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Learning: Prediction function

Aim: Determine a prediction function p from a family P such that

min
x∈Rn

1

no

no∑
j=1

ℓ(

p(aj)

x), bj)

yields an accurate prediction corresponding to any given input feature vector aj .
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Learning: Prediction function, parameterized

Let us say that the family is parameterized by some vector x such that

min
x∈Rn

1

no

no∑
j=1

ℓ(

p(aj , x)

, bj)

yields an accurate prediction corresponding to any given input feature vector aj .
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Learning: Supervised

In supervised learning, we have known input-output pairs {(aj , bj)}no
j=1. Then,

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj)

becomes our empirical-loss training problem to determine the optimal x.
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Learning: Supervised and regularized

If we aim to impose some structure on the solution x, then we may consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) + r(x)

where r is a regularization function.
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Learning: Supervised and regularized

If we aim to impose some structure on the solution x, then we may consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) + r(x)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

where r is a regularization function. Is this good for informed learning?
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Learning: Supervised and informed through model design

One approach is to embed information in the prediction function itself, so

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

ensures that information is enforced with every forward pass. (Is this enough and/or efficient?)
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Learning: Supervised and informed with soft constraints

Added to the loss (e.g., mean-squared error), we might consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) +
1

nc

nc∑
j=1

ϕ(p(ãj , x), . . . , b̃j)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

where {(ãj , b̃j)}nc
j=1 are known input-output pairs and ϕ encodes information.
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Learning: Supervised and informed with hard constraints

Alternatively, how about hard constraints during training, as in

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

such that we restrict attention to functions that are informed implicitly?
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Motivation and challenges: Stochastic algorithms for constrained optimization

Motivated by informed learning when model design + regularization is insufficient

▶ physics-informed machine learning

▶ fair (supervised) machine learning

▶ . . . but algorithms are general-purpose, e.g., also for simulation optimization

Same challenges and questions as for unconstrained:

▶ convergence/complexity guarantees (adaptive algorithms)

▶ computational complexity

▶ stability guarantees

▶ generalization properties

New challenges for handling constraints as constraints:

▶ (i.e., avoid penalty methods, augmented Lagrangian, etc.)

▶ balancing the objective and constraints

▶ degeneracy and infeasibility
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Predicting movement of a spring

Problem from https://benmoseley.blog/blog/
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Expected-loss training problems

For the sake of generality/generalizability, the expected-loss objective function is∫
A×B

ℓ(p(a, x), b)dP(a, b) ≡ Eω [F (x, ω)] =: f(x)

One might consider various paradigms for imposing the constraints:

▶ expectation constraints

▶ (distributionally) robust constraints

▶ probabilistic (i.e., chance) constraints

In this talk, constraints values and derivatives can be computed:

cE(x) = 0 and cI(x) ≤ 0

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data
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Stochastic gradient method
Consider min

x∈Rn
f(x), where ∇f : Rn → Rn is Lipschitz continuous with constant L.

Algorithm SG : Stochastic gradient method

1: choose an initial point x1 ∈ Rn and step sizes {αk} > 0
2: for k ∈ {1, 2, . . . } =: N do
3: set xk+1 ← xk − αkgk, where gk ≈ ∇f(xk)
4: end for

Algorithm† behavior is defined by (Ω,F ,P), where

▶ Ω = Γ× Γ× Γ× · · · (sequence of draws determining stochastic gradients);

▶ F is a σ-algebra on Ω, the set of events (i.e., measurable subsets of Ω); and

▶ P : F → [0, 1] is a probability measure.

View any {(xk, gk)} as a realization of {(Xk, Gk)}, where for all k ∈ N

xk = Xk(ω) and gk = Gk(ω) given ω ∈ Ω.

†Robbins and Monro (1951); Sutton Monro = former Lehigh ISE faculty member
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Convergence of SG

E[·] = expectation w.r.t. P[·]. Analyze through associated sub-σ-algebras {Fk}.

