Stochastic Algorithms for Constrained Continuous Optimization: Stochastic-Gradient-based Interior-Point Algorithms

Frank E. Curtis, Lehigh University

presented at

ESI Workshop: One World Optimization Seminar

June 4, 2024

Collaborators and references

Single-Loop Interior-Point (SLIP) Method

Submitted paper (second-round review):

F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems." https://arxiv.org/abs/2304.14907.

Working paper:

F. E. Curtis, X. Jiang, and Q. Wang, "Single-Loop Deterministic and Stochastic Interior-Point Algorithms for Nonlinearly Constrained Optimization."

Outline

Single-Loop Interior-Point (SLIP) Method

Stochastic Bound-Constrained Setting

Generally Constrained Setting

Conclusion

Outline

Single-Loop Interior-Point (SLIP) Method

Motivation

0.0000000000

Interior-point methods are the workhorse for deterministic nonlinearly constrained optimization.

▶ Ipopt, Knitro, LOQO, etc.

Single-Loop Interior-Point (SLIP) Method

Before our work, there were no stochastic interior-point methods with convergence guarantees.

Why not?

- Stochastic algorithms for constrained optimization are not widely studied
- ... except for projection methods, manifold-based methods, and conditional gradient methods.
- Stochastic-gradient-based algorithms require gradients to be bounded and Lipschitz continuous
- ▶ ... but barrier functions (e.g., logarithmic barrier) have neither property.

In our work and this talk, we focus on the bound-constrained case.

▶ We will end with the additional challenges for the generally constrained case.

[†]One attempt was made, but there was a flaw in the algorithm and proof.

Bound-constrained setting

Single-Loop Interior-Point (SLIP) Method

0000000000

Given $f: \mathbb{R}^n \to \mathbb{R}$ and $(l, u) \in \mathbb{R}^n \times \mathbb{R}^n$ with l < u, consider

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $l \le x \le u$

If x is a minimizer, then for some (y, z) one has

$$\nabla f(x) - y + z = 0, \quad 0 \le (x - l) \perp y \ge 0, \quad 0 \le (u - x) \perp z \ge 0.$$

(We can handle infinite bounds, but consider finite bounds for simplicity....)

Textbook algorithm

00000000000

Single-Loop Interior-Point (SLIP) Method

For all $\mu \in \mathbb{R}_{>0}$, consider the barrier-augmented function

$$\phi(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log(x_i - l_i) - \mu \sum_{i=1}^{n} \log(u_i - x_i).$$

Algorithm IPM: Interior-point method (textbook version)

- 1: choose an initial point $x_1 \in (l, u)$ and barrier parameter $\mu_0 \in \mathbb{R}_{>0}$
- 2: **for** all $k \in \{1, 2, \dots\}$ **do**
- if $\|\nabla_x \phi(x_k, \mu_{k-1})\|_2 < \theta \mu_{k-1}$ then set $\mu_k \ll \mu_{k-1}$ else set $\mu_k \leftarrow \mu_{k-1}$ 3:
- compute descent direction d_k (e.g., $-\nabla \phi(x_k, \mu_k)$) 4.
- set $\alpha_{k,\max} \in (0,1]$ by fraction-to-the-boundary rule to ensure 5:

$$x_k + \alpha_{k,\max} d_k - l \ge \epsilon(x_k - l)$$
 and $u - (x_k + \alpha_{k,\max} d_k) \ge \epsilon(u - x_k)$

- set $\alpha_k \in (0, \alpha_{k, \max}]$ to ensure sufficient decrease $\phi(x_{k+1}, \mu_k) \ll \phi(x_k, \mu_k)$
- 7. end for

Major challenges for the stochastic setting

Stationarity test:

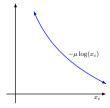
Single-Loop Interior-Point (SLIP) Method

- \triangleright Computing $\|\nabla_x \phi(x_k, \mu_{k-1})\|_2$ is intractable
- ▶ Could estimate it using a stochastic gradient, but then a probabilistic guarantee, at best

Fraction-to-the-boundary rule:

- ightharpoonup Tving fraction to current iterate x_k leads to issues
- ... stochastic gradients could push iterate sequence to boundary too quickly

