Stochastic-Gradient-based Algorithms for Solving Nonconvex Constrained Optimization Problems

Frank E. Curtis, Lehigh University

presented at

Department of Industrial Engineering

University of Pittsburgh

November 21, 2024

Outline

[Motivation](#page-2-0)

[Stochastic Algorithms for Nonconvex Optimization](#page-16-0)

[Extensions and Experimental Results](#page-35-0)

[Conclusion](#page-47-0)

[Appendix](#page-51-0)

[Stochastic Algorithms for Nonconvex Constrained Optimization](#page-0-0) 2 of 46

Outline

[Motivation](#page-2-0)

[Stochastic Algorithms for Nonconvex Optimization](#page-16-0)

[Extensions and Experimental Results](#page-35-0)

[Conclusion](#page-47-0)

[Appendix](#page-51-0)

Learning: Prediction function

Aim: Determine a prediction function p from a family P such that

$p(a_i)$

yields an accurate prediction corresponding to any given input feature vector a_i .

Learning: Prediction function, parameterized

Let us say that the family is parameterized by some vector x such that

$p(a_i, x)$

yields an accurate prediction corresponding to any given input feature vector a_i .

Learning: Supervised

In supervised learning, we have known input-output pairs $\{(a_j, b_j)\}_{j=1}^{n_o}$. Then,

$$
\min_{x \in \mathbb{R}^n} \frac{1}{n_o} \sum_{j=1}^{n_o} \ell(p(a_j, x), b_j)
$$

becomes our empirical-loss training problem to determine the optimal x.

Learning: Supervised and regularized

If we aim to impose some structure on the solution x , then we may consider

$$
\min_{x \in \mathbb{R}^n} \frac{1}{n_o} \sum_{j=1}^{n_o} \ell(p(a_j, x), b_j) + r(x)
$$

where r is a *regularization* function.

Learning: Supervised and regularized

If we aim to impose some structure on the solution x , then we may consider

$$
\min_{x \in \mathbb{R}^n} \frac{1}{n_o} \sum_{j=1}^{n_o} \ell(p(a_j, x), b_j) + r(x)
$$

where r is a *regularization* function. Is this good for *informed* learning?

Learning: Supervised and informed through model design

One approach is to embed information in the prediction function itself, so

$$
\min_{x \in \mathbb{R}^n} \ \frac{1}{n_o} \sum_{j=1}^{n_o} \ell(p(a_j, x), b_j)
$$

ensures that information is enforced with every forward pass. (Is this enough and/or efficient?)

Learning: Supervised and informed with soft constraints

Added to the loss (e.g., mean-squared error), we might consider

$$
\min_{x \in \mathbb{R}^n} \ \frac{1}{n_o} \sum_{j=1}^{n_o} \ell(p(a_j, x), b_j) + \frac{1}{n_c} \sum_{j=1}^{n_c} \phi(p(\tilde{a}_j, x), \dots, \tilde{b}_j)
$$

where $\{(\tilde{a}_j, \tilde{b}_j)\}_{j=1}^{n_c}$ are known input-output pairs and ϕ encodes information.

Learning: Supervised and informed with hard constraints

Alternatively, how about hard constraints during training, as in

$$
\min_{x \in \mathbb{R}^n} \frac{1}{n_o} \sum_{j=1}^{n_o} \ell(p(a_j, x), b_j)
$$
\n
$$
\text{s.t. } \varphi(p(\tilde{a}_j, x), \dots, \tilde{b}_j) = 0 \text{ (or } \le 0) \text{ for all } i \in \{1, \dots, n_c\}
$$

such that we restrict attention to functions that are informed implicitly?