Assumption

For all k ∈ N, one has that

▶ E[Gk|Fk] = ∇f(Xk) and

▶ E[∥Gk∥22|Fk] ≤M +M∇f∥∇f(Xk)∥22

By Lipschitz continuity of ∇f and construction of the algorithm, one finds

f(Xk+1)− f(Xk) ≤ ∇f(Xk)
T (Xk+1 −Xk) +

1
2
L∥Xk+1 −Xk∥22

= −αk∇f(Xk)
TGk + 1

2
α2
kL∥Gk∥22

=⇒ E[f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLE[∥Gk∥22|Fk]

≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kL(M +M∇f∥∇f(Xk)∥22),

by the assumption and since f(Xk) and ∇f(Xk) are Fk-measurable.

Stochastic Algorithms for Nonconvex Constrained Optimization 11 of 46



Motivation Stochastic Algorithms for Nonconvex Optimization Extensions and Experiments Conclusion Appendix

SG theory

Taking total expectation, one arrives at

E[f(Xk+1)− f(Xk)] ≤ −αk(1− 1
2
αkLM∇f )E[∥∇f(Xk)∥22] + 1

2
α2
kLM

Theorem

αk =
1

LM∇f
=⇒ E

 1

k

k∑
j=1

∥∇f(Xj)∥22

 ≤Mk
k→∞−−−−→ O

(
M

M∇f

)

αk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 αj

) k∑
j=1

αj∥∇f(Xj)∥22

→ 0

=⇒ lim inf
k→∞

E[∥∇f(Xk)∥22] = 0

(further steps) =⇒ ∇f(Xk)→ 0 almost surely.
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Constrained optimization

Consider

min
x∈Rn

f(x)

s.t. c(x) = 0

Option: Regularization / soft constraints (penalization), as in

min
x∈Rn

τf(x) + ∥c(x)∥pq (+yT c(x)),

then employ a (stochastic) algorithm for unconstrained optimization.

On the positive side, “exact” penalty function theory is well established:

▶ can solve the constrained problem, in theory.

Unfortunately, however, such an approach is not ideal:

▶ appropriate balance (τ and/or y) not known in advance

▶ p = 1 (nonsmooth), p = 2 (need τ ↘ 0, ill-conditioning)
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Sequential quadratic optimization (SQP)

Consider

min
x∈Rn

f(x)

s.t. c(x) = 0

Option: With J ≡ ∇cT and H positive definite over Null(J), two viewpoints:

[
∇f(x) + J(x)T y

c(x)

]
= 0 or

min
d∈Rn

f(x) +∇f(x)T d+ 1
2
dTHd

s.t. c(x) + J(x)d = 0

both leading to the same “Newton-SQP system”:[
Hk JT

k
Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
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SQP illustration

c(xk) + J(xk)d = 0

xk
c(x) = 0

regularization / “soft” constraints

“hard” constraints

constrained approach = fundamentally different algorithm

xk

c(x) = 0

regularization / “soft” constraints

“hard” constraints =⇒ step in null space
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Stochastic SQP
Algorithm guided by merit function with adaptive parameter τ defined by

ϕ(x, τ) = τf(x) + ∥c(x)∥1

Algorithm : Stochastic SQP

1: choose x1 ∈ Rn, τ0 ∈ (0,∞), {βk} ∈ (0, 1]N

2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk

yk

]
= −

[
gk
ck

]
4: update merit parameter: set τk to ensure

ϕ
′
(xk, τk, dk) ≤ −∆q(xk, τk, gk, dk)≪ 0

5: compute step size: set

αk = Θ

(
βkτk

τkL∇f + LJ

)
6: then xk+1 ← xk + αkdk

7: end for

Stochastic Algorithms for Nonconvex Constrained Optimization 16 of 46
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Convergence theory in deterministic setting

Assumption

▶ f , c, ∇f , and J bounded and Lipschitz

▶ singular values of J bounded below (i.e., the LICQ)

▶ uTHku ≥ ζ∥u∥22 for all u ∈ Null(Jk) for all k ∈ N

Theorem

▶ {αk} ≥ αmin for some αmin > 0

▶ {τk} ≥ τmin for some τmin > 0

▶ ∆q(xk, τk,∇f(xk), dk)→ 0 implies optimality error vanishes, specifically,

∥dk∥2 → 0, ∥ck∥2 → 0, ∥∇f(xk) + JT
k yk∥2 → 0

Stochastic Algorithms for Nonconvex Constrained Optimization 17 of 46
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Stochastic setting: What do we want?