Unbounded gradients and lack of Lipschitz continuity:



Our approach

000000000000

Single-Loop Interior-Point (SLIP) Method

Our approach is based on two coupled ideas:

- rescribed decreasing barrier parameter sequence $\{\mu_k\} \setminus 0$ (single-loop algorithm!)
- ▶ prescribed $\{\theta_k\}$ \(\sqrt{0} \) and enforcing

$$x_{k+1} \in \mathcal{N}_{[l,u]}(\theta_k) := \{x \in \mathbb{R}^n : l + \theta_k \le x \le u - \theta_k\}$$

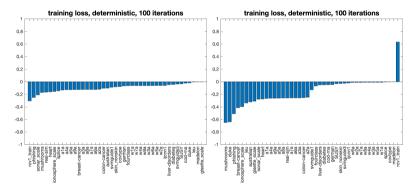
"Wait! Is it worthwhile to have an algorithm like this?!"

Our experiments say ves!

Deterministic setting

000000000000

Single-Loop Interior-Point (SLIP) Method



Relative performance of SLIP vs. PGM, deterministic setting, training logistic regression (left) and neural network models with one hidden layer with cross-entropy loss (right).

Proposed algorithm

000000000000

Single-Loop Interior-Point (SLIP) Method

Algorithm SLIP: Single-loop interior-point method

- 1: choose an initial point $x_1 \in \mathcal{N}_{[l,u]}(\theta_0), \{\mu_k\} \searrow 0, \{\theta_k\} \searrow 0$
- 2: **for** all $k \in \{1, 2, ...\}$ **do**
- compute descent direction d_k (e.g., estimating $-\nabla \phi(x_k, \mu_k)$) 3:
- 4. set

$$\alpha_k \leftarrow \frac{1}{L + 2\mu_k \theta_k^{-2}}$$

set $\gamma_k \in (0,1]$ to ensure 5:

$$x_{k+1} \leftarrow x_k + \gamma_k \alpha_k d_k \in \mathcal{N}_{[l,u]}(\theta_k)$$

6: end for

^{*}Paper considers a more general framework; this is a simplified example

Key observation

Single-Loop Interior-Point (SLIP) Method

Our first key observation is that the algorithm essentially acts equivalently on reducing

$$\phi(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log(x_i - l_i) - \mu \sum_{i=1}^{n} \log(u_i - x_i)$$

and

$$\tilde{\phi}(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log\left(\frac{x_i - l_i}{\chi}\right) - \mu \sum_{i=1}^{n} \log\left(\frac{u_i - x_i}{\chi}\right),$$

where χ is sufficiently large such that $\frac{x_i - l_i}{\gamma} \in [0, 1]$ and $\frac{u_i - x_i}{\gamma} \in [0, 1]$ for all $i \in [n]$.

The latter is simply a shifted form of the other.

- ▶ They have the same gradients! $\nabla_x \phi(x,\mu) = \nabla_x \tilde{\phi}(x,\mu)$
- For the latter, $\bar{\mu} < \mu$ implies that $\tilde{\phi}(x, \bar{\mu}) < \tilde{\phi}(x, \mu)$.

Thus, the algorithm uses ϕ , but our analysis can focus on monotonically decreasing $\{\tilde{\phi}(x_k, \mu_k)\}$.

Critical lemmas, deterministic setting

Single-Loop Interior-Point (SLIP) Method

Lemma

00000000000000

For all $k \in \mathbb{N}$, one finds for $L_k := L + 2\mu_k\theta_k^{-2}$ that

$$\tilde{\phi}(x_{k+1}, \mu_k) \leq \tilde{\phi}(x_k, \mu_k) + \nabla_x \tilde{\phi}(x_k, \mu_k)^T (x_{k+1} - x_k) + \frac{1}{2} L_k ||x_{k+1} - x_k||_2^2,$$
so $\{\alpha_k\} = \{L_k^{-1}\} \implies \tilde{\phi}(x_{k+1}, \mu_{k+1}) \leq \tilde{\phi}(x_k, \mu_k) - \frac{1}{2} \gamma_k \alpha_k ||\nabla_x \tilde{\phi}(x_k, \mu_k)||_2^2.$