Motivation and challenges: Stochastic algorithms for constrained optimization

Motivated by informed learning when model design + regularization is insufficient

- ▶ physics-informed machine learning
- ▶ fair (supervised) machine learning
- \blacktriangleright ... but algorithms are general-purpose, e.g., also for simulation optimization

Motivation and challenges: Stochastic algorithms for constrained optimization

Motivated by informed learning when model design $+$ regularization is insufficient

- ▶ physics-informed machine learning
- ▶ fair (supervised) machine learning
- ▶ ... but algorithms are general-purpose, e.g., also for simulation optimization

Same challenges and questions as for unconstrained:

- ▶ convergence/complexity guarantees (adaptive algorithms)
- \triangleright computational complexity
- ▶ stability guarantees
- ▶ generalization properties

True Solution

Motivation and challenges: Stochastic algorithms for constrained optimization

Motivated by informed learning when model design $+$ regularization is insufficient

- ▶ physics-informed machine learning
- ▶ fair (supervised) machine learning
- \blacktriangleright ... but algorithms are general-purpose, e.g., also for simulation optimization

Same challenges and questions as for unconstrained:

- ▶ convergence/complexity guarantees (adaptive algorithms)
- \triangleright computational complexity
- ▶ stability guarantees
- ▶ generalization properties

New challenges for handling constraints as constraints:

- ▶ (i.e., avoid penalty methods, augmented Lagrangian, etc.)
- ▶ balancing the objective and constraints
- \blacktriangleright degeneracy and infeasibility

True Solution

[Motivation](#page-2-0) [Stochastic Algorithms for Nonconvex Optimization](#page-16-0) [Extensions and Experiments](#page-35-0) [Conclusion](#page-47-0) [Appendix](#page-51-0)

Predicting movement of a spring

Problem from https://benmoseley.blog/blog/

Expected-loss training problems

For the sake of generality/generalizability, the expected-loss objective function is

$$
\int_{\mathcal{A}\times\mathcal{B}}\ell(p(a,x),b)\mathrm{d}\mathbb{P}(a,b)\equiv\mathbb{E}_{\omega}[F(x,\omega)]=:f(x)
$$

One might consider various paradigms for imposing the constraints:

- ▶ expectation constraints
- \blacktriangleright (distributionally) robust constraints
- \blacktriangleright probabilistic (i.e., chance) constraints

In this talk, constraints values and derivatives can be computed:

 $c_{\mathcal{E}}(x) = 0$ and $c_{\mathcal{T}}(x) \leq 0$

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data

Outline

[Motivation](#page-2-0)

[Stochastic Algorithms for Nonconvex Optimization](#page-16-0)

[Extensions and Experimental Results](#page-35-0)

[Conclusion](#page-47-0)

[Appendix](#page-51-0)

Stochastic gradient method

Consider $\min_{x \in \mathbb{R}^n} f(x)$, where $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous with constant L.

Algorithm SG : Stochastic gradient method

1: choose an initial point $x_1 \in \mathbb{R}^n$ and step sizes $\{\alpha_k\} > 0$ 2: for $k \in \{1, 2, \dots\} =: \mathbb{N}$ do 3: set $x_{k+1} \leftarrow x_k - \alpha_k q_k$, where $q_k \approx \nabla f(x_k)$ $4\cdot$ end for

Algorithm[†] behavior is defined by $(\Omega, \mathcal{F}, \mathbb{P})$, where

- $\triangleright \Omega = \Gamma \times \Gamma \times \Gamma \times \cdots$ (sequence of draws determining stochastic gradients);
- \triangleright F is a σ -algebra on Ω , the set of events (i.e., measurable subsets of Ω); and
- $\blacktriangleright \blacktriangleright$ $\mathbb{P}: \mathcal{F} \to [0, 1]$ is a probability measure.

View any $\{(x_k, q_k)\}\$ as a realization of $\{(X_k, G_k)\}\$, where for all $k \in \mathbb{N}$

 $x_k = X_k(\omega)$ and $q_k = G_k(\omega)$ given $\omega \in \Omega$.

[†]Robbins and Monro (1951); Sutton Monro = former Lehigh ISE faculty member

Convergence of SG

 $\mathbb{E}[\cdot] =$ expectation w.r.t. $\mathbb{P}[\cdot]$. Analyze through associated sub- σ -algebras $\{\mathcal{F}_k\}$.

