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Collaborators and references

Submitted paper (second-round review):

» F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, “A Stochastic-Gradient-based
Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems,”
https://arxiv.org/abs/2304.14907.

Working paper:

> F. E. Curtis, X. Jiang, and Q. Wang, “Single-Loop Deterministic and Stochastic Interior-Point
Algorithms for Nonlinearly Constrained Optimization.”
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Stochastic gradient method

Consider m]er}L f(z), where Vf : R™ — R™ is Lipschitz continuous with constant L.
faS

Algorithm SG : Stochastic gradient method
1: choose an initial point z1 € R™ and step sizes {a} > 0
2: for k€ {1,2,...} =N do
3: set Tp11 ¢ T — gk, where g = V f(zy)
4: end for

Algorithm behavior is defined by (2, F,P), where
> Q=T XTI xIx--- (sequence of draws determining stochastic gradients);
> F is a o-algebra on (, specifically, the set of events (i.e., measurable subsets of Q); and
> P:F — [0,1] is a probability measure.

One can view any {(xg, gr)} as a realization of {(Xj,Gy)}, where for all k € N

zr = Xk (w) and g = G (w) given w € Q.
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Random variables measurable with respect to Fj

Analyze through an associated sequence of sub-o-algebras:
Fo=1{0,9}, Fi=2"xQ, FR=2"x2"xq,

Consider a random variable for which a realization is determined by the draw, e.g., Xj.
» Fj for all j < k does not give enough information about Xj.
» Fj for all j > k does give enough information about Xj.

We say X} is measurable with respect to F if and only if all “inverses” of X are in Fy.

» For our purposes going forward, it is sufficient to understand that this means
Xk = ]E[Xk|]‘—k] for all k € N.

For the stochastic gradient method, one finds that
> X} is Fp-measurable for all k € N
» G is Fry1-measurable for all £ € N.
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Convergence of SG

Let E[] denote expectation with respect to P[-].

Assumption
For all k € N, one has that
> E[Gk|Fk] = Vf(Xk) and
> E[|GlI31Fx] < M + Mys||VF(Xe)l3

By Lipschitz continuity of V f and construction of the algorithm, one finds

F(Xpq1) = F(Xk) < VFXR)T (X1 — Xg) + 5 L1 X1 — Xill3

—ox V(X)) Gr + 3o LGk ll3

= E[f(Xp41)1Fr] — F(Xi) < —arll V(X813 + 507 LE[|| G131 Fx]
—ap[VA(Xe)II5 + 3R L(M + My ||V £(Xi)II3),

IN A

where the last inequalities follow by the assumption and since f(X}) and V f(Xy) are Fp-measurable.
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SG theory

Taking total expectation, one arrives at

E[f (Xit1) — f(Xp)] € —ar(1 — S LMv )E[|V £(Xk)|13] + $ai LM

Theorem
1 1< ks 00 M
= Tires E;IVfX)Hz < M, —>O(M_Vf)
1 k
ar =6 (;) — E S oyIVAXIB| =0

(Zk 1041) j=1
= liminf E[[|Vf(X)[|3] =0

(further steps) and Vf(Xg) — co almost surely.
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Motivation

Interior-point methods are the workhorse for large-scale nonlinearly constrained optimization.

» Ipopt, Knitro, LOQO, etc.
As far as we are aware, there were no stochastic interior-point methods with convergence guarantees.
Huh? Why not?

» Stochastic optimization with nonlinear, nonconvex constraints is not well studied.

> For large-scale problems, people focus on projection methods, manifold methods, etc.

> Stochastic-gradient-based algorithms require gradients to be bounded and Lipschitz continuous

> ... but the typical (e.g., logarithmic) barrier function has neither property.
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Bound-constrained setting

Given f:R™ — R and (I,u) € R™ x R" with | < u, consider

min f(z)

TER™
st.l<z<wu

If z is a minimizer, then for some (y, z) one has
Vfiz)—y+2=0, 0<(z—0)Ly>0, 0<(u—=x)Lz>0.