Lemma

For all $k \in \mathbb{N}$, one finds that γ_k is bounded below by the minimum of 1 and

$$\alpha_k^{-1} \left(\frac{\frac{1}{2} \mu_k \Delta}{\mu_k + \frac{1}{2} \kappa_{\nabla f} \Delta} - \theta_k \right) (\kappa_{\nabla f} + \mu_k \theta_{k-1}^{-1})^{-1}.$$

Thus, with $t \in [-1,0)$, $\{\mu_k\} = \{\mu_1 k^t\}$, $\{\theta_{k-1}\} = \{\theta_0 k^t\}$, and $\{\alpha_k\} = \{L_k^{-1}\}$, one finds that

$$\sum_{k=1}^{\infty} \gamma_k \alpha_k = \infty \quad and \quad \{\mu_k \theta_{k-1}^{-1}\} \quad is \ bounded.$$

Convergence guarantee, deterministic setting

Theorem

000000000000

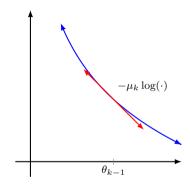
One finds that

Single-Loop Interior-Point (SLIP) Method

$$\liminf_{k \to \infty} \|\nabla_x \phi(x_k, \mu_k)\|_2^2 = 0,$$

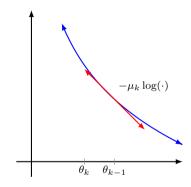
and, for any infinite-cardinality set $K \subseteq \mathbb{N}$ such that $\{\nabla_x \phi(x_k, \mu_k)\}_{k \in K} \to 0$ and $\{x_k\}_{k \in K} \to \overline{x}$, the limit point \bar{x} is a KKT point (i.e., there exists \bar{y} and \bar{z} such that $(\bar{x}, \bar{y}, \bar{z})$ satisfies KKT conditions).

Why does it work?

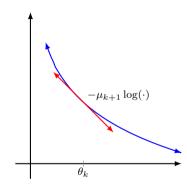


Why does it work?

Single-Loop Interior-Point (SLIP) Method 00000000000



Why does it work?



Outline

Stochastic Bound-Constrained Setting

Stochastic setting

Single-Loop Interior-Point (SLIP) Method

In the stochastic setting, the algorithm parameters need to be chosen more carefully!

- Notably, γ_k needs to be chosen based on knowledge of noise bound.
- ▶ For the deterministic setting, $\{\mu_k\} = \{\mu_1 k^t\}$ and $\{\theta_{k-1}\} = \{\theta_0 k^t\}$ for t = -1 implies

$$\{\alpha_k\} = \left\{\frac{1}{L + 2\mu_k \theta_k^{-2}}\right\} = \Theta(k^t),$$

but for stochastic setting, step-size sequence $\{\alpha_k\}$ can no longer decrease at same rate as $\{\mu_k\}$.

It needs to decrease more slowly than $\{\mu_k\}$ (although rates can be arbitrarily close).

Accounting for the error

The issue arises from the following lemma.

Lemma

For all $k \in \mathbb{N}$, one finds that

$$\begin{split} & \tilde{\phi}(X_{k+1}, \mu_{k+1}) - \tilde{\phi}(X_k, \mu_k) \\ & \leq & - \Gamma_k A_k \|\nabla_x \tilde{\phi}(X_k, \mu_k)\|_{H_k^{-1}}^2 + \Gamma_k A_k \nabla_x \tilde{\phi}(X_k, \mu_k)^T H_k^{-1} (\nabla_x \tilde{\phi}(X_k, \mu_k) - Q_k) \\ & + \frac{1}{2} \Gamma_k^2 A_k^2 \lambda_{k, \min}^{-1} \ell_{\nabla f, \mathcal{B}, k} \|Q_k\|_{H_k^{-1}}^2. \end{split}$$

Using $\{\mu_k\} = \{\mu_1 k^{-1}\}\$ and $\{\theta_{k-1}\} = \{\theta_0 k^{-1}\}\$, so $\{\alpha_k\} = \Theta(k^t)$, leaves the final term uncontrolled!