Assumption

For all $k \in \mathbb{N}$, one has that

- \blacktriangleright $\mathbb{E}[G_k|\mathcal{F}_k] = \nabla f(X_k)$ and
- $\blacktriangleright \mathbb{E}[\|G_k\|_2^2 | \mathcal{F}_k] \leq M + M_{\nabla f} \|\nabla f(X_k)\|_2^2$

By Lipschitz continuity of ∇f and construction of the algorithm, one finds

$$
f(X_{k+1}) - f(X_k) \le \nabla f(X_k)^T (X_{k+1} - X_k) + \frac{1}{2} L \|X_{k+1} - X_k\|_2^2
$$

\n
$$
= -\alpha_k \nabla f(X_k)^T G_k + \frac{1}{2} \alpha_k^2 L \|G_k\|_2^2
$$

\n
$$
\implies \mathbb{E}[f(X_{k+1}) | \mathcal{F}_k] - f(X_k) \le -\alpha_k \|\nabla f(X_k)\|_2^2 + \frac{1}{2} \alpha_k^2 L \mathbb{E}[\|G_k\|_2^2 | \mathcal{F}_k]
$$

\n
$$
\le -\alpha_k \|\nabla f(X_k)\|_2^2 + \frac{1}{2} \alpha_k^2 L (M + M_{\nabla f} \|\nabla f(X_k)\|_2^2),
$$

by the assumption and since $f(X_k)$ and $\nabla f(X_k)$ are \mathcal{F}_k -measurable.

SG theory

Taking total expectation, one arrives at

$$
\mathbb{E}[f(X_{k+1}) - f(X_k)] \le -\alpha_k (1 - \frac{1}{2}\alpha_k LM_{\nabla f}) \mathbb{E}[\|\nabla f(X_k)\|_2^2] + \frac{1}{2}\alpha_k^2 LM
$$

Theorem

$$
\alpha_k = \frac{1}{LM_{\nabla f}} \qquad \Longrightarrow \mathbb{E}\left[\frac{1}{k}\sum_{j=1}^k \|\nabla f(X_j)\|_2^2\right] \le M_k \xrightarrow{k \to \infty} \mathcal{O}\left(\frac{M}{M_{\nabla f}}\right)
$$

$$
\alpha_k = \Theta\left(\frac{1}{k}\right) \qquad \Longrightarrow \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^k \alpha_j\right)}\sum_{j=1}^k \alpha_j \|\nabla f(X_j)\|_2^2\right] \to 0
$$

$$
\Longrightarrow \liminf_{k \to \infty} \mathbb{E}[\|\nabla f(X_k)\|_2^2] = 0
$$

$$
\text{(further steps)} \qquad \Longrightarrow \nabla f(X_k) \to 0 \text{ almost surely.}
$$

Constrained optimization

Consider

$$
\min_{x \in \mathbb{R}^n} f(x)
$$

s.t. $c(x) = 0$

Option: Regularization / soft constraints (penalization), as in

 $\min_{x \in \mathbb{R}^n} \tau f(x) + ||c(x)||_q^p (+y^T c(x)),$

then employ a (stochastic) algorithm for unconstrained optimization.

Constrained optimization

Consider

$$
\min_{x \in \mathbb{R}^n} f(x)
$$

s.t. $c(x) = 0$

Option: Regularization / soft constraints (penalization), as in

 $\min_{x \in \mathbb{R}^n} \tau f(x) + ||c(x)||_q^p (+y^T c(x)),$

then employ a (stochastic) algorithm for unconstrained optimization.

On the positive side, "exact" penalty function theory is well established:

 \triangleright can solve the constrained problem, in theory.

Unfortunately, however, such an approach is not ideal:

- \blacktriangleright appropriate balance (τ and/or y) not known in advance
- \blacktriangleright p = 1 (nonsmooth), p = 2 (need $\tau \searrow 0$, ill-conditioning)

Sequential quadratic optimization (SQP)

Consider

$$
\min_{x \in \mathbb{R}^n} f(x)
$$

s.t. $c(x) = 0$

Option: With $J \equiv \nabla c^T$ and H positive definite over Null(J), two viewpoints:

$$
\begin{bmatrix} \nabla f(x) + J(x)^T y \\ c(x) \end{bmatrix} = 0 \quad \text{or} \quad
$$

$$
\min_{d \in \mathbb{R}^n} f(x) + \nabla f(x)^T d + \frac{1}{2} d^T H d
$$

s.t. $c(x) + J(x) d = 0$

both leading to the same "Newton-SQP system":

$$
\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) \\ c_k \end{bmatrix}
$$