(In what follows, we can handle infinite bounds, but consider finite bounds for simplicity....)

I I
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Textbook algorithm

For a given p € Ry ), consider the barrier-augmented function

bz, 1) = () — Y _log(wi — L) — p Y log(u; — z;).

=1 =1

Algorithm IPM : Interior-point method (textbook version)

1: choose an initial point 1 € R™ and barrier parameter po € Ry,

2: for k€ {1,2,...} do

3: if |Veod(zp, pr—1)ll2 < Opr—1 then set pp < pr—1 else set pp  pr—1
4: compute descent direction djy (e.g., —Vé(zk, pk))

5 set o max € (0,1] by fraction-to-the-boundary rule to ensure

T + Q maxdr € [l + exp, u — exy]

6: set oy € (0, 0, max] to ensure sufficient decrease ¢(xp41, pr) K O(Tk, i)
7: end for

I I
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Major challenges for the stochastic setting

Stationarity test:

» Computing ||Vz¢(zk, pr—1)||2 is intractable

» Could estimate it using a stochastic gradient, but then a probabilistic guarantee, at best

Fraction-to-the-boundary rule:

> Tying fraction to current iterate x; leads to issues

P ... stochastic gradients could push iterate sequence to boundary too quickly

Unbounded gradients and lack of Lipschitz continuity:

—plog(zi)

Stochastic-Gradient-based Interior-Point Algorithms

I
13 of 28




Stochastic Gradient Method Single-Loop Interior-Point (SLIP) Method Stochastic Setting Conclusion
00000 0000080000 0000000 000

Our approach

Our approach is based on two coupled ideas:
> prescribed decreasing barrier parameter sequence {p} N\, 0 (single-loop algorithm!)
» prescribed {0} \, 0 and enforcing

Tpt1 € Ny (0k) = {z €R™ 1 14+ 0 <z <u— 0k}
“Wait! I thought interior-points worked well because of their complexity properties?!”

» This algorithm is completely different and doesn’t have those properties

» Is it worthwhile to do this? (Our experiments say yes!)

I I
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Proposed algorithm

Algorithm SLIP : Single-loop interior-point method

1: choose an initial point 1 € R™, {ur} \( 0, {0} \ 0
2: for k€ {1,2,...} do
3: compute descent direction dj (e.g., estimating —V(x, ur))
4: set
. 1
673 o =2
L+ 2u,6, 2

5: set v € (0,1] to ensure

Tyt ¢ Tk + Yeards € Ny o) (0k)

6: end for

*Paper considers a more general framework; this is a simplified example

I I
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Critical lemmas, deterministic setting
Lemma,
For all k € N, one finds for L, :== L + 2;%0,:2 that

(g1, k) < O(@hy k) + Vad(@r, i) (@r1 — o) + SLillzesr — 23,
so {o} ={L;'} = d(@rs1,bh11) < d(@n, i) — 2veanl|Vad(@r, me)l3-

Lemma

For all k € N, one finds that vy is bounded below by the minimum of 1 and

=il ( %.u'kA

a — 2 0| (kv i)
k Mk-i-%'inA ) f k—1

Thus, with t € [—1,0), {ur} = {u1kt}, {0x_1} = {6ok'}, and {or} = {L;l}, one finds that

Z’Ykak =oo and {uke,;_ll} is bounded.
k=1

Stochastic-Gradient-based Interior-Point Algorithms
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Convergence guarantee, deterministic setting

Theorem
One finds that
lim inf ||V ¢k, )3 = 0.

Consequently, for any infinite-cardinality set K C N such that {Vzd(zk, pr) ke — 0 and {xk tkex — T,
the limit point T is a KKT point (i.e., there exists § and Z such that (T, 7, Z) satisfies KKT conditions).

I
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Why does it work?