Parameter rule

Single-Loop Interior-Point (SLIP) Method

Given prescribed $(t_n, t_\theta, t_\alpha) \in (-\infty, -\frac{1}{2}) \times (-\infty, -\frac{1}{2}) \times (-\infty, 0)$ such that $t_\mu = t_\theta, t_\mu + t_\alpha \in [-1, 0)$, and $t_{\mu} + 2t_{\alpha} \in (-\infty, -1)$ along with prescribed $\alpha_{\text{buff}} \in \mathbb{R}_{>0}$, $\{\alpha_{k, \text{buff}}\} \subset \mathbb{R}_{>0}$, $\gamma_{\text{buff}} \in \mathbb{R}_{>0}$, and $\{\gamma_{k,\text{buff}}\}\subset\mathbb{R}_{>0}$ such that $\alpha_{k,\text{buff}}\leq\alpha_{\text{buff}}k^{2t_{\mu}}$ and $\gamma_{k,\text{buff}}\leq\gamma_{\text{buff}}k^{t_{\mu}}$ for all $k\in\mathbb{N}$, the algorithm employs

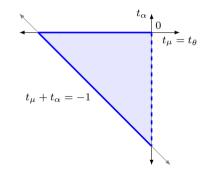
$$\alpha_{k,\min} := \frac{\lambda_{k,\min} k^{t_{\alpha}}}{\ell_{\nabla f,\mathcal{B}} + 2\mu_{k} \theta_{k}^{-2}}, \qquad \gamma_{k,\min} := \min \left\{ 1, \frac{\lambda_{k,\min} \left(\frac{\frac{1}{2} \mu_{k} \Delta}{\mu_{k} + \frac{1}{2} (\kappa_{\nabla f,\mathcal{B},\infty} + \sigma_{\infty}) \Delta} - \theta_{k} \right)}{\alpha_{k,\max} (\kappa_{\nabla f,\mathcal{B},\infty} + \sigma_{\infty} + \mu_{k} \theta_{k-1}^{-1})} \right\},$$

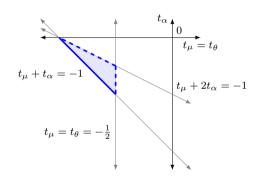
and $\gamma_{k,\text{max}} := \min\{1, \gamma_{k,\text{min}} + \gamma_{k,\text{buff}}\}\$ $\alpha_{k,\max} := \alpha_{k,\min} + \alpha_{k,\text{buff}}$

and makes a (run-and-iterate-dependent) choice $\alpha_k \in \min \left\{ \frac{\lambda_{k,\min} k^{t_{\alpha}}}{L + 2u_k \theta_k^{-2}}, \alpha_{k,\max} \right\}$ for all $k \in \mathbb{N}$.

Acceptable rate values

Single-Loop Interior-Point (SLIP) Method





Convergence guarantee, stochastic setting

Theorem

Single-Loop Interior-Point (SLIP) Method

Suppose $t \in (-1, -\frac{1}{2})$ and $t_{\alpha} \in (-\infty, 0)$ have

$$t + t_{\alpha} \in [-1, 0)$$
 and $t + 2t_{\alpha} \in (-\infty, -1)$

and for some $\sigma \in \mathbb{R}_{>0}$ one has for all $k \in \mathbb{N}$ that

$$\mathbb{E}[G_k|\mathcal{F}_k] = \nabla f(X_k) \quad and \quad ||G_k - \nabla f(X_k)||_2 \le \sigma.$$

Then, with $\{\mu_k\} = \{\mu_1 k^t\}, \{\theta_{k-1}\} = \{\theta_0 k^t\}, \text{ and } \{\alpha_k\} = \{L_k^{-1} k^{t_\alpha}\}, \text{ one finds that }$

$$\liminf_{k \to \infty} \|\nabla_x \phi(X_k, \mu_k)\|_2^2 = 0 \quad almost \ surely.$$

Consequently, considering any realization $\{x_k\}$ of $\{X_k\}$, for any infinite-cardinality set $K\subseteq \mathbb{N}$ such that $\{\nabla_x \phi(x_k, \mu_k)\}_{k \in \mathcal{K}} \to 0$ and $\{x_k\}_{k \in \mathcal{K}} \to \bar{x}$, the limit point \bar{x} is a KKT point.

