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Collaborators and references

Submitted paper (second-round review):

▶ F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, “A Stochastic-Gradient-based
Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems,”
https://arxiv.org/abs/2304.14907.

Working paper:

▶ F. E. Curtis, X. Jiang, and Q. Wang, “Single-Loop Deterministic and Stochastic Interior-Point
Algorithms for Nonlinearly Constrained Optimization.”
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Stochastic gradient method

Consider min
x∈Rn

f(x), where ∇f : Rn → Rn is Lipschitz continuous with constant L.

Algorithm SG : Stochastic gradient method

1: choose an initial point x1 ∈ Rn and step sizes {αk} > 0
2: for k ∈ {1, 2, . . . } =: N do
3: set xk+1 ← xk − αkgk, where gk ≈ ∇f(xk)
4: end for

Algorithm behavior is defined by (Ω,F ,P), where

▶ Ω = Γ× Γ× Γ× · · · (sequence of draws determining stochastic gradients);

▶ F is a σ-algebra on Ω, specifically, the set of events (i.e., measurable subsets of Ω); and

▶ P : F → [0, 1] is a probability measure.

One can view any {(xk, gk)} as a realization of {(Xk, Gk)}, where for all k ∈ N

xk = Xk(ω) and gk = Gk(ω) given ω ∈ Ω.
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Random variables measurable with respect to Fk

Analyze through an associated sequence of sub-σ-algebras:

F0 = {∅,Ω}, F1 = 2Γ × Ω, F2 = 2Γ × 2Γ × Ω, . . .

Consider a random variable for which a realization is determined by the draw, e.g., Xk.

▶ Fj for all j < k does not give enough information about Xk.

▶ Fj for all j ≥ k does give enough information about Xk.

We say Xk is measurable with respect to Fk if and only if all “inverses” of Xk are in Fk.

▶ For our purposes going forward, it is sufficient to understand that this means

Xk = E[Xk|Fk] for all k ∈ N.

For the stochastic gradient method, one finds that

▶ Xk is Fk-measurable for all k ∈ N
▶ Gk is Fk+1-measurable for all k ∈ N.
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Convergence of SG

Let E[·] denote expectation with respect to P[·].

Assumption

For all k ∈ N, one has that

▶ E[Gk|Fk] = ∇f(Xk) and

▶ E[∥Gk∥22|Fk] ≤M +M∇f∥∇f(Xk)∥22

By Lipschitz continuity of ∇f and construction of the algorithm, one finds

f(Xk+1)− f(Xk) ≤ ∇f(Xk)
T (Xk+1 −Xk) +

1
2
L∥Xk+1 −Xk∥22

= −αk∇f(Xk)
TGk + 1

2
α2
kL∥Gk∥22

=⇒ E[f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLE[∥Gk∥22|Fk]

≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kL(M +M∇f∥∇f(Xk)∥22),

where the last inequalities follow by the assumption and since f(Xk) and ∇f(Xk) are Fk-measurable.
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SG theory

Taking total expectation, one arrives at

E[f(Xk+1)− f(Xk)] ≤ −αk(1− 1
2
αkLM∇f )E[∥∇f(Xk)∥22] + 1

2
α2
kLM

Theorem

αk =
1

LM∇f
=⇒ E

 1

k

k∑
j=1

∥∇f(Xj)∥22

 ≤Mk
k→∞−−−−→ O

(
M

M∇f

)

αk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 αj

) k∑
j=1

αj∥∇f(Xj)∥22

→ 0

=⇒ lim inf
k→∞

E[∥∇f(Xk)∥22] = 0

(further steps) and ∇f(Xk)→∞ almost surely.
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Motivation

Interior-point methods are the workhorse for large-scale nonlinearly constrained optimization.

▶ Ipopt, Knitro, LOQO, etc.

As far as we are aware, there were no stochastic interior-point methods with convergence guarantees.

Huh? Why not?

▶ Stochastic optimization with nonlinear, nonconvex constraints is not well studied.

▶ For large-scale problems, people focus on projection methods, manifold methods, etc.

▶ Stochastic-gradient-based algorithms require gradients to be bounded and Lipschitz continuous

▶ ... but the typical (e.g., logarithmic) barrier function has neither property.
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Bound-constrained setting

Given f : Rn → R and (l, u) ∈ Rn × Rn with l < u, consider

min
x∈Rn

f(x)

s.t. l ≤ x ≤ u

If x is a minimizer, then for some (y, z) one has

∇f(x)− y + z = 0, 0 ≤ (x− l) ⊥ y ≥ 0, 0 ≤ (u− x) ⊥ z ≥ 0.

(In what follows, we can handle infinite bounds, but consider finite bounds for simplicity....)
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Textbook algorithm

For a given µ ∈ R>0, consider the barrier-augmented function

ϕ(x, µ) = f(x)− µ
n∑

i=1

log(xi − li)− µ
n∑

i=1

log(ui − xi).

Algorithm IPM : Interior-point method (textbook version)

1: choose an initial point x1 ∈ Rn and barrier parameter µ0 ∈ R>0
2: for k ∈ {1, 2, . . . } do
3: if ∥∇xϕ(xk, µk−1)∥2 ≤ θµk−1 then set µk ≪ µk−1 else set µk ← µk−1

4: compute descent direction dk (e.g., −∇ϕ(xk, µk))
5: set αk,max ∈ (0, 1] by fraction-to-the-boundary rule to ensure

xk + αk,maxdk ∈ [l + ϵxk, u− ϵxk]

6: set αk ∈ (0, αk,max] to ensure sufficient decrease ϕ(xk+1, µk)≪ ϕ(xk, µk)
7: end for
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Major challenges for the stochastic setting
Stationarity test:

▶ Computing ∥∇xϕ(xk, µk−1)∥2 is intractable

▶ Could estimate it using a stochastic gradient, but then a probabilistic guarantee, at best

Fraction-to-the-boundary rule:

▶ Tying fraction to current iterate xk leads to issues

▶ ... stochastic gradients could push iterate sequence to boundary too quickly

Unbounded gradients and lack of Lipschitz continuity:

xi

−µ log(xi)
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Our approach

Our approach is based on two coupled ideas:

▶ prescribed decreasing barrier parameter sequence {µk} ↘ 0 (single-loop algorithm!)