— g log(+)

Or—1
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Why does it work?

— k41 log(+)

Ok

Stochastic-Gradient-based Interior-Point Algorithms 18 of 28




Stochastic Gradient Method Single-Loop Interior-Point (SLIP) Method Stochastic Setting Conclusion
00000 0000000000 000000 [e]e]e]

Outline

Stochastic Setting

Stochastic-Gradient-based Interior-Point Algorithms 19 of 28




R

Stochastic Gradient Method Single-Loop Interior-Point (SLIP) Method Stochastic Setting Conclusion
00000 0000000000 0@00000 [e]e]e}

Stochastic setting

In the stochastic setting, the algorithm parameters need to be chosen carefully!
> Notably, v; needs to be chosen based on knowledge of noise bound.
> Step-size sequence {ay} can no longer decrease at same rate as {py}

> ...needs to decrease more slowly (although rates can be arbitrarily close).
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Convergence guarantee, stochastic setting

Theorem
Suppose t € (—1, —%) and to € (—o00,0) have
t+ta € [—1,0) and t+ 2tn € (—o0,—1)
and for some o € R, one has for all k € N that
E[Gk|Fk] = VI(Xk) and [|Gx — V(X2 <o
Then, with {u} = {u1k'}, {0k—1} = {0ok'}, and {ar} = {L; 'k'~}, one finds that

liminf || Vad(Xg, ux)l|3 = 0 almost surely.
k— o0

Consequently, considering any realization {z} of {X}, for any infinite-cardinality set K C N such that
{Vaed(zk, pr)tkex — 0 and {zr}kex — T, the limit point T is a KKT point.

I
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Numerical experiments

Compare SLIP with a projected stochastic gradient method (PSGM) for which
@41 < Projy ) (zk + ard)-

Experiments involve:
» binary classification problems with LIBSVM datasets
> two classifiers:

> logistic regression (convex) and
» neural network with one hidden layer and cross-entropy loss (nonconvex)

» performance measure
f(mSLIP) _ f(mPSGM)

end end
€ (_15 1)
max{f(z354"), fF(eE5FM), 1}
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Deterministic setting
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Relative performance of SLIP and PSGM, deterministic setting, training logistic regression (left) and
neural network models with one hidden layer with cross-entropy loss (right).
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Stochastic setting, logistic regression

training loss, stochastic, 1 epoch testing loss, stochastic, 1 epoch
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Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression
models; among 43 training datasets, 26 have testing datasets.
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Stochastic setting, neural network with cross-entropy loss

; training loss, stochastic, 1 epoch , testing loss, stochastic, 1 epoch
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Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models
(with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.
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: :
Summary

Presented a single-loop interior-point method for solving bound-constrained problems, with
» prescribed barrier and “neighborhood” parameter sequences,
» 1no need for stationarity tests, fraction-to-the-boundary rules, or line searches,
> convergence guarantees in deterministic and stochastic settings, and

» promising numerical performance!

What about the generally constrained setting???
> We’ve done it! (Happy to discuss outside of the talk.)

» Paper is forthcoming soon.

Stochastic-Gradient-based Interior-Point Algorithms 27 of 28




Stochastic Gradient Method Single-Loop Interior-Point (SLIP) Method Stochastic Setting Conclusion
00000 0000000000 0000000 ooe

Collaborators and references

Submitted paper (second-round review):

» F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, “A Stochastic-Gradient-based
Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems,”
https://arxiv.org/abs/2304.14907.

Working paper:

> F. E. Curtis, X. Jiang, and Q. Wang, “Single-Loop Interior-Point Methods for Deterministic and
Stochastic Nonlinearly Constrained Optimization.”

I I
Stochastic-Gradient-based Interior-Point Algorithms 28 of 28



https://arxiv.org/abs/2304.14907

	Stochastic Gradient Method
	Single-Loop Interior-Point (SLIP) Method
	Stochastic Setting
	Conclusion