÷

Stochastic SQP

۰

Algorithm guided by merit function with adaptive parameter τ defined by

 $\phi(x, \tau) = \tau f(x) + ||c(x)||_1$

Algorithm : Stochastic SQP

- 1: choose $x_1 \in \mathbb{R}^n$, $\tau_0 \in (0, \infty)$, $\{\beta_k\} \in (0, 1]^\mathbb{N}$
- 2: for $k \in \{1, 2, \ldots\}$ do
3: compute step: solv
- compute step: solve

$$
\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} g_k \\ c_k \end{bmatrix}
$$

4: update merit parameter: set τ_k to ensure

$$
\phi'(x_k, \tau_k, d_k) \leq -\Delta q(x_k, \tau_k, g_k, d_k) \ll 0
$$

5: compute step size: set

$$
\alpha_k = \Theta\left(\frac{\beta_k \tau_k}{\tau_k L_{\nabla f} + L_J}\right)
$$

6: then $x_{k+1} \leftarrow x_k + \alpha_k d_k$ 7: end for

Convergence theory in deterministic setting

Assumption

- \blacktriangleright f, c, ∇f , and J bounded and Lipschitz
- \triangleright singular values of J bounded below (i.e., the LICQ)
- $\blacktriangleright u^T H_k u \ge \zeta ||u||_2^2$ for all $u \in Null(J_k)$ for all $k \in \mathbb{N}$

Theorem

- $\blacktriangleright \{\alpha_k\} > \alpha_{\min}$ for some $\alpha_{\min} > 0$
- \blacktriangleright { τ_k } > τ_{\min} for some $\tau_{\min} > 0$
- $\blacktriangleright \Delta q(x_k, \tau_k, \nabla f(x_k), d_k) \rightarrow 0$ implies optimality error vanishes, specifically,

$$
||d_k||_2 \to 0
$$
, $||c_k||_2 \to 0$, $||\nabla f(x_k) + J_k^T y_k||_2 \to 0$

Stochastic setting: What do we want?

What we want/expect from the algorithm?

Note: We are interested in the stochastic approximation (SA) regime.

Ultimately, there are many questions to answer:

- ▶ convergence guarantees
- \triangleright complexity guarantees
- ▶ tradeoff analysis (Bottou and Bousquet)
- \blacktriangleright generalization
- ▶ large-scale implementations
- ▶ beyond first-order (SG) methods

Fundamental lemma

Recall in the unconstrained setting that

$$
\mathbb{E}[f(X_{k+1})|\mathcal{F}_k] - f(X_k) \le -\alpha_k \|\nabla f(X_k)\|_2^2 + \frac{1}{2}\alpha_k^2 L \mathbb{E}[\|G_k\|_2^2 |\mathcal{F}_k]
$$

Lemma

For all $k \in \mathbb{N}$ one finds (before taking expectations) $\phi(X_{k+1}, \mathcal{T}_{k+1}) - \phi(X_k, \mathcal{T}_k)$ $\leq -A_k \Delta q(X_k, \mathcal{T}_k, \nabla f(X_k), D_k^{\text{true}})$ ${\cal O}(\beta_k),\; \; \text{``deterministic''}$ $+\frac{1}{2}\mathcal{A}_k\beta_k\Delta q(X_k, \mathcal{T}_k, G_k, D_k) + \mathcal{A}_k\mathcal{T}_k\nabla f(X_k)^T(D_k - D_k^{\text{true}})$ ${\cal O}(\beta _k^2),~stochastic/noise$ due to adaptive A_k

Good merit parameter behavior

Theorem 4

Let $\mathcal{E} :=$ event that $\{\mathcal{T}_k\}$ eventually remains constant at $\mathcal{T}' \geq \tau_{\min} > 0$. Then, conditioned on \mathcal{E} ,

$$
\beta_k = \Theta(1) \implies \mathbb{E}\left[\frac{1}{k} \sum_{j=1}^k \Delta q(X_j, \mathcal{T}', \nabla f(X_j), D_j^{\text{true}})\right] = \mathcal{O}(M)
$$

$$
\beta_k = \Theta\left(\frac{1}{k}\right) \implies \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^k \beta_j\right)} \sum_{j=1}^k \beta_j \Delta q(X_j, \mathcal{T}', \nabla f(X_j), D_j^{\text{true}})\right] \to 0
$$