▶ prescribed {θk} ↘ 0 and enforcing

xk+1 ∈ N[l,u](θk) := {x ∈ Rn : l + θk ≤ x ≤ u− θk}

“Wait! I thought interior-points worked well because of their complexity properties?!”

▶ This algorithm is completely different and doesn’t have those properties

▶ Is it worthwhile to do this? (Our experiments say yes!)
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Proposed algorithm

Algorithm SLIP : Single-loop interior-point method

1: choose an initial point x1 ∈ Rn, {µk} ↘ 0, {θk} ↘ 0
2: for k ∈ {1, 2, . . . } do
3: compute descent direction dk (e.g., estimating −∇ϕ(xk, µk))
4: set

αk ←
1

L+ 2µkθ
−2
k

5: set γk ∈ (0, 1] to ensure
xk+1 ← xk + γkαkdk ∈ N[l,u](θk)

6: end for

*Paper considers a more general framework; this is a simplified example
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Critical lemmas, deterministic setting

Lemma

For all k ∈ N, one finds for Lk := L+ 2µkθ
−2
k that

ϕ(xk+1, µk) ≤ ϕ(xk, µk) +∇xϕ(xk, µk)
T (xk+1 − xk) +

1
2
Lk∥xk+1 − xk∥22,

so {αk} = {L−1
k } =⇒ ϕ(xk+1, µk+1) ≤ ϕ(xk, µk)− 1

2
γkαk∥∇xϕ(xk, µk)∥22.

Lemma

For all k ∈ N, one finds that γk is bounded below by the minimum of 1 and

α−1
k

(
1
2
µk∆

µk + 1
2
κ∇f∆

− θk

)
(κ∇f + µkθ

−1
k−1)

−1.

Thus, with t ∈ [−1, 0), {µk} = {µ1kt}, {θk−1} = {θ0kt}, and {αk} = {L−1
k }, one finds that

∞∑
k=1

γkαk =∞ and {µkθ
−1
k−1} is bounded.
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Convergence guarantee, deterministic setting

Theorem

One finds that
lim inf
k→∞

∥∇xϕ(xk, µk)∥22 = 0.

Consequently, for any infinite-cardinality set K ⊆ N such that {∇xϕ(xk, µk)}k∈K → 0 and {xk}k∈K → x,
the limit point x is a KKT point (i.e., there exists y and z such that (x, y, z) satisfies KKT conditions).
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Why does it work?

−µk log(·)

θk−1

θk

−µk+1 log(·)
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Stochastic setting

In the stochastic setting, the algorithm parameters need to be chosen carefully!

▶ Notably, γk needs to be chosen based on knowledge of noise bound.

▶ Step-size sequence {αk} can no longer decrease at same rate as {µk}
▶ . . . needs to decrease more slowly (although rates can be arbitrarily close).
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Convergence guarantee, stochastic setting

Theorem

Suppose t ∈ (−1,− 1
2
) and tα ∈ (−∞, 0) have

t+ tα ∈ [−1, 0) and t+ 2tα ∈ (−∞,−1)

and for some σ ∈ R>0 one has for all k ∈ N that

E[Gk|Fk] = ∇f(Xk) and ∥Gk −∇f(Xk)∥2 ≤ σ.

Then, with {µk} = {µ1kt}, {θk−1} = {θ0kt}, and {αk} = {L−1
k ktα}, one finds that

lim inf
k→∞

∥∇xϕ(Xk, µk)∥22 = 0 almost surely.

Consequently, considering any realization {xk} of {Xk}, for any infinite-cardinality set K ⊆ N such that
{∇xϕ(xk, µk)}k∈K → 0 and {xk}k∈K → x, the limit point x is a KKT point.
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Numerical experiments

Compare SLIP with a projected stochastic gradient method (PSGM) for which

xk+1 ← Proj[l,u](xk + αkdk).

Experiments involve:

▶ binary classification problems with LIBSVM datasets
▶ two classifiers:

▶ logistic regression (convex) and
▶ neural network with one hidden layer and cross-entropy loss (nonconvex)

▶ performance measure
f(xSLIP

end )− f(xPSGM
end )

max{f(xSLIP
end ), f(xPSGM

end ), 1}
∈ (−1, 1)
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Deterministic setting

Relative performance of SLIP and PSGM, deterministic setting, training logistic regression (left) and
neural network models with one hidden layer with cross-entropy loss (right).
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Stochastic setting, logistic regression

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression
models; among 43 training datasets, 26 have testing datasets.
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Stochastic setting, neural network with cross-entropy loss

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models
(with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.
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Summary

Presented a single-loop interior-point method for solving bound-constrained problems, with

▶ prescribed barrier and “neighborhood” parameter sequences,

▶ no need for stationarity tests, fraction-to-the-boundary rules, or line searches,

▶ convergence guarantees in deterministic and stochastic settings, and

▶ promising numerical performance!

What about the generally constrained setting???

▶ We’ve done it! (Happy to discuss outside of the talk.)

▶ Paper is forthcoming soon.
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