What we want/expect from the algorithm?

Note: We are interested in the stochastic approximation (SA) regime.

Ultimately, there are many questions to answer:

▶ convergence guarantees

▶ complexity guarantees

▶ tradeoff analysis (Bottou and Bousquet)

▶ generalization

▶ large-scale implementations

▶ beyond first-order (SG) methods

Stochastic Algorithms for Nonconvex Constrained Optimization 18 of 46
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Fundamental lemma

Recall in the unconstrained setting that

E[f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLE[∥Gk∥22|Fk]

Lemma

For all k ∈ N one finds (before taking expectations)

ϕ(Xk+1, Tk+1)− ϕ(Xk, Tk)

≤ −Ak∆q(Xk, Tk,∇f(Xk), D
true
k )︸ ︷︷ ︸

O(βk), “deterministic”

+ 1
2Akβk∆q(Xk, Tk, Gk, Dk)︸ ︷︷ ︸

O(β2
k
), stochastic/noise

+AkTk∇f(Xk)
T
(Dk −D

true
k )︸ ︷︷ ︸

due to adaptive Ak

Stochastic Algorithms for Nonconvex Constrained Optimization 19 of 46
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Good merit parameter behavior

Theorem 4

Let E := event that {Tk} eventually remains constant at T ′ ≥ τmin > 0.

Then, conditioned on E,

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

∆q(Xj , T ′
,∇f(Xj), D

true
j )

 = O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj∆q(Xj , T ′
,∇f(Xj), D

true
j )

→ 0
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Good merit parameter behavior

Theorem 4

Let E := event that {Tk} eventually remains constant at T ′ ≥ τmin > 0.

Then, conditioned on E,

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

(∥∇f(Xj) + J(Xj)
T
Y

true
j ∥2 + ∥c(Xj)∥2)

 = O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj(∥∇f(Xj) + J(Xj)
T
Y

true
j ∥2 + ∥c(Xj)∥2)

→ 0

Stochastic Algorithms for Nonconvex Constrained Optimization 20 of 46



Motivation Stochastic Algorithms for Nonconvex Optimization Extensions and Experiments Conclusion Appendix

Key observation

Key observation is that c(Xk) and J(Xk) are Fk-measurable.

c(xk) + J(xk)d = 0

xk
c(x) = 0

“hard” constraints

Therefore, E[Dk|Fk] = true step if ∇f(Xk) were known.

Stochastic Algorithms for Nonconvex Constrained Optimization 21 of 46
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Numerical results: https://github.com/frankecurtis/StochasticSQP

Stochastic SQP (hard constraints) vs. stochastic subgradient (soft constraints)

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Summary

Since our original work, we have considered various extensions.

▶ stronger convergence guarantees (almost-sure convergence)

▶ convergence of Lagrange multiplier estimates

▶ relaxed constraint qualifications

▶ worst-case complexity guarantees

▶ generally constrained problems (with inequality constraints as well)

▶ interior-point methods

▶ iterative linear system solvers and inexactness

▶ diagonal scaling methods for saddle-point systems
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Almost-sure convergence of merit function value

Convergence of the algorithm is driven by the exact merit function

ϕτ (X) = τf(X) + ∥c(X)∥

Reductions in a local model of ϕτ can be tied to a stationarity measure

∆qτ (X,∇f(X), H,Dtrue) ∼ ∥∇f(X) + J(X)TY ∥2 + ∥c(X)∥

Lemma

Suppose E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)|Fk∥2] ≤M . Then, by a classical theorem of Robbins
and Siegmund (1971), one finds that, almost surely,

lim
k→∞

{ϕτ (Xk)} exists and is finite and

lim inf
k→∞

∆qτ (Xk,∇f(Xk), Hk, D
true
k ) = 0

Stochastic Algorithms for Nonconvex Constrained Optimization 25 of 46
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Almost-sure convergence of the primal iterates