Good merit parameter behavior

Theorem 4

Let $\mathcal{E} :=$ event that $\{\mathcal{T}_k\}$ eventually remains constant at $\mathcal{T}' \geq \tau_{\min} > 0$. Then, conditioned on \mathcal{E} ,

$$
\beta_k = \Theta(1) \implies \mathbb{E}\left[\frac{1}{k}\sum_{j=1}^k \left(\|\nabla f(X_j) + J(X_j)^T Y_j^{\text{true}}\|_2 + \|c(X_j)\|_2\right)\right] = \mathcal{O}(M)
$$
\n
$$
\beta_k = \Theta\left(\frac{1}{k}\right) \implies \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^k \beta_j\right)} \sum_{j=1}^k \beta_j \left(\|\nabla f(X_j) + J(X_j)^T Y_j^{\text{true}}\|_2 + \|c(X_j)\|_2\right)\right] \to 0
$$

Key observation

Key observation is that $c(X_k)$ and $J(X_k)$ are \mathcal{F}_k -measurable.

Therefore, $\mathbb{E}[D_k|\mathcal{F}_k]$ = true step if $\nabla f(X_k)$ were known.

Numerical results: <https://github.com/frankecurtis/StochasticSQP>

Stochastic SQP (hard constraints) vs. stochastic subgradient (soft constraints)

Figure: Box plots for feasibility errors (left) and optimality errors (right).

Outline

[Motivation](#page-2-0)

[Stochastic Algorithms for Nonconvex Optimization](#page-16-0)

[Extensions and Experimental Results](#page-35-0)

[Conclusion](#page-47-0)

[Appendix](#page-51-0)

Summary

Since our original work, we have considered various extensions.

- ▶ stronger convergence guarantees (almost-sure convergence)
- ▶ convergence of Lagrange multiplier estimates
- \blacktriangleright relaxed constraint qualifications
- ▶ worst-case complexity guarantees
- ▶ generally constrained problems (with inequality constraints as well)
- ▶ interior-point methods
- ▶ iterative linear system solvers and inexactness
- ▶ diagonal scaling methods for saddle-point systems

[Motivation](#page-2-0) [Stochastic Algorithms for Nonconvex Optimization](#page-16-0) [Extensions and Experiments](#page-35-0) [Conclusion](#page-47-0) [Appendix](#page-51-0)

Almost-sure convergence of merit function value

Convergence of the algorithm is driven by the exact merit function

 $\phi_{\tau}(X) = \tau f(X) + ||c(X)||$

Reductions in a local model of ϕ_{τ} can be tied to a stationarity measure

 $\Delta q_{\tau}(X, \nabla f(X), H, D^{\text{true}})$ ~ $\|\nabla f(X) + J(X)^T Y\|^2 + \|c(X)\|$

Lemma

Suppose $\mathbb{E}[G_k|\mathcal{F}_k] = \nabla f(X_k)$ and $\mathbb{E}[\|G_k - \nabla f(X_k)|\mathcal{F}_k\|^2] \leq M$. Then, by a classical theorem of Robbins and Siegmund (1971), one finds that, almost surely,

> $\lim_{k \to \infty} {\{\phi_{\tau}(X_k)\}}$ exists and is finite and $\liminf_{k\to\infty} \Delta q_\tau(X_k, \nabla f(X_k), H_k, D_k^{\text{true}}) = 0$

Almost-sure convergence of the primal iterates

Theorem

Suppose there exists $x_* \in \mathcal{X}$ with $c(x_*) = 0, \ \mu \in \mathbb{R}_{>1}$, and $\epsilon \in \mathbb{R}_{>0}$ such that for all

