(z) and Vez(x) can be computed exactly

» f(z) and V f(z) cannot be computed exactly—only have (unbiased) estimates
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Supervised learning

Aim: Determine a prediction function p(-,z) in a family P by finding the optimal z for

1

Mo
i - 4 j > 7b‘
228 5, 2 eles ) by)

where {(a;, bj)}?gl is a set of known input-output pairs.
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Supervised learning, informed with soft constraints

To incorporate some prior knowledge (e.g., physical laws), we may consider

Mo

1 & .
tp(ag, x),b;) + — D oz, @), ... by)
1 € j=1

. 1
min —
zER™ mny £

J

where {(a;, I;J) ;.LC , are (other) known input-output pairs and ¢ encodes information.
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Supervised learning, informed with hard constraints

Alternatively, or in addition, we may include some hard constraints

e 1S5

Join, - Zf(p(aj,m),bj) +o Z #(p(a;, x),...,b;)
j=1 Jj=1

s.t. @(p(@z,z),...,b;) =0 (or <0) for some i€ {1,...,nc}

which has a significant effect on performance if (and only if!) certain algorithms are employed
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Expected-loss training problems

For the sake of generality/generalizability, the expected-loss objective function can be written as
[ trla2)0)P(@,) = Bo[Fla,w)] = /(@)
AxB

The constraints, on the other hand, can be expressed as
ce(z) =0 and cz(z) <0

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data
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Predicting movement of a spring
1.0 1.0
0.5 \ /\ 0.5 /‘\
0o N~——" 001 N——"
\_/ Training step: 1 v Training step: 1
—05 ~—— Exact solution =051 ~—— Exact solution
=== Neural network prediction === Neural network prediction
-1.0 o Training data -1.04 © Training data
® _ Physics loss training locations ®  Physics loss training locations
0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4

Problem from https://benmoseley.blog/blog/
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SQP illustration: Why does it work?

c(zk) + J(zk)d =0
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SQP illustration: Why does it work?

c(zk) + J(zk)d =0

regularization / “soft” constraints

Tk
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SQP illustration: Why does it work?

c(zk) + J(zk)d =0

1

1

1

1

. . . !
regularization / “soft” constraints 1
1

“hard’ constraints

constrained approach = fundamentally different algorithm
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SQP illustration: Why does it work?

c(zg) + J(xk)d =0

1

1

1

1

. . . !
regularization / “soft” constraints 1
1

“hard” constraints == step in null space
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Constrained stochastic optimization

min f(z) Algorithm : Stochastic SQP
zER™ 1: choose z1 € R™, 7 € R
st. c(z) =0 2: for k € {1,2,...} do
3: estimate gradient: gx ~ V f(x)
where 4: compute step: solve
> f(z) = Eu[F(z,w)]
. . . . Hk; JI;I; dk _ gk
» ¢ is continuously differentiable =—
. . Je o 0] |yk Ck
» V f has Lipschitz constant L
> Ve has Lipschitz constant T' 5: choose step size: for small B € R,
> stationarity conditions: BeT
Qp — ——
Vf(x)+ Ve(z)y=0 TL+T
c(z) =0 6: update iterate: set xy 1 < T + apdy
7: end for
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Convergence in probability to stationarity

Assumption

> 7 is sufficiently small
> {Br} = O(1/k) with B1 sufficiently small

Theorem (Berahas, Curtis, Robinson, Zhou (2021))

im inf E [|[VF(X5) + Ve(Xi) TV 2 + fle(Xi)ll] = 0

This shows that over some sequence the expected stationarity measure vanishes, but
» it does not guarantee that {X}} converges in any sense and
> the values {Y 7"} are not realized by the algorithm, so
» it does not guarantee anything about {Y%}

Multipliers are important for verifying stationarity, active-set identification, etc.
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Toward stronger guarantees
Convergence of the algorithm is driven by the exact merit function

ér(X) = 7f(X) + [[e(X)l
Reductions in a local model of ¢, can be tied to a stationarity measure