Numerical experiments

Compare SLIP with a projected stochastic gradient method (PSGM) for which

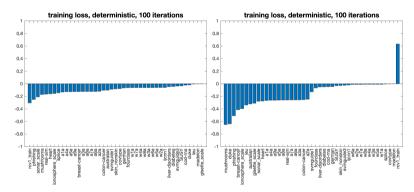
$$x_{k+1} \leftarrow \operatorname{Proj}_{[l,u]}(x_k + \alpha_k d_k).$$

Experiments involve:

- binary classification problems with LIBSVM datasets
- two classifiers:
 - logistic regression (convex) and
 - ▶ neural network with one hidden layer and cross-entropy loss (nonconvex)
- performance measure

$$\frac{f(x_{\text{end}}^{\text{SLIP}}) - f(x_{\text{end}}^{\text{PSGM}})}{\max\{f(x_{\text{end}}^{\text{SLIP}}), f(x_{\text{end}}^{\text{PSGM}}), 1\}} \in (-1, 1)$$

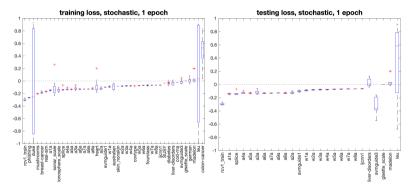
Single-Loop Interior-Point (SLIP) Method



Relative performance of SLIP and PGM, deterministic setting, training logistic regression (left) and neural network models with one hidden layer with cross-entropy loss (right).

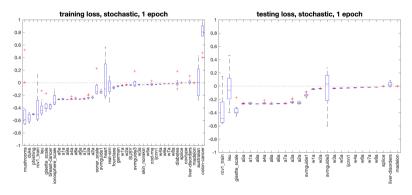
Stochastic setting, logistic regression

Single-Loop Interior-Point (SLIP) Method



Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression models; among 43 training datasets, 26 have testing datasets.

Stochastic setting, neural network with cross-entropy loss



Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models (with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.

Single-Loop Interior-Point (SLIP) Method

•00

Generally Constrained Setting

Single-Loop Interior-Point (SLIP) Method

0.00

SLIP algorithm

Algorithm SLIP: Single-loop interior-point method

- 1: choose an initial point $x_1 \in \mathcal{N}_{[l,u]}(\theta_0), \{\mu_k\} \setminus 0, \{\theta_k\} \setminus 0$
- 2: **for** all $k \in \{1, 2, ...\}$ **do**
- compute descent direction d_k (e.g., estimating $-\nabla \phi(x_k, \mu_k)$) 3:
- 4: set

$$\alpha_k \leftarrow \frac{1}{L + 2\mu_k \theta_k^{-2}}$$

set $\gamma_k \in (0,1]$ to ensure 5:

$$x_{k+1} \leftarrow x_k + \gamma_k \alpha_k d_k \in \mathcal{N}_{[l,u]}(\theta_k)$$

6: end for

How can this be extended for the generally constrained setting?

- This is a feasible algorithm; this can be maintained, at least for inequalities only.
- Neighborhood enforcement is the real issue! Constraint value depends nonlinearly on γ_k .

Main challenge

Single-Loop Interior-Point (SLIP) Method

For all $\mu \in \mathbb{R}_{>0}$, consider the barrier-augmented function

$$\phi(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log(-c_i(x)).$$

Outline

Single-Loop Interior-Point (SLIP) Method

Conclusion

Summary

Presented a single-loop interior-point method for solving bound-constrained problems, with

- prescribed barrier and "neighborhood" parameter sequences.
- ▶ no need for stationarity tests, fraction-to-the-boundary rules, or line searches,
- convergence guarantees in deterministic and stochastic settings, and
- promising numerical performance!

What about the generally constrained setting?

► We're doing it!

Single-Loop Interior-Point (SLIP) Method

Paper is forthcoming soon.

Collaborators and references

Single-Loop Interior-Point (SLIP) Method

Submitted paper (second-round review):

F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems." https://arxiv.org/abs/2304.14907.

Working paper:

F. E. Curtis, X. Jiang, and Q. Wang, "Single-Loop Interior-Point Methods for Deterministic and Stochastic Nonlinearly Constrained Optimization."