 $x \in \mathcal{X}_{\epsilon,x_*} := \{x \in \mathcal{X} : ||x - x_*||_2 \leq \epsilon\}$

one finds that

$$
\phi_{\tau}(x) - \phi_{\tau}(x_*) \begin{cases} = 0 & \text{if } x = x_* \\ \in (0, \mu(\tau || Z(x)^T \nabla f(x) ||_2^2 + ||c(x)||_2)] & otherwise, \end{cases}
$$

where for all $x \in \mathcal{X}_{\epsilon,x_*}$ one defines $Z(x) \in \mathbb{R}^{n \times (n-m)}$ as some orthonormal matrix whose columns form a basis for the null space of $J(x)$. Then, if $\limsup\{\|X_k - x_*\|_2\} \leq \epsilon$ almost surely, it follows that $k\rightarrow\infty$

$$
\{\phi_{\tau}(X_k)\}\xrightarrow{a.s.}\phi_{\tau}(x_*), \ \{X_k\}\xrightarrow{a.s.}x_*, \ \ and \ \ \left\{\begin{bmatrix} \nabla f(X_k) + J(X_k)^T Y_k^{\text{true}} \\ c(X_k) \end{bmatrix}\right\}\xrightarrow{a.s.}0.
$$

Lagrange multiplier convergence

Theorem

Suppose (x_*, y_*) is a stationary point. Then, for any $k \in \mathbb{N}$, one finds $||X_k - x_*||_2 < \epsilon$ implies

$$
||Y_k - y_*||_2 \le \kappa_y ||X_k - x_*||_2 + r^{-1} ||\nabla f(X_k) - G_k||_2
$$

and
$$
||Y_k^{\text{true}} - y_*||_2 \le \kappa_y ||X_k - x_*||_2
$$
 for some $(\kappa, r) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}$.

Computed multipliers *always* have error. Consider *averaged* multipliers $\{Y_k^{\text{avg}}\}$:

Theorem

If the iterate sequence converges almost surely to x_* , i.e., $\{X_k\} \xrightarrow{a.s.} x_*$, then

$$
\{Y_k^{\text{true}}\} \xrightarrow{a.s.} y_* \ \ and \ \ \{Y_k^{\text{avg}}\} \xrightarrow{a.s.} y_*.
$$

Constrained logistic regression: australian dataset (LIBSVM)

Complexity of $\mathcal{O}(\epsilon^{-2})$ for deterministic algorithm

All reductions in the merit function can be cast in terms of smallest τ .

Since τ_{\min} is determined by the initial point, it will be reached.

Theorem

For any $\epsilon \in (0,1)$, there exists $(\kappa_1, \kappa_2) \in (0,\infty) \times (0,\infty)$ such that

 $\|\nabla f(x_k) + J_k^T y_k\| \leq \epsilon$ and $\sqrt{\|c_k\|_1} \leq \epsilon$

in a number of iterations no more than

$$
\left(\frac{\tau_0(f_1 - f_{\inf}) + ||c_1||_1}{\min\{\kappa_1, \kappa_2\tau_{\min}\}}\right)\epsilon^{-2}.
$$

Challenge in the stochastic setting

We are minimizing a function that is changing during the optimization.

[Details](#page-52-0)

۰

Worst-case iteration complexity of $\mathcal{O}(\epsilon^{-4})$

Theorem

Suppose the algorithm is run k_{max} iterations with $\beta_k = \gamma / \sqrt{k_{\text{max}} + 1}$ and

▶ the merit parameter is reduced at most $s_{\text{max}} \in \{0, 1, \ldots, k_{\text{max}}\}$ times.

Let k_* be sampled uniformly over $\{1, \ldots, k_{\text{max}}\}$. Then, with probability $1 - \delta$,

$$
\mathbb{E}[\|\nabla f(X_{k_*}) + J(X_{k_*})^T Y_{k_*}\|_2^2 + \|c(X_{k_*})\|_1]
$$

$$
\leq \frac{\tau_{-1}(f_0 - f_{\inf}) + \|c_0\|_1 + M}{\sqrt{k_{\max} + 1}} + \frac{(\tau_{-1} - \tau_{\min})(s_{\max} \log(k_{\max}) + \log(1/\delta))}{\sqrt{k_{\max} + 1}}
$$

Theorem

If the stochastic gradient estimates are sub-Gaussian, then with probability $1-\overline{\delta}$

$$
s_{\max} = \mathcal{O}\left(\log\left(\log\left(\frac{k_{\max}}{\bar{\delta}}\right)\right)\right).
$$

Inequality-constrained: Fair learning

Consider an ϵ -constraint method for fair machine learning:

FIG. 5.5. CPU time versus training accuracy, training infeasibility error, testing accuracy, and testing infeasibility error for a representative run of SQP, Wang & Spall, subgradient (10^{-1}) , and subgradient (10^{-4}) with the German data set.