Agr (X, Vf(X),H, D" )~  [[Vf(X)+ Ve(X)Y[? + [lc(X)]

Lemma
Suppose E[Gr|Fr] = VF(Xi) and E[||Gr, — Vf(Xp)|Frll?] < 02. Using Robbins and Siegmund (1971) with

22 _2
Py = T—iﬂf—rAqr(Xk,Vf(Xk),Hk,Dir“e), Qr = %ﬁ;—j_m, and Ry := ¢r(Xg) — 7 fint

shows that, almost surely,

lim {¢-(Xk)} exists and is finite and
k— oo

lim inf Agy (X, VF(Xg), Hy, D) = 0
k—oo
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Almost-sure convergence of the primal iterates

If {X}} stays within a neighborhood of . almost surely, where . is a stationary point at which a
generalization of the Polyak—Lojasiewicz condition holds, then almost-sure convergence follows:

Theorem

Suppose that there exists r+« € X with c(z+) =0, p € R, 1, and € € R such that for all
T € Xeg, ={x €EX : ||z —zsl2 < €}

one finds that

-0 if T =y
b7 (z) — ¢r(w+) {G (0, u(T||Z(I)TVf(35)”§ + |le(x)||2)]  otherwise,

where for all © € Xe x, one defines Z(x) € R**("=") a5 some orthonormal matriz whose columns form a
basis for the null space of Vc(x)T. Then, if limsup{|| Xy — x«||2} < € almost surely, it follows that
k—oo

(8000} 25 6@, (X} E55 s, ang {[VIOR T TAXON] L m
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Lagrange multipliers as a (noisy) mapping of the primal iterates

In a standard manner, it can be shown that
Vi = My (Hi(Ve(X) ) e(Xy) — Gi) € R™,
where M}, is a product of a pseudoinverse of the derivative of ¢ at X and a projection matrix:

My, = Ve(Xp) (I = HyZp(ZE HL Zp) "1 2T) € R™X

If {X5} %% 24, then one would expect
> {y,frue} 22 4« (ie., as above with Vf(X}) in place of Gy,)

»> {Y}} noisy with error proportional to error in stochastic gradient estimators
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True and average Lagrange multiplier convergence

Theorem
Suppose (T«,y«) is a stationary point. Then, for any k € N, one finds || Xy — z«||2 < € tmplies
1V — yullz < myll Xk — @all2 + IV F(Xk) — Gill2

and [|[YR™ = yull2 < ry || X — a2,

where Ky = kpgLer=2 + Lr—1 + kv L.

Unfortunately, this means that

» {Yi} always has error

> {Y,!*ue} converges if {X}} does, but these are not realized (requires {V f(X})})!
Idea: Averaging! Applying the Martingale central limit theorem, one can show that

Theorem

If the iterate sequence converges almost surely to x«, t.e., {Xi} L2 2., then

() 225 g and (Y18} 255 g,
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Projected Adam

Algorithm P-Adam Projection-based Adam

Require: my_1 € RY, vy € RY, wy, € R, g, € RY, 81 € (0,1), B2 € (0,1), p €R
Compute gi + (I — J(wi)™ (J(wg)J (wi)T) "I (w)) g
Set pg <+ P1pr—1 + (1 — B1)gk
Set qx < B2qi—1 + (1 — B2)(gk © gi), where (gx 0 )i = (gr)7 for alli € {1,...,d}
Set pr + (1/(1 — k)
Set g + (1/(1 = B3)

T '~
Compute s; by solving d ag(v qk +u) I (wy) ] [s’“] —_ [pk:|

J(wg) 0 Ak Ck
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Predicting an ODE solution

True solution
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Mass-balance-informed learning
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train: 0s
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Where do we go from here?

There are many open questions:
> other algorithm variants with same guarantees
strengthened guarantees (e.g., other growth conditions, convex settings)
improved worst-case complexity properties
loosened constraint qualification requirements
second-order-type methods
generalization properties

trade-off analyses (Bottou—Bosquet)

vVvyVvYyVvVVYVvYyVvyy

data-driven constraints
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Thank you!

Questions?
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