Theorem

Suppose there exists x∗ ∈ X with c(x∗) = 0, µ ∈ R>1, and ϵ ∈ R>0 such that for all

x ∈ Xϵ,x∗ := {x ∈ X : ∥x− x∗∥2 ≤ ϵ}

one finds that

ϕτ (x)− ϕτ (x∗)

{
= 0 if x = x∗

∈ (0, µ(τ∥Z(x)T∇f(x)∥22 + ∥c(x)∥2)] otherwise,

where for all x ∈ Xϵ,x∗ one defines Z(x) ∈ Rn×(n−m) as some orthonormal matrix whose columns form a
basis for the null space of J(x). Then, if lim sup

k→∞
{∥Xk − x∗∥2} ≤ ϵ almost surely, it follows that

{ϕτ (Xk)}
a.s.−−−→ ϕτ (x∗), {Xk}

a.s.−−−→ x∗, and

{[
∇f(Xk) + J(Xk)

TY true
k

c(Xk)

]}
a.s.−−−→ 0.
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Lagrange multiplier convergence

Theorem

Suppose (x∗, y∗) is a stationary point. Then, for any k ∈ N, one finds ∥Xk − x∗∥2 ≤ ϵ implies

∥Yk − y∗∥2 ≤ κy∥Xk − x∗∥2 + r−1∥∇f(Xk)−Gk∥2
and ∥Y true

k − y∗∥2 ≤ κy∥Xk − x∗∥2 for some (κ, r) ∈ R>0 × R>0.

Computed multipliers always have error. Consider averaged multipliers {Y avg
k }:

Theorem

If the iterate sequence converges almost surely to x∗, i.e., {Xk}
a.s.−−−→ x∗, then

{Y true
k } a.s.−−−→ y∗ and {Y avg

k } a.s.−−−→ y∗.
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Constrained logistic regression: australian dataset (LIBSVM)
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Complexity of O(ϵ−2) for deterministic algorithm

All reductions in the merit function can be cast in terms of smallest τ .

Since τmin is determined by the initial point, it will be reached.

Theorem

For any ϵ ∈ (0, 1), there exists (κ1, κ2) ∈ (0,∞)× (0,∞) such that

∥∇f(xk) + JT
k yk∥ ≤ ϵ and

√
∥ck∥1 ≤ ϵ

in a number of iterations no more than(
τ0(f1 − finf) + ∥c1∥1

min{κ1, κ2τmin}

)
ϵ−2.

Stochastic Algorithms for Nonconvex Constrained Optimization 29 of 46
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Challenge in the stochastic setting

We are minimizing a function that is changing during the optimization.

k

Tk

Details
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Worst-case iteration complexity of Õ(ϵ−4)

Theorem

Suppose the algorithm is run kmax iterations with βk = γ/
√
kmax + 1 and

▶ the merit parameter is reduced at most smax ∈ {0, 1, . . . , kmax} times.

Let k∗ be sampled uniformly over {1, . . . , kmax}. Then, with probability 1− δ,

E[∥∇f(Xk∗ ) + J(Xk∗ )
TYk∗∥

2
2 + ∥c(Xk∗ )∥1]

≤
τ−1(f0 − finf) + ∥c0∥1 +M

√
kmax + 1

+
(τ−1 − τmin)(smax log(kmax) + log(1/δ))

√
kmax + 1

Theorem

If the stochastic gradient estimates are sub-Gaussian, then with probabiliy 1− δ̄

smax = O
(
log

(
log

(
kmax

δ̄

)))
.
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Inequality-constrained: Fair learning

Consider an ϵ-constraint method for fair machine learning:

min
x∈Rn

1

No

∑
(vi,yi)∈Do

ℓ(x, vi, yi) s.t. −ϵ ≤
1

Nc

∑
(vi,ai)∈Dc

(ai − a)x
T
vi ≤ ϵ
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Projected Adam

Algorithm P-Adam Projection-based Adam

Require: mk−1 ∈ Rd, vk−1 ∈ Rd, wk ∈ Rd, gk ∈ Rd, β1 ∈ (0, 1), β2 ∈ (0, 1), µ ∈ R>0