Projected Adam

Algorithm P-Adam Projection-based Adam

Require: $m_{k-1} \in \mathbb{R}^d$, $v_{k-1} \in \mathbb{R}^d$, $w_k \in \mathbb{R}^d$, $g_k \in \mathbb{R}^d$, $\beta_1 \in (0,1)$, $\beta_2 \in (0,1)$, $\mu \in \mathbb{R}_{\geq 0}$ Compute $\bar{g}_k \leftarrow (I - J(w_k)^T (J(w_k)J(w_k)^T)^{-1} J(w_k))g_k$ Set $p_k \leftarrow \beta_1 p_{k-1} + (1 - \beta_1) \overline{q}_k$ Set $q_k \leftarrow \beta_2 q_{k-1} + (1 - \beta_2)(\bar{g}_k \circ \bar{g}_k)$, where $(\bar{g}_k \circ \bar{g}_k)_i = (\bar{g}_k)_i^2$ for all $i \in \{1, ..., d\}$ Set $\widehat{p}_k \leftarrow (1/(1-\beta_1^k))p_k$
Set $\widehat{\sigma}_k \leftarrow (1/(1-\beta_1^k))q_k$ Set $\widehat{q}_k \leftarrow (1/(1-\beta_2^k))q_k$ Compute s_k by solving $\begin{bmatrix} \text{diag}(\sqrt{\hat{q}_k + \mu}) & J(w_k)^T \\ J(w_k) & 0 \end{bmatrix} \begin{bmatrix} s_k \\ \lambda_k \end{bmatrix}$ $\Big] = - \begin{bmatrix} \widehat{p}_k \ c_k \end{bmatrix}$ 1

Mass-balance

Outline

[Motivation](#page-2-0)

[Stochastic Algorithms for Nonconvex Optimization](#page-16-0)

[Extensions and Experimental Results](#page-35-0)

[Conclusion](#page-47-0)

[Appendix](#page-51-0)

[Stochastic Algorithms for Nonconvex Constrained Optimization](#page-0-0) 35 of 46

Summary

Stochastic-gradient/Newton-based algorithms for constrained optimization.

▶ A lot of work so far, but many open questions.

Open questions:

- ▶ stochastic interior-point methods (generally constrained)?
- ▶ tradeoff analysis (Bottou and Bousquet)?
- ▶ generalization guarantees?
- ▶ beyond projected ADAM, etc.?
- ▶ Lagrange multiplier estimators?
- ▶ active-set identification?
- ▶ expectation/probabilistic constraints?

References

- ▶ A. S. Berahas, F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization," SIAM Journal on Optimization, 31(2):1352–1379, 2021.
- ▶ A. S. Berahas, F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians," Mathematics of Operations Research, [https://doi.org/10.1287/moor.2021.0154,](https://doi.org/10.1287/moor.2021.0154) 2023.
- ▶ F. E. Curtis, D. P. Robinson, and B. Zhou, "Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Subject to Deterministic Nonlinear Equality Constraints," to appear in INFORMS Journal on Optimization, [https://arxiv.org/abs/2107.03512.](https://arxiv.org/abs/2107.03512)
- ▶ F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization," Mathematical Programming, [https://doi.org/10.1007/s10107-023-01981-1,](https://doi.org/10.1007/s10107-023-01981-1) 2023.
- ▶ F. E. Curtis, S. Liu, and D. P. Robinson, "Fair Machine Learning through Constrained Stochastic Optimization and an ϵ -Constraint Method," *Optimization Letters,* [https://doi.org/10.1007/s11590-023-02024-6,](https://doi.org/10.1007/s11590-023-02024-6) 2023.
- ▶ F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Stochastic Optimization with Deterministic Nonlinear Inequality and Equality Constraints," to appear in SIAM Journal on Optimization, [https://arxiv.org/abs/2302.14790.](https://arxiv.org/abs/2302.14790)
- ▶ F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems," [https://arxiv.org/abs/2304.14907.](https://arxiv.org/abs/2304.14907)

Thank you!

Questions?

[Stochastic Algorithms for Nonconvex Constrained Optimization](#page-0-0) 38 of 46

Outline

[Motivation](#page-2-0)

[Stochastic Algorithms for Nonconvex Optimization](#page-16-0)

[Extensions and Experimental Results](#page-35-0)

[Conclusion](#page-47-0)

[Appendix](#page-51-0)

Details

Some details on the tree construction for our complexity analysis...

Challenge in the stochastic setting

۰

We are minimizing a function that is changing during the optimization.

Challenge in the stochastic setting

In the stochastic setting, minimum $\mathcal T$ is not determined by the initial point.

- ▶ Even if we assume $\mathcal{T}_k > \tau_{\min} > 0$ for all k in all realizations, the final \mathcal{T} is not determined.
- \blacktriangleright This means we cannot cast all reductions in terms of some fixed constant τ .

Our approach

In fact, $\mathcal T$ reaching some minimum value is not necessary.

- ▶ Important: Diminishing probability of continued imbalance between "true" merit parameter update and "stochastic" merit parameter update.
- ▶ In iteration k, the algorithm has obtained the merit parameter value \mathcal{T}_{k-1} .
- If the true gradient is computed, then one obtains $\mathcal{T}_k^{\text{trial,true}}$.

Lemma

Suppose that the merit parameter is reduced at most s_{max} times. For any $\delta \in (0,1)$, one finds that

$$
\mathbb{P}\left[|\{k: \mathcal{T}^{trial,true}_k < \mathcal{T}_{k-1}\}| \leq \left\lceil\frac{\ell(s_{\max},\delta)}{p}\right\rceil\right] \geq 1-\delta,
$$

where $p \in (0, 1)$ (related to a bounded imbalance assumption we make) and

$$
\ell(s_{\max}, \delta) := s_{\max} + \log(1/\delta) + \sqrt{\log(1/\delta)^2 + 2s_{\max} \log(1/\delta)} > 0.
$$

Chernoff bound

How do we get there?

Lemma (Chernoff bound, multiplicative form)

Let $\{Y_0, \ldots, Y_k\}$ be independent Bernoulli random variables. Then, for any $s_{\text{max}} \in \mathbb{N}$ and $\delta \in (0, 1)$,

$$
\sum_{j=0}^k \mathbb{P}[Y_j = 1] \ge \ell(s_{\max}, \delta) \implies \mathbb{P}\left[\sum_{j=0}^k Y_j \le s_{\max}\right] \le \delta.
$$

We construct a tree whose nodes are signatures of possible runs of the algorithm.

- A realization $\{q_0, \ldots, q_k\}$ belongs to a node if and only if a certain number of decreases of T have occurred and the probability of decrease in the current iteration is in a given closed/open interval.
- ▶ Bad leaves are those when the probability of decrease has accumulated beyond a threshold, yet the merit parameter has not been decreased sufficiently often.
- ▶ Along the way, we apply a Chernoff bound on a carefully constructed set of (independent Bernoulli) random variables to bound probabilities associated with bad leaves.

Node definition

- Let $[k] := \{0, 1, ..., k\}$ and define
	- \blacktriangleright $p_{[k]}$ = probabilities of merit parameter decreases
	- \blacktriangleright $w_{[k]}$ = counter of merit parameter decreases

Then, define nodes of the tree according to

$$
G_{[k-1]}\in N(p_{[k]},w_{[k]})
$$

if and only if

$$
G_{[k-2]} \in N(p_{[k-1]}, w_{[k-1]})
$$

$$
\mathbb{P}[\mathcal{T}_k < \mathcal{T}_{k-1} | \mathcal{F}_k] \in \iota(p_k)
$$

$$
\sum_{i=1}^{k-1} 1[\mathcal{T}_i < \mathcal{T}_{i-1}] = w_k
$$

Visualization