Compute ḡk ← (I − J(wk)
T (J(wk)J(wk)

T )−1J(wk))gk
Set pk ← β1pk−1 + (1− β1)ḡk
Set qk ← β2qk−1 + (1− β2)(ḡk ◦ ḡk), where (ḡk ◦ ḡk)i = (ḡk)

2
i for all i ∈ {1, . . . , d}

Set p̂k ← (1/(1− βk
1 ))pk

Set q̂k ← (1/(1− βk
2 ))qk

Compute sk by solving

[
diag(

√
q̂k + µ) J(wk)

T

J(wk) 0

] [
sk
λk

]
= −

[
p̂k
ck

]
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Mass-balance
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Summary

Stochastic-gradient/Newton-based algorithms for constrained optimization.

▶ A lot of work so far, but many open questions.

Open questions:

▶ stochastic interior-point methods (generally constrained)?

▶ tradeoff analysis (Bottou and Bousquet)?

▶ generalization guarantees?

▶ beyond projected ADAM, etc.?

▶ Lagrange multiplier estimators?

▶ active-set identification?

▶ expectation/probabilistic constraints?
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Thank you!

Questions?
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Details

Back

Some details on the tree construction for our complexity analysis...
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Challenge in the stochastic setting

We are minimizing a function that is changing during the optimization.

xk

xk + αkd(xk,∇f(xk))xk + αkd(xk, g
1
k) xk + αkd(xk, g

2
k)

final T ≫ 0 final T ≈ 0
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Challenge in the stochastic setting

In the stochastic setting, minimum T is not determined by the initial point.

▶ Even if we assume Tk ≥ τmin > 0 for all k in all realizations, the final T is not determined.

▶ This means we cannot cast all reductions in terms of some fixed constant τ .

k

Tk
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Our approach

In fact, T reaching some minimum value is not necessary.

▶ Important: Diminishing probability of continued imbalance between “true” merit parameter update
and “stochastic” merit parameter update.

▶ In iteration k, the algorithm has obtained the merit parameter value Tk−1.

▶ If the true gradient is computed, then one obtains T trial,true
k .

Lemma

Suppose that the merit parameter is reduced at most smax times. For any δ ∈ (0, 1), one finds that

P
[
|{k : T trial,true

k < Tk−1}| ≤
⌈
ℓ(smax, δ)

p

⌉]
≥ 1− δ,

where p ∈ (0, 1) (related to a bounded imbalance assumption we make) and

ℓ(smax, δ) := smax + log(1/δ) +
√

log(1/δ)2 + 2smax log(1/δ) > 0.
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Chernoff bound

How do we get there?

Lemma (Chernoff bound, multiplicative form)

Let {Y0, . . . , Yk} be independent Bernoulli random variables. Then, for any smax ∈ N and δ ∈ (0, 1),

k∑
j=0

P[Yj = 1] ≥ ℓ(smax, δ) =⇒ P

 k∑
j=0

Yj ≤ smax

 ≤ δ.

We construct a tree whose nodes are signatures of possible runs of the algorithm.

▶ A realization {g0, . . . , gk} belongs to a node if and only if a certain number of decreases of T have
occurred and the probability of decrease in the current iteration is in a given closed/open interval.

▶ Bad leaves are those when the probability of decrease has accumulated beyond a threshold, yet the
merit parameter has not been decreased sufficiently often.

▶ Along the way, we apply a Chernoff bound on a carefully constructed set of (independent Bernoulli)
random variables to bound probabilities associated with bad leaves.
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Node definition

Let [k] := {0, 1, . . . , k} and define

▶ p[k] = probabilities of merit parameter decreases

▶ w[k] = counter of merit parameter decreases

Then, define nodes of the tree according to

G[k−1] ∈ N(p[k], w[k])

if and only if

G[k−2] ∈ N(p[k−1], w[k−1])

P[Tk < Tk−1|Fk] ∈ ι(pk)

k−1∑
i=1

1[Ti < Ti−1] = wk
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Visualization

G[−1] ∈ N(p[0], w[0])

k∑
i=0

pi small and k = kmax

k∑
i=0

pi small and wk = smax

k∑
i=0

pi too large
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